Research Article
BibTex RIS Cite

Impedance Response and Phase Angle Determination of Metal-Semiconductor Structure with N-Doped Diamond Like Carbon Interlayer

Year 2024, , 12 - 23, 28.03.2024
https://doi.org/10.54287/gujsa.1393292

Abstract

With their superior properties over p-n barriers, Schottky Barrier Diodes have a wide usage area, especially as a test tool to produce better-performance devices. The main performance parameter of these devices is measured by their conduction, which can develop with an interlayer addition through the sandwich design. Regarding the DLC, which also has outstanding specifications under thermal, chemical, and physical conditions, is a good candidate for interlayer tailoring, specifically when used with doping atoms. Thus, this study investigates the impedance response of the fabricated device with an N-doped DLC interlayer by employing the electrochemical technique as a combination of electrolysis, RF magnetron sputtering, and thermal evaporation. The measurements were conducted for broad scales of voltage and frequency corresponding between (-3V) and (+4V) and 1kHz and 1MHz, respectively. According to the impedance analysis, complex impedance decreases by rising bias and frequency, from 1.8 MΩ to 2 k Ω at 1MHZ due to the additional insulating layer. At the same time, the phase angle indicates the quality of the dielectric layer with an average of 81.36  for the sample logarithmic frequency values with an almost constant-like trend in the inversion stage. In comparison, it reduces to an average of 30.25  after the depletion stage by showing the rising conductivity. Moreover, it has some unexpected rising values at the strong accumulation stage, possibly due to the deposited thin film's unique structure. The supported results by phase angle changes, showing frequency-adjustable working conditions, may offer that selective electrical conduction can be tuned.

References

  • Basman, N., Aslan, N., Uzun, O., Cankaya, G., & Kolemen, U. (2015). Electrical characterization of metal/diamond-like carbon/inorganic semiconductor MIS Schottky barrier diodes. Microelectronic Engineering, 140, 18–22. https://doi.org/10.1016/j.mee.2015.05.001
  • Basman, N., & Varol, S. F. (2019). High Temperature Characterization of a MIS Schottky Diode Based on Diamond-Like Carbon Nanocomposite Film. Journal of Electronic Materials, 48(12), 7874–7881. https://doi.org/10.1007/s11664-019-07621-9
  • Berkün, Ö., Ulusoy, M., Altındal, Ş., & Avar,B (2023). On frequency and voltage dependent physical characteristics and interface states characterization of the metal semiconductor (MS) structures with (Ti:DLC) interlayer, Physica B: Condensed Matter, 666, 415099. https://doi.org/10.1016/j.physb.2023.415099
  • Bootkul, D., Saenphinit, N., Supsermpol, B., Aramwit, C., & Intarasiri, S. (2014). Synthesis of Ti-doped DLC film on SS304 steels by Filtered Cathodic Vacuum Arc (FCVA) technique for tribological improvement. Applied Surface Science, 310, 293–299. https://doi.org/10.1016/j.apsusc.2014.04.053
  • Card, H. C., & Rhoderick, E. H. (1971). Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. Journal of Physics D: Applied Physics, 4(10), 1589–1601. https://doi.org/10.1088/0022-3727/4/10/319
  • Cetinkaya, H. G., Feizollahi Vahid, A., Basman, N., Demirezen, S., Şafak Asar, Y., & Altındal, S. (2023). On the wide range frequency and voltage dependence of electrical features and density of surface states of the Al/(Cu:DLC)/p-Si/Au Schottky diodes (SDs). Journal of Materials Science: Materials in Electronics, 34(9). https://doi.org/10.1007/s10854-023-10247-7
  • Das, A., Hatada, R., Ensinger, W., Flege, S., Baba, K., & Meikap, A. (2018). Dielectric constant, AC conductivity and impedance spectroscopy of zinc-containing diamond-like carbon film UV photodetector. Journal of Alloys and Compounds, 758, 194–205. https://doi.org/10.1016/j.jallcom.2018.05.121
  • Ersöz, M., Sulak, M., Bersani, M., Işıtan, A., Balaban, M., Yakar, Z., Ünlü, C. G., & Onar, V. (2018). Nanoteknoloji 2: karakterizasyon ve uygulamalar. https://hdl.handle.net/11499/3118
  • Evtukh, A. A., Litovchenko, V. G., Litvin, Y. M., Fedin, D. V., Dzyan, O. S., Pedchenko, Y. N., Chakhovskoi, A. G., & Felter, T. E. (2003). Silicon doped diamond-like carbon films as a coating for improvement of electron field emission. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 21(1), 627–630. https://doi.org/10.1116/1.1528918
  • Feizollahi Vahid, A., Alptekin, S., Basman, N., Ulusoy, M., Şafak Asar, Y., & Altındal. (2023). The investigation of frequency dependent dielectric properties and ac conductivity by impedance spectroscopy in the Al/(Cu-doped Diamond Like Carbon)/Au structures. Journal of Materials Science: Materials in Electronics, 34(13). https://doi.org/10.1007/s10854-023-10546-z
  • Goetzberger, A., Klausmann, E., & Schulz, M. J. (1976). Interface states on semiconductor/insulator surfaces. C R C Critical Reviews in Solid State Sciences, 6(1), 1–43. https://doi.org/10.1080/10408437608243548
  • Hajimazdarani, M., Derakhshandeh, M. R., Eshraghi, M. J., & Massoudi, A. (2021). Investigation of optoelectrical and Schottky behavior of diamond-like carbon coating deposited by hollow cathode PACVD method. Optical Materials, 119, 111385. https://doi.org/10.1016/j.optmat.2021.111385
  • Hwang, J. D., Kung, C. Y., & Lin, Y. L. (2013). Non-Surface-Treated Au/ZnO Schottky Diodes Using Pre-Annealed Hydrothermal or Sol-Gel Seed Layer. IEEE Transactions on Nanotechnology, 12(1), 35–39. https://doi.org/10.1109/tnano.2012.2226188
  • Kadri, E., Dhahri, K., Zaafouri, A., Krichen, M., Rasheed, M., Khirouni, K., & Barillé, R. (2017). Ac conductivity and dielectric behavior of a−Si:H/c−Si1−y Gey/p−Si thin films synthesized by molecular beam epitaxial method. Journal of Alloys and Compounds, 705, 708–713. https://doi.org/10.1016/j.jallcom.2017.02.117
  • Konstantinou, X., Herrera-Rodriguez, C. J., Lai, J., Hardy, A., Albrecht, J. D., Seo, J. H., Muehle, M., Grotjohn, T., & Papapolymerou, J. (2021). Towards high-power multipliers using diamond Schottky barrier diodes. In 2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS) (pp. 111-115). IEEE. https://doi.org/10.1109/comcas52219.2021.9629034
  • Lee, H. K., Jyothi, I., Janardhanam, V., Shim, K. H., Yun, H. J., Lee, S. N., Hong, H., Jeong, J. C., & Choi, C. J. (2016). Effects of Ta-oxide interlayer on the Schottky barrier parameters of Ni/n-type Ge Schottky barrier diode. Microelectronic Engineering, 163, 26–31. https://doi.org/10.1016/j.mee.2016.06.006
  • Lin, C. C., Wu, Y. H., Hung, T. H., & Chang, Y. T. (2014). Impact of Interfacial Layer Position on Resistive Switching Behaviors for ZrTiOx-Based Metal–Insulator–Metal Devices. IEEE Transactions on Nanotechnology, 13(4), 634–638. https://doi.org/10.1109/tnano.2014.2323198
  • Maril, E., Tan, S. O., Altındal, S., & Uslu, I. (2018). Evaluation of Electric and Dielectric Properties of Metal–Semiconductor Structures With 2% GC-Doped-(Ca3Co4Ga0.001Ox ) Interlayer. IEEE Transactions on Electron Devices, 65(9), 3901–3908. https://doi.org/10.1109/ted.2018.2859907
  • Nela, L., Kampitsis, G., Ma, J., & Matioli, E. (2019). Fast-switching tri-anode Schottky barrier diodes for monolithically integrated GaN-on-Si power circuits. IEEE Electron Device Letters, 41(1), 99-102. https://doi.org/10.1109/led.2019.2957700
  • Northrop, D. C., & Rhoderick, E. H. (1978). The Physics of Shottky barriers, in Impedance Devices, Solid State Electron, 4, 37-73
  • Rodrigues, A. (2008). Effect of non-homogeneity of Al/CVD diamond interfaces on AC properties. Diamond and Related Materials, 17(7–10), 1264–1268. https://doi.org/10.1016/j.diamond.2008.02.004
  • Sharma, A., Shahnawaz, Kumar, S., Katharria, Y., & Kanjilal, D. (2007). Barrier modification of Au/n-GaAs Schottky diode by swift heavy ion irradiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 263(2), 424–428. https://doi.org/10.1016/j.nimb.2007.05.031
  • Sharma, B. (1984). Metal-Semiconductor Schottky Barrier Junctions and Their Applications. Springer.
  • Singh, A., Reinhardt, K. C., & Anderson, W. A. (1990). Temperature dependence of the electrical characteristics of Yb/p-InP tunnel metal-insulator-semiconductor junctions. Journal of Applied Physics, 68(7), 3475–3483. https://doi.org/10.1063/1.346358
  • Soylu, M., & Yakuphanoglu, F. (2011). Photovoltaic and interface state density properties of the Au/n-GaAs Schottky barrier solar cell. Thin Solid Films, 519(6), 1950–1954. https://doi.org/10.1016/j.tsf.2010.10.030
  • Şafak Asar, Y., Feizollahi Vahid, A., Basman, N., Çetinkaya, H. G., & Altındal. (2023). Frequency-dependent electrical parameters and extracted voltage-dependent surface states in Al/DLC/p-Si structure using the conductance method. Applied Physics A, 129(5). https://doi.org/10.1007/s00339-023-06639-5
  • Tan, S. O. (2017). Comparison of Graphene and Zinc Dopant Materials for Organic Polymer Interfacial Layer Between Metal Semiconductor Structure. IEEE Transactions on Electron Devices, 64(12), 5121–5127. https://doi.org/10.1109/ted.2017.2766289
  • Tan, S. O., Çiçek, O., Türk, A. G., & Altındal, E. (2022). Dielectric properties, electric modulus and conductivity profiles of Al/Al2O3/p-Si type MOS capacitor in large frequency and bias interval. Engineering Science and Technology, an International Journal, 27, 101017. https://doi.org/10.1016/j.jestch.2021.05.021
  • Tan, S. O., Uslu Tecimer, H., Çiçek, O., Tecimer, H., Orak, & Altındal. (2016). Electrical characterizations of Au/ZnO/n-GaAs Schottky diodes under distinct illumination intensities. Journal of Materials Science: Materials in Electronics, 27(8), 8340–8347. https://doi.org/10.1007/s10854-016-4843-4
  • Tataroğlu, A., & Altındal. (2009). Gamma-ray irradiation effects on the interface states of MIS structures. Sensors and Actuators A: Physical, 151(2), 168–172. https://doi.org/10.1016/j.sna.2009.02.035
  • Tecimer, H., Türüt, A., Uslu, H., Altındal, & Uslu. (2013). Temperature dependent current-transport mechanism in Au/(Zn-doped)PVA/n-GaAs Schottky barrier diodes (SBDs). Sensors and Actuators A: Physical, 199, 194–201. https://doi.org/10.1016/j.sna.2013.05.027
  • Zeng, A., Neto, V. F., Gracio, J. J., & Fan, Q. H. (2014). Diamond-like carbon (DLC) films as electrochemical electrodes. Diamond and Related Materials, 43, 12–22. https://doi.org/10.1016/j.diamond.2014.01.003
  • Zhang, M., Xie, T., Qian, X., Zhu, Y., & Liu, X. (2020). Mechanical Properties and Biocompatibility of Ti-doped Diamond-like Carbon Films. ACS Omega, 5(36), 22772–22777. https://doi.org/10.1021/acsomega.0c01715
Year 2024, , 12 - 23, 28.03.2024
https://doi.org/10.54287/gujsa.1393292

Abstract

References

  • Basman, N., Aslan, N., Uzun, O., Cankaya, G., & Kolemen, U. (2015). Electrical characterization of metal/diamond-like carbon/inorganic semiconductor MIS Schottky barrier diodes. Microelectronic Engineering, 140, 18–22. https://doi.org/10.1016/j.mee.2015.05.001
  • Basman, N., & Varol, S. F. (2019). High Temperature Characterization of a MIS Schottky Diode Based on Diamond-Like Carbon Nanocomposite Film. Journal of Electronic Materials, 48(12), 7874–7881. https://doi.org/10.1007/s11664-019-07621-9
  • Berkün, Ö., Ulusoy, M., Altındal, Ş., & Avar,B (2023). On frequency and voltage dependent physical characteristics and interface states characterization of the metal semiconductor (MS) structures with (Ti:DLC) interlayer, Physica B: Condensed Matter, 666, 415099. https://doi.org/10.1016/j.physb.2023.415099
  • Bootkul, D., Saenphinit, N., Supsermpol, B., Aramwit, C., & Intarasiri, S. (2014). Synthesis of Ti-doped DLC film on SS304 steels by Filtered Cathodic Vacuum Arc (FCVA) technique for tribological improvement. Applied Surface Science, 310, 293–299. https://doi.org/10.1016/j.apsusc.2014.04.053
  • Card, H. C., & Rhoderick, E. H. (1971). Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. Journal of Physics D: Applied Physics, 4(10), 1589–1601. https://doi.org/10.1088/0022-3727/4/10/319
  • Cetinkaya, H. G., Feizollahi Vahid, A., Basman, N., Demirezen, S., Şafak Asar, Y., & Altındal, S. (2023). On the wide range frequency and voltage dependence of electrical features and density of surface states of the Al/(Cu:DLC)/p-Si/Au Schottky diodes (SDs). Journal of Materials Science: Materials in Electronics, 34(9). https://doi.org/10.1007/s10854-023-10247-7
  • Das, A., Hatada, R., Ensinger, W., Flege, S., Baba, K., & Meikap, A. (2018). Dielectric constant, AC conductivity and impedance spectroscopy of zinc-containing diamond-like carbon film UV photodetector. Journal of Alloys and Compounds, 758, 194–205. https://doi.org/10.1016/j.jallcom.2018.05.121
  • Ersöz, M., Sulak, M., Bersani, M., Işıtan, A., Balaban, M., Yakar, Z., Ünlü, C. G., & Onar, V. (2018). Nanoteknoloji 2: karakterizasyon ve uygulamalar. https://hdl.handle.net/11499/3118
  • Evtukh, A. A., Litovchenko, V. G., Litvin, Y. M., Fedin, D. V., Dzyan, O. S., Pedchenko, Y. N., Chakhovskoi, A. G., & Felter, T. E. (2003). Silicon doped diamond-like carbon films as a coating for improvement of electron field emission. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 21(1), 627–630. https://doi.org/10.1116/1.1528918
  • Feizollahi Vahid, A., Alptekin, S., Basman, N., Ulusoy, M., Şafak Asar, Y., & Altındal. (2023). The investigation of frequency dependent dielectric properties and ac conductivity by impedance spectroscopy in the Al/(Cu-doped Diamond Like Carbon)/Au structures. Journal of Materials Science: Materials in Electronics, 34(13). https://doi.org/10.1007/s10854-023-10546-z
  • Goetzberger, A., Klausmann, E., & Schulz, M. J. (1976). Interface states on semiconductor/insulator surfaces. C R C Critical Reviews in Solid State Sciences, 6(1), 1–43. https://doi.org/10.1080/10408437608243548
  • Hajimazdarani, M., Derakhshandeh, M. R., Eshraghi, M. J., & Massoudi, A. (2021). Investigation of optoelectrical and Schottky behavior of diamond-like carbon coating deposited by hollow cathode PACVD method. Optical Materials, 119, 111385. https://doi.org/10.1016/j.optmat.2021.111385
  • Hwang, J. D., Kung, C. Y., & Lin, Y. L. (2013). Non-Surface-Treated Au/ZnO Schottky Diodes Using Pre-Annealed Hydrothermal or Sol-Gel Seed Layer. IEEE Transactions on Nanotechnology, 12(1), 35–39. https://doi.org/10.1109/tnano.2012.2226188
  • Kadri, E., Dhahri, K., Zaafouri, A., Krichen, M., Rasheed, M., Khirouni, K., & Barillé, R. (2017). Ac conductivity and dielectric behavior of a−Si:H/c−Si1−y Gey/p−Si thin films synthesized by molecular beam epitaxial method. Journal of Alloys and Compounds, 705, 708–713. https://doi.org/10.1016/j.jallcom.2017.02.117
  • Konstantinou, X., Herrera-Rodriguez, C. J., Lai, J., Hardy, A., Albrecht, J. D., Seo, J. H., Muehle, M., Grotjohn, T., & Papapolymerou, J. (2021). Towards high-power multipliers using diamond Schottky barrier diodes. In 2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS) (pp. 111-115). IEEE. https://doi.org/10.1109/comcas52219.2021.9629034
  • Lee, H. K., Jyothi, I., Janardhanam, V., Shim, K. H., Yun, H. J., Lee, S. N., Hong, H., Jeong, J. C., & Choi, C. J. (2016). Effects of Ta-oxide interlayer on the Schottky barrier parameters of Ni/n-type Ge Schottky barrier diode. Microelectronic Engineering, 163, 26–31. https://doi.org/10.1016/j.mee.2016.06.006
  • Lin, C. C., Wu, Y. H., Hung, T. H., & Chang, Y. T. (2014). Impact of Interfacial Layer Position on Resistive Switching Behaviors for ZrTiOx-Based Metal–Insulator–Metal Devices. IEEE Transactions on Nanotechnology, 13(4), 634–638. https://doi.org/10.1109/tnano.2014.2323198
  • Maril, E., Tan, S. O., Altındal, S., & Uslu, I. (2018). Evaluation of Electric and Dielectric Properties of Metal–Semiconductor Structures With 2% GC-Doped-(Ca3Co4Ga0.001Ox ) Interlayer. IEEE Transactions on Electron Devices, 65(9), 3901–3908. https://doi.org/10.1109/ted.2018.2859907
  • Nela, L., Kampitsis, G., Ma, J., & Matioli, E. (2019). Fast-switching tri-anode Schottky barrier diodes for monolithically integrated GaN-on-Si power circuits. IEEE Electron Device Letters, 41(1), 99-102. https://doi.org/10.1109/led.2019.2957700
  • Northrop, D. C., & Rhoderick, E. H. (1978). The Physics of Shottky barriers, in Impedance Devices, Solid State Electron, 4, 37-73
  • Rodrigues, A. (2008). Effect of non-homogeneity of Al/CVD diamond interfaces on AC properties. Diamond and Related Materials, 17(7–10), 1264–1268. https://doi.org/10.1016/j.diamond.2008.02.004
  • Sharma, A., Shahnawaz, Kumar, S., Katharria, Y., & Kanjilal, D. (2007). Barrier modification of Au/n-GaAs Schottky diode by swift heavy ion irradiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 263(2), 424–428. https://doi.org/10.1016/j.nimb.2007.05.031
  • Sharma, B. (1984). Metal-Semiconductor Schottky Barrier Junctions and Their Applications. Springer.
  • Singh, A., Reinhardt, K. C., & Anderson, W. A. (1990). Temperature dependence of the electrical characteristics of Yb/p-InP tunnel metal-insulator-semiconductor junctions. Journal of Applied Physics, 68(7), 3475–3483. https://doi.org/10.1063/1.346358
  • Soylu, M., & Yakuphanoglu, F. (2011). Photovoltaic and interface state density properties of the Au/n-GaAs Schottky barrier solar cell. Thin Solid Films, 519(6), 1950–1954. https://doi.org/10.1016/j.tsf.2010.10.030
  • Şafak Asar, Y., Feizollahi Vahid, A., Basman, N., Çetinkaya, H. G., & Altındal. (2023). Frequency-dependent electrical parameters and extracted voltage-dependent surface states in Al/DLC/p-Si structure using the conductance method. Applied Physics A, 129(5). https://doi.org/10.1007/s00339-023-06639-5
  • Tan, S. O. (2017). Comparison of Graphene and Zinc Dopant Materials for Organic Polymer Interfacial Layer Between Metal Semiconductor Structure. IEEE Transactions on Electron Devices, 64(12), 5121–5127. https://doi.org/10.1109/ted.2017.2766289
  • Tan, S. O., Çiçek, O., Türk, A. G., & Altındal, E. (2022). Dielectric properties, electric modulus and conductivity profiles of Al/Al2O3/p-Si type MOS capacitor in large frequency and bias interval. Engineering Science and Technology, an International Journal, 27, 101017. https://doi.org/10.1016/j.jestch.2021.05.021
  • Tan, S. O., Uslu Tecimer, H., Çiçek, O., Tecimer, H., Orak, & Altındal. (2016). Electrical characterizations of Au/ZnO/n-GaAs Schottky diodes under distinct illumination intensities. Journal of Materials Science: Materials in Electronics, 27(8), 8340–8347. https://doi.org/10.1007/s10854-016-4843-4
  • Tataroğlu, A., & Altındal. (2009). Gamma-ray irradiation effects on the interface states of MIS structures. Sensors and Actuators A: Physical, 151(2), 168–172. https://doi.org/10.1016/j.sna.2009.02.035
  • Tecimer, H., Türüt, A., Uslu, H., Altındal, & Uslu. (2013). Temperature dependent current-transport mechanism in Au/(Zn-doped)PVA/n-GaAs Schottky barrier diodes (SBDs). Sensors and Actuators A: Physical, 199, 194–201. https://doi.org/10.1016/j.sna.2013.05.027
  • Zeng, A., Neto, V. F., Gracio, J. J., & Fan, Q. H. (2014). Diamond-like carbon (DLC) films as electrochemical electrodes. Diamond and Related Materials, 43, 12–22. https://doi.org/10.1016/j.diamond.2014.01.003
  • Zhang, M., Xie, T., Qian, X., Zhu, Y., & Liu, X. (2020). Mechanical Properties and Biocompatibility of Ti-doped Diamond-like Carbon Films. ACS Omega, 5(36), 22772–22777. https://doi.org/10.1021/acsomega.0c01715
There are 33 citations in total.

Details

Primary Language English
Subjects Semiconductors
Journal Section Metallurgical and Materials Engineering
Authors

Nuray Urgun 0000-0001-6574-4287

Aylar Feizollahi Vahid 0000-0003-3157-2725

Jaafar Alsmael 0000-0002-2426-9421

Barış Avar 0000-0002-6234-5448

Serhat Orkun Tan 0000-0001-6184-5099

Early Pub Date January 30, 2024
Publication Date March 28, 2024
Submission Date November 21, 2023
Acceptance Date January 19, 2024
Published in Issue Year 2024

Cite

APA Urgun, N., Vahid, A. F., Alsmael, J., Avar, B., et al. (2024). Impedance Response and Phase Angle Determination of Metal-Semiconductor Structure with N-Doped Diamond Like Carbon Interlayer. Gazi University Journal of Science Part A: Engineering and Innovation, 11(1), 12-23. https://doi.org/10.54287/gujsa.1393292