Research Article
BibTex RIS Cite
Year 2023, , 222 - 231, 27.06.2023
https://doi.org/10.54287/gujsa.1302064

Abstract

References

  • Abdel All, N., El Ghoul, J., & Khouqeer, G. (2021). Synthesis and Characterization of Ni-Doped ZnO Nanoparticles for CO2 Gas Sensing. Journal of Nanoelectronics and Optoelectronics, 16(11), 1762-1768. doi:10.1166/jno.2021.3121
  • Anderson, T., Ren, F., Pearton, S., Kang, B. S., Wang, H.-T., Chang, C.-Y., & Lin, J. (2009). Advances in Hydrogen, Carbon Dioxide, and Hydrocarbon Gas Sensor Technology Using GaN and ZnO-Based Devices. Sensors, 9(6), 4669-4694. doi:10.3390/s90604669
  • Barin, Ö., Ajjaq, A., Çağırtekin, A. O., Karaduman Er, I., Yıldırım, M. A., Ateş, A., & Acar, S. (2022). Pivotal role of nucleation layers in the hydrothermally-assisted growth of ZnO and its H2 gas sensing performance. Sensors and Actuators B: Chemical, 371, 132499. doi:10.1016/j.snb.2022.132499
  • Bulut, F., Ozturk, Ö., Acar, S., & Yildirim, G. (2022). Effect of Ni and Al doping on structural, optical, and CO2 gas sensing properties of 1D ZnO nanorods produced by hydrothermal method. Microscopy Research and Technique, 85(4), 1502-1517. doi:10.1002/jemt.24013
  • Bura, M., Singh, G., Gupta, D., Malik, N., Salim, A., Kumar, A., Singhal, R., Kumar, S., & Aggarwal, S. (2022). Transition in the preferred orientation of RF sputtered ZnO/Si thin films by thermal annealing: Structural, morphological, and optical characteristics. Optical Materials, 133, 113024. doi:10.1016/j.optmat.2022.113024
  • Cai, Z., Park, J., & Park, S. (2023). Synergistic effect of Pd and Fe2O3 nanoparticles embedded in porous NiO nanofibers on hydrogen gas detection: Fabrication, characterization, and sensing mechanism exploration. Sensors and Actuators B: Chemical, 388, 133836. doi:10.1016/j.snb.2023.133836
  • Cho, Y. H., Liang, X., Kang, Y. C., & Lee, J.-H. (2015). Ultrasensitive detection of trimethylamine using Rh-doped SnO2 hollow spheres prepared by ultrasonic spray pyrolysis. Sensors and Actuators, B: Chemical, 207(Part A), 330-337. doi:10.1016/j.snb.2014.10.001
  • Dhahri, R., Leonardi, S. G., Hjiri, M., Mir, L. E., Bonavita, A., Donato, N., Iannazzo, D., & Neri, G. (2017). Enhanced performance of novel calcium/aluminum co-doped zinc oxide for CO2 sensors. Sensors and Actuators B: Chemical, 239, 36-44. doi:10.1016/j.snb.2016.07.155
  • Galioglu, S., Karaduman, I., Çorlu, T., Akata, B., Yıldırım, M. A., Ateş, A., & Acar, S. (2018). Zeolite A coated Zn1−XCuXO MOS sensors for NO gas detection. Journal of Materials Science: Materials in Electronics, 29(2), 1356-1368. doi:10.1007/s10854-017-8042-8
  • Jagadale, S. B., Patil, V. L., Vanalakar, S. A., Patil, P. S., & Deshmukh, H. P. (2018). Preparation, characterization of 1D ZnO nanorods and their gas sensing properties. Ceramics International, 44(3), 3333-3340. doi:10.1016/j.ceramint.2017.11.116
  • Jeong, Y.-J., Balamurugan, C., & Lee, D.-W. (2016). Enhanced CO2 gas-sensing performance of ZnO nanopowder by La loaded during simple hydrothermal method. Sensors and Actuators B: Chemical, 229, 288-296. doi:10.1016/j.snb.2015.11.093
  • Kamble, V. S., Navale, Y. H., Patil, V. B., Desai, N. K., & Salunkhe, S. T. (2021). Enhanced NO2 gas sensing performance of Ni-doped ZnO nanostructures. Journal of Materials Science: Materials in Electronics, 32(2), 2219-2233. doi:10.1007/s10854-020-04987-z
  • Kanaparthi, S., & Singh, S. G. (2019). Chemiresistive Sensor Based on Zinc Oxide Nanoflakes for CO2 Detection. ACS Applied Nano Materials, 2(2), 700-706. doi:10.1021/acsanm.8b01763
  • Kannan, P. K., Saraswathi, R., & Rayappan, J. B. B. (2014). CO2 gas sensing properties of DC reactive magnetron sputtered ZnO thin film. Ceramics International, 40(8, Part B), 13115-13122. doi:10.1016/j.ceramint.2014.05.011
  • Kar, N., & Kamilla, S. K. (2021, October 8-10). Performance of Ni-doped ZnO nanoparticles towards CH3-CO-CH3 sensing. In: N. Nayak, T. Parida, T. P. Dash, L. M. Satpathy, M. Mishra, M. Sahani, D. A. Gadnayak, & S. Coudhury (Eds.), Proceedings of the International Conference in Advances in Power, Signal, and Information Technology (APSIT), Bhubaneswar, India. doi:10.1109/APSIT52773.2021.9641451
  • Mirzaei, A., Park, S., Kheel, H., Sun, G.-J., Lee, S., & Lee, C. (2016). ZnO-capped nanorod gas sensors. Ceramics International, 42(5), 6187-6197. doi:10.1016/j.ceramint.2015.12.179
  • Ocak, Y. S., Zeggar, M. L., Genişel, M. F., Uzun, N. U., & Aida, M. S. (2021). CO2 sensing behavior of vertically aligned Si Nanowire/ZnO structures. Materials Science in Semiconductor Processing, 134, 106028. doi:10.1016/j.mssp.2021.106028
  • Saini, S., Kumar, A., Ranwa, S., & Tyagi, A. K. (2022). Highly sensitive NO2 gas sensor based on Ag decorated ZnO nanorods. Applied Physics A, 128(5), 454. doi:10.1007/s00339-022-05606-w
  • Saxena, N., Manzhi, P., Choudhary, R. J., Upadhyay, S., Ojha, S., Umapathy, G. R., Chawla, V., Sinha, O. P., & Krishna, R. (2020). Performance optimization of transparent and conductive Zn1-xAlxO thin films for opto-electronic devices: An experimental & first-principles investigation. Vacuum, 177. doi:10.1016/j.vacuum.2020.109369
  • Singh, S., Kumar, Y., Kumar, H., Vyas, S., Periasamy, C., Chakrabarti, P., Jit, S., & Park, S.-H. (2017). A study of hydrothermally grown ZnO nanorod-based metal-semiconductor-metal UV detectors on glass substrates. Nanomaterials and Nanotechnology, 7. doi:10.1177/1847980417702144
  • Wan, M., Shi, C., Qian, X., Qin, Y., Jing, J., Che, H., Ren, F., Li, J., & Yu, B. (2022). Interface assembly of flower-like Ni-MOF functional MXene towards the fire safety of thermoplastic polyurethanes. Composites Part A: Applied Science and Manufacturing, 163, 107187. doi:10.1016/j.compositesa.2022.107187
  • Wisitsoraat, A., Tuantranont, A., Comini, E., Sberveglieri, G., & Wlodarski, W. (2009). Characterization of n-type and p-type semiconductor gas sensors based on NiOx doped TiO2 thin films. Thin Solid Films, 517(8), 2775-2780. doi:10.1016/j.tsf.2008.10.090
  • Xu, K., Fu, C., Gao, Z., Wei, F., Ying, Y., Xu, C., & Fu, G. (2018). Nanomaterial-based gas sensors: A review. Instrumentation Science & Technology, 46(2), 115-145. doi:10.1080/10739149.2017.1340896
  • Xu, M., Li, Q., Ma, Y., & Fan, H. (2014). Ni-doped ZnO nanorods gas sensor: Enhanced gas-sensing properties, AC and DC electrical behaviors. Sensors and Actuators B: Chemical, 199, 403-409. doi:10.1016/j.snb.2014.03.108
  • Zhang, Y., Liu, Y., Zhou, L., Liu, D., Liu, F., Liu, F., Liang, X., Yan, X., Gao, Y., & Lu, G. (2018). The role of Ce doping in enhancing sensing performance of ZnO-based gas sensor by adjusting the proportion of oxygen species. Sensors and Actuators, B: Chemical, 273, 991-998. doi:10.1016/j.snb.2018.05.167

The Investigation of CO2 Gas Sensing Performance of ZnO Nanorods Growth on RF Sputtered Seed Layer

Year 2023, , 222 - 231, 27.06.2023
https://doi.org/10.54287/gujsa.1302064

Abstract

In this study, one-dimensional ZnO nanorod structures with different ratios of nickel doping were produced using the hydrothermal method. The presence of nickel doping in different ratios caused variations in the fundamental characteristics of the nanorods that grew on the RF sputtered seed layer, such as crystallinity quality, morphology, diameter of the nanorods, band gap energy, resistance of the sample, and CO2 gas sensing. Produced samples were found to form like hexagonal rods and crystallize in a wurtzite structure, and the ratio of nickel doping improved the crystallin quality and the morphology of sample surface. This study showed that the 5% nickel doped sample provided the most effective results in sensing CO2 gas at different concentrations. Overall, the study provided valuable insights into the relationship between doping system and the basic characteristics of wurtzite-type hexagonal ZnO.

References

  • Abdel All, N., El Ghoul, J., & Khouqeer, G. (2021). Synthesis and Characterization of Ni-Doped ZnO Nanoparticles for CO2 Gas Sensing. Journal of Nanoelectronics and Optoelectronics, 16(11), 1762-1768. doi:10.1166/jno.2021.3121
  • Anderson, T., Ren, F., Pearton, S., Kang, B. S., Wang, H.-T., Chang, C.-Y., & Lin, J. (2009). Advances in Hydrogen, Carbon Dioxide, and Hydrocarbon Gas Sensor Technology Using GaN and ZnO-Based Devices. Sensors, 9(6), 4669-4694. doi:10.3390/s90604669
  • Barin, Ö., Ajjaq, A., Çağırtekin, A. O., Karaduman Er, I., Yıldırım, M. A., Ateş, A., & Acar, S. (2022). Pivotal role of nucleation layers in the hydrothermally-assisted growth of ZnO and its H2 gas sensing performance. Sensors and Actuators B: Chemical, 371, 132499. doi:10.1016/j.snb.2022.132499
  • Bulut, F., Ozturk, Ö., Acar, S., & Yildirim, G. (2022). Effect of Ni and Al doping on structural, optical, and CO2 gas sensing properties of 1D ZnO nanorods produced by hydrothermal method. Microscopy Research and Technique, 85(4), 1502-1517. doi:10.1002/jemt.24013
  • Bura, M., Singh, G., Gupta, D., Malik, N., Salim, A., Kumar, A., Singhal, R., Kumar, S., & Aggarwal, S. (2022). Transition in the preferred orientation of RF sputtered ZnO/Si thin films by thermal annealing: Structural, morphological, and optical characteristics. Optical Materials, 133, 113024. doi:10.1016/j.optmat.2022.113024
  • Cai, Z., Park, J., & Park, S. (2023). Synergistic effect of Pd and Fe2O3 nanoparticles embedded in porous NiO nanofibers on hydrogen gas detection: Fabrication, characterization, and sensing mechanism exploration. Sensors and Actuators B: Chemical, 388, 133836. doi:10.1016/j.snb.2023.133836
  • Cho, Y. H., Liang, X., Kang, Y. C., & Lee, J.-H. (2015). Ultrasensitive detection of trimethylamine using Rh-doped SnO2 hollow spheres prepared by ultrasonic spray pyrolysis. Sensors and Actuators, B: Chemical, 207(Part A), 330-337. doi:10.1016/j.snb.2014.10.001
  • Dhahri, R., Leonardi, S. G., Hjiri, M., Mir, L. E., Bonavita, A., Donato, N., Iannazzo, D., & Neri, G. (2017). Enhanced performance of novel calcium/aluminum co-doped zinc oxide for CO2 sensors. Sensors and Actuators B: Chemical, 239, 36-44. doi:10.1016/j.snb.2016.07.155
  • Galioglu, S., Karaduman, I., Çorlu, T., Akata, B., Yıldırım, M. A., Ateş, A., & Acar, S. (2018). Zeolite A coated Zn1−XCuXO MOS sensors for NO gas detection. Journal of Materials Science: Materials in Electronics, 29(2), 1356-1368. doi:10.1007/s10854-017-8042-8
  • Jagadale, S. B., Patil, V. L., Vanalakar, S. A., Patil, P. S., & Deshmukh, H. P. (2018). Preparation, characterization of 1D ZnO nanorods and their gas sensing properties. Ceramics International, 44(3), 3333-3340. doi:10.1016/j.ceramint.2017.11.116
  • Jeong, Y.-J., Balamurugan, C., & Lee, D.-W. (2016). Enhanced CO2 gas-sensing performance of ZnO nanopowder by La loaded during simple hydrothermal method. Sensors and Actuators B: Chemical, 229, 288-296. doi:10.1016/j.snb.2015.11.093
  • Kamble, V. S., Navale, Y. H., Patil, V. B., Desai, N. K., & Salunkhe, S. T. (2021). Enhanced NO2 gas sensing performance of Ni-doped ZnO nanostructures. Journal of Materials Science: Materials in Electronics, 32(2), 2219-2233. doi:10.1007/s10854-020-04987-z
  • Kanaparthi, S., & Singh, S. G. (2019). Chemiresistive Sensor Based on Zinc Oxide Nanoflakes for CO2 Detection. ACS Applied Nano Materials, 2(2), 700-706. doi:10.1021/acsanm.8b01763
  • Kannan, P. K., Saraswathi, R., & Rayappan, J. B. B. (2014). CO2 gas sensing properties of DC reactive magnetron sputtered ZnO thin film. Ceramics International, 40(8, Part B), 13115-13122. doi:10.1016/j.ceramint.2014.05.011
  • Kar, N., & Kamilla, S. K. (2021, October 8-10). Performance of Ni-doped ZnO nanoparticles towards CH3-CO-CH3 sensing. In: N. Nayak, T. Parida, T. P. Dash, L. M. Satpathy, M. Mishra, M. Sahani, D. A. Gadnayak, & S. Coudhury (Eds.), Proceedings of the International Conference in Advances in Power, Signal, and Information Technology (APSIT), Bhubaneswar, India. doi:10.1109/APSIT52773.2021.9641451
  • Mirzaei, A., Park, S., Kheel, H., Sun, G.-J., Lee, S., & Lee, C. (2016). ZnO-capped nanorod gas sensors. Ceramics International, 42(5), 6187-6197. doi:10.1016/j.ceramint.2015.12.179
  • Ocak, Y. S., Zeggar, M. L., Genişel, M. F., Uzun, N. U., & Aida, M. S. (2021). CO2 sensing behavior of vertically aligned Si Nanowire/ZnO structures. Materials Science in Semiconductor Processing, 134, 106028. doi:10.1016/j.mssp.2021.106028
  • Saini, S., Kumar, A., Ranwa, S., & Tyagi, A. K. (2022). Highly sensitive NO2 gas sensor based on Ag decorated ZnO nanorods. Applied Physics A, 128(5), 454. doi:10.1007/s00339-022-05606-w
  • Saxena, N., Manzhi, P., Choudhary, R. J., Upadhyay, S., Ojha, S., Umapathy, G. R., Chawla, V., Sinha, O. P., & Krishna, R. (2020). Performance optimization of transparent and conductive Zn1-xAlxO thin films for opto-electronic devices: An experimental & first-principles investigation. Vacuum, 177. doi:10.1016/j.vacuum.2020.109369
  • Singh, S., Kumar, Y., Kumar, H., Vyas, S., Periasamy, C., Chakrabarti, P., Jit, S., & Park, S.-H. (2017). A study of hydrothermally grown ZnO nanorod-based metal-semiconductor-metal UV detectors on glass substrates. Nanomaterials and Nanotechnology, 7. doi:10.1177/1847980417702144
  • Wan, M., Shi, C., Qian, X., Qin, Y., Jing, J., Che, H., Ren, F., Li, J., & Yu, B. (2022). Interface assembly of flower-like Ni-MOF functional MXene towards the fire safety of thermoplastic polyurethanes. Composites Part A: Applied Science and Manufacturing, 163, 107187. doi:10.1016/j.compositesa.2022.107187
  • Wisitsoraat, A., Tuantranont, A., Comini, E., Sberveglieri, G., & Wlodarski, W. (2009). Characterization of n-type and p-type semiconductor gas sensors based on NiOx doped TiO2 thin films. Thin Solid Films, 517(8), 2775-2780. doi:10.1016/j.tsf.2008.10.090
  • Xu, K., Fu, C., Gao, Z., Wei, F., Ying, Y., Xu, C., & Fu, G. (2018). Nanomaterial-based gas sensors: A review. Instrumentation Science & Technology, 46(2), 115-145. doi:10.1080/10739149.2017.1340896
  • Xu, M., Li, Q., Ma, Y., & Fan, H. (2014). Ni-doped ZnO nanorods gas sensor: Enhanced gas-sensing properties, AC and DC electrical behaviors. Sensors and Actuators B: Chemical, 199, 403-409. doi:10.1016/j.snb.2014.03.108
  • Zhang, Y., Liu, Y., Zhou, L., Liu, D., Liu, F., Liu, F., Liang, X., Yan, X., Gao, Y., & Lu, G. (2018). The role of Ce doping in enhancing sensing performance of ZnO-based gas sensor by adjusting the proportion of oxygen species. Sensors and Actuators, B: Chemical, 273, 991-998. doi:10.1016/j.snb.2018.05.167
There are 25 citations in total.

Details

Primary Language English
Subjects Semiconductors
Journal Section Metallurgical and Materials Engineering
Authors

Fatih Bulut 0000-0001-5335-2307

Özgür Öztürk 0000-0002-0391-5551

Selim Acar 0000-0003-4014-7800

Early Pub Date June 23, 2023
Publication Date June 27, 2023
Submission Date May 24, 2023
Published in Issue Year 2023

Cite

APA Bulut, F., Öztürk, Ö., & Acar, S. (2023). The Investigation of CO2 Gas Sensing Performance of ZnO Nanorods Growth on RF Sputtered Seed Layer. Gazi University Journal of Science Part A: Engineering and Innovation, 10(2), 222-231. https://doi.org/10.54287/gujsa.1302064