One-pot Synthesis of Graphene Oxide-MnO2-Polyaniline Nanocomposites and Their Photothermal Properties
Year 2024,
, 164 - 172, 28.03.2024
Zafer Çıplak
,
Furkan Soysal
Abstract
Graphene oxide-MnO2-Polyaniline ternary nanocomposites were synthesized by a facile one-pot approach and characterized with UV-Visible spectroscopy, XRD and SEM. Photothermal properties of the nanocomposite dispersions were tested with an 808 nm wavelength near-infrared laser. Efficiency of the nanocomposites were calculated with time constant method and maximum efficiency was found to be 73.9 %. Additionally, cyclic heating cooling experiments proved the superb dispersion stability and photothermal performance of the nanocomposite.
References
- Bai, X., Yang, Y., Zheng, W., Huang, Y., Xu, F., & Bao, Z. (2023). Synergistic photothermal antibacterial therapy enabled by multifunctional nanomaterials: progress and perspectives. Materials Chemistry Frontiers, 7(3), 355-380. https://doi.org/10.1039/D2QM01141G
- Çıplak, Z., & Yıldız, N. (2019). Polyaniline-Au nanocomposite as electrode material for supercapacitor applications. Synthetic Metals, 256, 116150. https://doi.org/10.1016/j.synthmet.2019.116150
- Ding, K.-Q. (2009). Cyclic Voltammetrically Prepared MnO2 ‐Polyaniline Composite and Its Electrocatalysis for Oxygen Reduction Reaction (ORR). Journal of the Chinese Chemical Society, 56(5), 891-897. https://doi.org/10.1002/jccs.200900132
- Guan, G., Win, K. Y., Yao, X., Yang, W., & Han, M. (2021). Plasmonically Modulated Gold Nanostructures for Photothermal Ablation of Bacteria. Advanced Healthcare Materials, 10(3). https://doi.org/10.1002/adhm.202001158
- İrez, A. B., & Bayraktar, E. (2020). Design of Epoxy Modified Recycled Rubber-Based Composites: Effects of Different Contents of Nano-Silica, Alumina and Graphene Nanoplatelets Modification on the Toughening Behavior. Gazi University Journal of Science, 33(1), 188-199. https://doi.org/10.35378/gujs.585446
- Izwan Misnon, I., & Jose, R. (2021). Charge storage in the PANI–α-MnO2 polymer–nanocomposite system. Materials Today: Proceedings, 41(3), 513-519. https://doi.org/10.1016/j.matpr.2020.05.235
- Jianjun, H., Yuping, D., Jia, Z., Hui, J., Shunhua, L., & Weiping, L. (2011). γ-MnO2/polyaniline composites: Preparation, characterization, and applications in microwave absorption. Physica B: Condensed Matter, 406(10), 1950-1955. https://doi.org/10.1016/j.physb.2011.02.063
- Lima-Sousa, R., Melo, B. L., Mendonça, A. G., Correia, I. J., & de Melo-Diogo, D. (2024). Hyaluronic acid-functionalized graphene-based nanohybrids for targeted breast cancer chemo-photothermal therapy. International Journal of Pharmaceutics, 651, 123763. https://doi.org/10.1016/j.ijpharm.2023.123763
- Liu, J., Feng, L., & Wu, Y. (2021). Enzymatically synthesised MnO2 nanoparticles for efficient near-infrared photothermal therapy and dual-responsive magnetic resonance imaging. Nanoscale, 13(25), 11093-11103. https://doi.org/10.1039/D1NR02400K
- Pham, T.-T. D., Phan, L. M. T., Nam, S.-N., Hoang, T. X., Nam, J., Cho, S., & Park, J. (2024). Selective photothermal and photodynamic capabilities of conjugated polymer nanoparticles. Polymer, 294, 126689. https://doi.org/10.1016/j.polymer.2024.126689
- Soysal, F., Çıplak, Z., Getiren, B., Gökalp, C., & Yıldız, N. (2022). Fabrication of polypyrrole enveloped reduced graphene oxide/iron oxide and determination of its photothermal properties. Materials Research Bulletin, 150, 111792. https://doi.org/10.1016/j.materresbull.2022.111792
- Wang, X., Su, K., Tan, L., Liu, X., Cui, Z., Jing, D., Yang, X., Liang, Y., Li, Z., Zhu, S., Yeung, K. W. K., Zheng, D., & Wu, S. (2019). Rapid and Highly Effective Noninvasive Disinfection by Hybrid Ag/CS@MnO 2 Nanosheets Using Near-Infrared Light. ACS Applied Materials & Interfaces, 11(16), 15014-15027. https://doi.org/10.1021/acsami.8b22136
- Wei, W., Zhang, X., Zhang, S., Wei, G., & Su, Z. (2019). Biomedical and bioactive engineered nanomaterials for targeted tumor photothermal therapy: A review. Materials Science and Engineering: C, 104, 109891. https://doi.org/10.1016/j.msec.2019.109891
- Xing, Z., Dong, B., Zhang, X., Qiu, L., Jiang, P., Xuan, Y., Ni, X., Xu, H., & Wang, J. (2024). Cypate‐loaded hollow mesoporous Prussian blue nanoparticle/hydrogel system for efficient photodynamic therapy/photothermal therapy dual‐modal antibacterial therapy. Journal of Biomedical Materials Research Part A, 112(1), 53-64. https://doi.org/10.1002/jbm.a.37613
- Xu, W., Qing, X., Liu, S., Chen, Z., & Zhang, Y. (2022). Manganese oxide nanomaterials for bacterial infection detection and therapy. Journal of Materials Chemistry B, 10(9), 1343-1358. https://doi.org/10.1039/D1TB02646A
- Yu, C., Xu, L., Zhang, Y., Timashev, P. S., Huang, Y., & Liang, X.-J. (2020). Polymer-Based Nanomaterials for Noninvasive Cancer Photothermal Therapy. ACS Applied Polymer Materials, 2(10), 4289-4305. https://doi.org/10.1021/acsapm.0c00704
- Yürekli Bayar, E., Getiren, B., Soysal, F., Çıplak, Z., Yıldız, N., & Bayraktar, E. (2023). Graphene oxide/polyaniline/silver nanocomposite synthesis and photothermal performance. Materials Research Bulletin, 166, 112352. https://doi.org/10.1016/j.materresbull.2023.112352
- Zeplin, G., & Neiva, E. G. C. (2021). One-pot green synthesis of graphene oxide/MnO2/polyaniline nanocomposites applied in aqueous and neutral supercapacitors and sensors. Journal of Electroanalytical Chemistry, 902, 115776. https://doi.org/10.1016/j.jelechem.2021.115776
Year 2024,
, 164 - 172, 28.03.2024
Zafer Çıplak
,
Furkan Soysal
References
- Bai, X., Yang, Y., Zheng, W., Huang, Y., Xu, F., & Bao, Z. (2023). Synergistic photothermal antibacterial therapy enabled by multifunctional nanomaterials: progress and perspectives. Materials Chemistry Frontiers, 7(3), 355-380. https://doi.org/10.1039/D2QM01141G
- Çıplak, Z., & Yıldız, N. (2019). Polyaniline-Au nanocomposite as electrode material for supercapacitor applications. Synthetic Metals, 256, 116150. https://doi.org/10.1016/j.synthmet.2019.116150
- Ding, K.-Q. (2009). Cyclic Voltammetrically Prepared MnO2 ‐Polyaniline Composite and Its Electrocatalysis for Oxygen Reduction Reaction (ORR). Journal of the Chinese Chemical Society, 56(5), 891-897. https://doi.org/10.1002/jccs.200900132
- Guan, G., Win, K. Y., Yao, X., Yang, W., & Han, M. (2021). Plasmonically Modulated Gold Nanostructures for Photothermal Ablation of Bacteria. Advanced Healthcare Materials, 10(3). https://doi.org/10.1002/adhm.202001158
- İrez, A. B., & Bayraktar, E. (2020). Design of Epoxy Modified Recycled Rubber-Based Composites: Effects of Different Contents of Nano-Silica, Alumina and Graphene Nanoplatelets Modification on the Toughening Behavior. Gazi University Journal of Science, 33(1), 188-199. https://doi.org/10.35378/gujs.585446
- Izwan Misnon, I., & Jose, R. (2021). Charge storage in the PANI–α-MnO2 polymer–nanocomposite system. Materials Today: Proceedings, 41(3), 513-519. https://doi.org/10.1016/j.matpr.2020.05.235
- Jianjun, H., Yuping, D., Jia, Z., Hui, J., Shunhua, L., & Weiping, L. (2011). γ-MnO2/polyaniline composites: Preparation, characterization, and applications in microwave absorption. Physica B: Condensed Matter, 406(10), 1950-1955. https://doi.org/10.1016/j.physb.2011.02.063
- Lima-Sousa, R., Melo, B. L., Mendonça, A. G., Correia, I. J., & de Melo-Diogo, D. (2024). Hyaluronic acid-functionalized graphene-based nanohybrids for targeted breast cancer chemo-photothermal therapy. International Journal of Pharmaceutics, 651, 123763. https://doi.org/10.1016/j.ijpharm.2023.123763
- Liu, J., Feng, L., & Wu, Y. (2021). Enzymatically synthesised MnO2 nanoparticles for efficient near-infrared photothermal therapy and dual-responsive magnetic resonance imaging. Nanoscale, 13(25), 11093-11103. https://doi.org/10.1039/D1NR02400K
- Pham, T.-T. D., Phan, L. M. T., Nam, S.-N., Hoang, T. X., Nam, J., Cho, S., & Park, J. (2024). Selective photothermal and photodynamic capabilities of conjugated polymer nanoparticles. Polymer, 294, 126689. https://doi.org/10.1016/j.polymer.2024.126689
- Soysal, F., Çıplak, Z., Getiren, B., Gökalp, C., & Yıldız, N. (2022). Fabrication of polypyrrole enveloped reduced graphene oxide/iron oxide and determination of its photothermal properties. Materials Research Bulletin, 150, 111792. https://doi.org/10.1016/j.materresbull.2022.111792
- Wang, X., Su, K., Tan, L., Liu, X., Cui, Z., Jing, D., Yang, X., Liang, Y., Li, Z., Zhu, S., Yeung, K. W. K., Zheng, D., & Wu, S. (2019). Rapid and Highly Effective Noninvasive Disinfection by Hybrid Ag/CS@MnO 2 Nanosheets Using Near-Infrared Light. ACS Applied Materials & Interfaces, 11(16), 15014-15027. https://doi.org/10.1021/acsami.8b22136
- Wei, W., Zhang, X., Zhang, S., Wei, G., & Su, Z. (2019). Biomedical and bioactive engineered nanomaterials for targeted tumor photothermal therapy: A review. Materials Science and Engineering: C, 104, 109891. https://doi.org/10.1016/j.msec.2019.109891
- Xing, Z., Dong, B., Zhang, X., Qiu, L., Jiang, P., Xuan, Y., Ni, X., Xu, H., & Wang, J. (2024). Cypate‐loaded hollow mesoporous Prussian blue nanoparticle/hydrogel system for efficient photodynamic therapy/photothermal therapy dual‐modal antibacterial therapy. Journal of Biomedical Materials Research Part A, 112(1), 53-64. https://doi.org/10.1002/jbm.a.37613
- Xu, W., Qing, X., Liu, S., Chen, Z., & Zhang, Y. (2022). Manganese oxide nanomaterials for bacterial infection detection and therapy. Journal of Materials Chemistry B, 10(9), 1343-1358. https://doi.org/10.1039/D1TB02646A
- Yu, C., Xu, L., Zhang, Y., Timashev, P. S., Huang, Y., & Liang, X.-J. (2020). Polymer-Based Nanomaterials for Noninvasive Cancer Photothermal Therapy. ACS Applied Polymer Materials, 2(10), 4289-4305. https://doi.org/10.1021/acsapm.0c00704
- Yürekli Bayar, E., Getiren, B., Soysal, F., Çıplak, Z., Yıldız, N., & Bayraktar, E. (2023). Graphene oxide/polyaniline/silver nanocomposite synthesis and photothermal performance. Materials Research Bulletin, 166, 112352. https://doi.org/10.1016/j.materresbull.2023.112352
- Zeplin, G., & Neiva, E. G. C. (2021). One-pot green synthesis of graphene oxide/MnO2/polyaniline nanocomposites applied in aqueous and neutral supercapacitors and sensors. Journal of Electroanalytical Chemistry, 902, 115776. https://doi.org/10.1016/j.jelechem.2021.115776