Research Article
BibTex RIS Cite

Strontium Accumulations by Teucrium polium which Grows Naturally in Serpentine Soils

Year 2024, , 203 - 209, 28.03.2024
https://doi.org/10.54287/gujsa.1444350

Abstract

The study area is located in the Guleman region which hosts Turkey's most important chromite deposits and extensive serpentine soils. In this study, strontium uptake accumulations in the shoots and roots of the Teucrium polium plant growing on serpentine soils in the Guleman region were examined. In this context, 17 Teucrium polium plants growing in different locations of serpentine soils were collected together with their shoots, roots and soil, and then chemically analyzed for strontium. Chemical analyses were carried out in ICP-MS. On average, strontium values of 15.2 ppm in the soil, 26.4 in the root and 76.3 ppm in the shoots were detected. Strontium enrichment values in the soil, roots and shoots of this plant were determined as 1.8 for ECR (The enrichment coefficient for root), 5.3 for ECS (The enrichment coefficient for shoot) and 2.9 for TLF (Translocation factor). Results of this study show that the Teucrium polium plant accumulates significant amounts of strontium from the soil, both in the root and in the shoots. As a result, this plant can be used as a bioaccumulator plant, especially in the reclamation of strontium-polluted soils and the improvement of such areas.

Project Number

FUBAP-MF.20.16

Thanks

Fırat Üniversitesi Fübap birimine teşekkür ederiz.

References

  • ATSDR, (2004). Agency for Toxic Substances and Disease Registry: Toxicological profile for Sr.
  • Burger, A., & Lichtscheidl, I. (2019). Strontium in the environment: Review about reactions of plants towards stable and radioactive strontium isotopes. Sci. Total Environ., 653, 1458-1512. https://doi.org/10.1016/j.scitotenv.2018.10.312.
  • Engin, T., Balcı M., Simer Y., & Ozkan, Y. Z. (1983). General geological setting and the structural features of the Guleman peridotite unit and the chromite deposits. Bull. Min. Res. Exp. Ins. Turkey, 95, 34-56.
  • Kabata-Pendias, A. (2011). Trace elements in soils and plants. CRC Press, Boca Raton. https://doi.org/10.1201/9781420039900.
  • Kilic, A. D., Ates, C. (2015). Geochronology of the Late Cretaceous magmatism and metamorphism, Puturge massif, Turkey, Acta Petrol. Sin. 31, (5), 1485-1493.
  • Kilic, A. D., İnceöz, M. (2015). Mineralogical, Geochemical and Isotopic Effect of Silica in ultramaphic systems. Eastern Anatolian Turkey. Geochem. Int., 53, (4), 369-382. https://doi.org/10.1134/S0016702915040035.
  • Kırkık, D., Sancak, N. P., Alragabi, J. M. (2020). Türkiye’de yetişen Teucrium polium L. bitkisinin HepG2 hücre hattı üzerindeki etkisi. J. Med Palliat Care, 1(3), 49-52. https://doi.org/10.47582/jompac.737218.
  • Konakci, N., Sasmaz Kislioglu, M., Sasmaz, A. (2023). Ni, Cr and Co Phytoremediations by Alyssum murale Grown in the Serpentine Soils Around Guleman Cr Deposits, Elazig Turkey. Bull. Environ. Cont. Tox, 110, 97. https://doi.org/10.1007/s00128-023-03736-2.
  • Mikavica, I., Ranđelovi´c, D., Djordjevi´c, V., Raki´c, T., Gaji´c, G., & Muti´c, J., (2023). Concentration and mobility of trace elements (Li, Ba, Sr, Ag, Hg, B) and macronutrients (Ca, Mg, K) in soil-orchid system on different bedrock types. Environ. Sci. Pollut. Res. 30, 979–995. https://doi.org/10.1016/j.ecoenv.2023.115875.
  • Mileti´c, Z., Markovi´c, M., Jari´c, S., Radulovi´c, N., Sekuli´c, D., Mitrovi´c, M., & Pavlovi´c, P. (2024). Lithium and strontium accumulation in native and invasive plants of the Sava River: Implications for bioindication and phytoremediation. Ecotoxicology and Environmental Safety, 270, 1-12. https://doi.org/10.1016/j.ecoenv.2023.115875.
  • Myrvang, M., Hillersøy, M., Heim, M., Bleken, M., & Gjengedal, E. (2016). Uptake of macro nutrients, barium, and strontium by vegetation from mineral soils on carbonatite and pyroxenite bedrock at the Lillebukt Alkaline Complex on Stjernøy, Northern Norway. J. Plant Nutr. Soil Sci., 179, 705–716. https://doi.org/10.1002/jpln.201600328.
  • Nascimento, C. W. A., Lima, L. H. V., Silva, J. A. B., Biondi, C. M. (2022). Ultramafic soils and nickel phytomining opportunities: a review. Revista Brasileira de Ciência do Solo, 46, 1–17. https://doi.org/10.36783/18069657rbcs20210099.
  • Özkan, Y. Z. (1983). Guleman (Elazığ) ofiyolitinin yapısal incelenmesi. MTA Dergisi, 37,78-85.
  • Qi, L., & Zhao, W. (2020). Strontium uptake and antioxidant capacity comparisons of low accumulator and high accumulator oat (Avena sativa L.) genotypes. Int. J. Phytoremediat., 22, 227–235. https://doi.org/10.1080/15226514.2019.1658704.
  • Pehoiu, G., Murarescu, O., Radulescu, C., Dulama, I. D., Teodorescu, S., Stirbescu, R. M., Bucurica, I. A., & Stanescu, S. G. (2020). Heavy metals accumulation and translocation in native plants grown on tailing dumps and human health risk. Plant Soil, 456, 405-424. https://doi.org/10.1007/s11104-02004725-8.
  • Petrescu, L., & Bilal, E. (2006). Natural actinides studies in conifers grown on uranium mining dumps (the East Carpathians, Romania). Carpathian Journal of Earth and Environmental Sciences, 1, 63-80.
  • Rađenović, A., Medunić, G., & Sofilić, T. (2016). The use of ladle furnace slag for the removal of hexavalent chromium from an aqueous solution. Metal Res & Techn., 113, 6. https://doi.org/10.1051/metal/2016040.
  • Sasmaz, M., Senel, G. U., & Obek, E. (2021). Strontium accumulation by the terrestrial and aquatic plants affected by mining and municipal wastewaters (Elazig, Turkey). Environ. Geochem. Health, 43, 1-14. https://doi.org/10.1007/s10653-020-00629-9.
  • Sasmaz, M., & Sasmaz, A. (2017). The accumulation of strontium by native plants grown on Gumuskoy mining soils. Journal of Geochemical Exploration, 181, 236-242. https://doi.org/10.1016/j.gexplo.2017.08.001.
  • Sasmaz, A., & Sasmaz, M. (2009). The phytoremediation potential for strontium of indigenous plants growing in a mining area. Environ & Exp. Bot, 67 (1), 139–144. https://doi.org/10.1016/j.envexpbot.2009.06.014.
  • Shacklette, H. T., Erdman, J. A., & Harms, T. F. (1978). Trace elements in plant foodstuffs in toxicity of heavy metals in the environments. Part I. New York, 25.
  • Shahraki, S. A., Ahmadimoghadam, A., Naseri, F., & Esmailzade, E. (2008). Study the Accumulation of Strontium in Plant Growing around Sarcheshmeh Copper Mine, Iran. VSB Technical University of Ostrava, Ostrava, 239–242.
  • Sharma, S., (2020). Uptake, transport, and remediation of strontium. Strontium Contamination in the Environment. Springer, Cham, 99–119. https://doi.org/10.1007/978-3-030-15314-4_6.
  • Tapeh, N. G., Bernousi, I., Moghadam, A. F., & Mandoulakani, B. A. (2018). Genetic diversity and structure of Iranian Teucrium (Teucrium polium L.) populations assessed by ISSR markers. J. Agr Sci Tech., 20, 333-345. https://jast-old.modares.ac.ir/article_18556_9be231cf11d0ae26926c1edc3390add5.pdf.
  • Timofeeva, Y., Karabtsov, A., Burdukovskii, M., & Vzorova, D. (2024). Strontium and vanadium sorption by iron manganese nodules from natural and remediated Dystric Cambisols. Journal of Soils and Sediments. https://doi.org/10.1007/s11368-024-03714-z.
  • Uras, Y., & Yalçın, C. (2022). Malatya Floritlerinin NTE İçeriklerinin Regresyon Analizi ve Korelasyonu. Geosound, 55 (1), 61-70.
  • Yalcin, F., Jonathan, M. P., Yalcın, M. G., Ilhan, S., & Leventelı, Y. (2020). Investıgatıon of heavy metal content ın beach sedıments on the of tasucu bay (Mersın) wıth geochemıcal and multıvarıate statistical approaches. Journal of Engineering Sciences and Design, 8 (4), 1113-1125. https://doi.org/10.21923/jesd.802065.
  • Yalcin, M. G., Narin, I., & Soylak, M. (2008). Multivariate analysis of heavy metal contents of sediments from Gumusler creek, Nigde, Turkey. Environmental Geology, 54 (6), 1155-1163. https://doi.org/10.1007/s00254-007-0884-6.
  • Zu, Y. Q., Li, Y., Chen, J. J., Chen, H. Y., Qin, L., & Schvartz, C. (2005). Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environ Int., 31, 755-762. https://doi.org/10.1016/j.envint.2005.02.004.
Year 2024, , 203 - 209, 28.03.2024
https://doi.org/10.54287/gujsa.1444350

Abstract

Project Number

FUBAP-MF.20.16

References

  • ATSDR, (2004). Agency for Toxic Substances and Disease Registry: Toxicological profile for Sr.
  • Burger, A., & Lichtscheidl, I. (2019). Strontium in the environment: Review about reactions of plants towards stable and radioactive strontium isotopes. Sci. Total Environ., 653, 1458-1512. https://doi.org/10.1016/j.scitotenv.2018.10.312.
  • Engin, T., Balcı M., Simer Y., & Ozkan, Y. Z. (1983). General geological setting and the structural features of the Guleman peridotite unit and the chromite deposits. Bull. Min. Res. Exp. Ins. Turkey, 95, 34-56.
  • Kabata-Pendias, A. (2011). Trace elements in soils and plants. CRC Press, Boca Raton. https://doi.org/10.1201/9781420039900.
  • Kilic, A. D., Ates, C. (2015). Geochronology of the Late Cretaceous magmatism and metamorphism, Puturge massif, Turkey, Acta Petrol. Sin. 31, (5), 1485-1493.
  • Kilic, A. D., İnceöz, M. (2015). Mineralogical, Geochemical and Isotopic Effect of Silica in ultramaphic systems. Eastern Anatolian Turkey. Geochem. Int., 53, (4), 369-382. https://doi.org/10.1134/S0016702915040035.
  • Kırkık, D., Sancak, N. P., Alragabi, J. M. (2020). Türkiye’de yetişen Teucrium polium L. bitkisinin HepG2 hücre hattı üzerindeki etkisi. J. Med Palliat Care, 1(3), 49-52. https://doi.org/10.47582/jompac.737218.
  • Konakci, N., Sasmaz Kislioglu, M., Sasmaz, A. (2023). Ni, Cr and Co Phytoremediations by Alyssum murale Grown in the Serpentine Soils Around Guleman Cr Deposits, Elazig Turkey. Bull. Environ. Cont. Tox, 110, 97. https://doi.org/10.1007/s00128-023-03736-2.
  • Mikavica, I., Ranđelovi´c, D., Djordjevi´c, V., Raki´c, T., Gaji´c, G., & Muti´c, J., (2023). Concentration and mobility of trace elements (Li, Ba, Sr, Ag, Hg, B) and macronutrients (Ca, Mg, K) in soil-orchid system on different bedrock types. Environ. Sci. Pollut. Res. 30, 979–995. https://doi.org/10.1016/j.ecoenv.2023.115875.
  • Mileti´c, Z., Markovi´c, M., Jari´c, S., Radulovi´c, N., Sekuli´c, D., Mitrovi´c, M., & Pavlovi´c, P. (2024). Lithium and strontium accumulation in native and invasive plants of the Sava River: Implications for bioindication and phytoremediation. Ecotoxicology and Environmental Safety, 270, 1-12. https://doi.org/10.1016/j.ecoenv.2023.115875.
  • Myrvang, M., Hillersøy, M., Heim, M., Bleken, M., & Gjengedal, E. (2016). Uptake of macro nutrients, barium, and strontium by vegetation from mineral soils on carbonatite and pyroxenite bedrock at the Lillebukt Alkaline Complex on Stjernøy, Northern Norway. J. Plant Nutr. Soil Sci., 179, 705–716. https://doi.org/10.1002/jpln.201600328.
  • Nascimento, C. W. A., Lima, L. H. V., Silva, J. A. B., Biondi, C. M. (2022). Ultramafic soils and nickel phytomining opportunities: a review. Revista Brasileira de Ciência do Solo, 46, 1–17. https://doi.org/10.36783/18069657rbcs20210099.
  • Özkan, Y. Z. (1983). Guleman (Elazığ) ofiyolitinin yapısal incelenmesi. MTA Dergisi, 37,78-85.
  • Qi, L., & Zhao, W. (2020). Strontium uptake and antioxidant capacity comparisons of low accumulator and high accumulator oat (Avena sativa L.) genotypes. Int. J. Phytoremediat., 22, 227–235. https://doi.org/10.1080/15226514.2019.1658704.
  • Pehoiu, G., Murarescu, O., Radulescu, C., Dulama, I. D., Teodorescu, S., Stirbescu, R. M., Bucurica, I. A., & Stanescu, S. G. (2020). Heavy metals accumulation and translocation in native plants grown on tailing dumps and human health risk. Plant Soil, 456, 405-424. https://doi.org/10.1007/s11104-02004725-8.
  • Petrescu, L., & Bilal, E. (2006). Natural actinides studies in conifers grown on uranium mining dumps (the East Carpathians, Romania). Carpathian Journal of Earth and Environmental Sciences, 1, 63-80.
  • Rađenović, A., Medunić, G., & Sofilić, T. (2016). The use of ladle furnace slag for the removal of hexavalent chromium from an aqueous solution. Metal Res & Techn., 113, 6. https://doi.org/10.1051/metal/2016040.
  • Sasmaz, M., Senel, G. U., & Obek, E. (2021). Strontium accumulation by the terrestrial and aquatic plants affected by mining and municipal wastewaters (Elazig, Turkey). Environ. Geochem. Health, 43, 1-14. https://doi.org/10.1007/s10653-020-00629-9.
  • Sasmaz, M., & Sasmaz, A. (2017). The accumulation of strontium by native plants grown on Gumuskoy mining soils. Journal of Geochemical Exploration, 181, 236-242. https://doi.org/10.1016/j.gexplo.2017.08.001.
  • Sasmaz, A., & Sasmaz, M. (2009). The phytoremediation potential for strontium of indigenous plants growing in a mining area. Environ & Exp. Bot, 67 (1), 139–144. https://doi.org/10.1016/j.envexpbot.2009.06.014.
  • Shacklette, H. T., Erdman, J. A., & Harms, T. F. (1978). Trace elements in plant foodstuffs in toxicity of heavy metals in the environments. Part I. New York, 25.
  • Shahraki, S. A., Ahmadimoghadam, A., Naseri, F., & Esmailzade, E. (2008). Study the Accumulation of Strontium in Plant Growing around Sarcheshmeh Copper Mine, Iran. VSB Technical University of Ostrava, Ostrava, 239–242.
  • Sharma, S., (2020). Uptake, transport, and remediation of strontium. Strontium Contamination in the Environment. Springer, Cham, 99–119. https://doi.org/10.1007/978-3-030-15314-4_6.
  • Tapeh, N. G., Bernousi, I., Moghadam, A. F., & Mandoulakani, B. A. (2018). Genetic diversity and structure of Iranian Teucrium (Teucrium polium L.) populations assessed by ISSR markers. J. Agr Sci Tech., 20, 333-345. https://jast-old.modares.ac.ir/article_18556_9be231cf11d0ae26926c1edc3390add5.pdf.
  • Timofeeva, Y., Karabtsov, A., Burdukovskii, M., & Vzorova, D. (2024). Strontium and vanadium sorption by iron manganese nodules from natural and remediated Dystric Cambisols. Journal of Soils and Sediments. https://doi.org/10.1007/s11368-024-03714-z.
  • Uras, Y., & Yalçın, C. (2022). Malatya Floritlerinin NTE İçeriklerinin Regresyon Analizi ve Korelasyonu. Geosound, 55 (1), 61-70.
  • Yalcin, F., Jonathan, M. P., Yalcın, M. G., Ilhan, S., & Leventelı, Y. (2020). Investıgatıon of heavy metal content ın beach sedıments on the of tasucu bay (Mersın) wıth geochemıcal and multıvarıate statistical approaches. Journal of Engineering Sciences and Design, 8 (4), 1113-1125. https://doi.org/10.21923/jesd.802065.
  • Yalcin, M. G., Narin, I., & Soylak, M. (2008). Multivariate analysis of heavy metal contents of sediments from Gumusler creek, Nigde, Turkey. Environmental Geology, 54 (6), 1155-1163. https://doi.org/10.1007/s00254-007-0884-6.
  • Zu, Y. Q., Li, Y., Chen, J. J., Chen, H. Y., Qin, L., & Schvartz, C. (2005). Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environ Int., 31, 755-762. https://doi.org/10.1016/j.envint.2005.02.004.
There are 29 citations in total.

Details

Primary Language English
Subjects Geochemistry (Other)
Journal Section Geological Engineering
Authors

Nevin Konakcı 0000-0002-0163-0966

Project Number FUBAP-MF.20.16
Early Pub Date March 21, 2024
Publication Date March 28, 2024
Submission Date February 28, 2024
Acceptance Date March 15, 2024
Published in Issue Year 2024

Cite

APA Konakcı, N. (2024). Strontium Accumulations by Teucrium polium which Grows Naturally in Serpentine Soils. Gazi University Journal of Science Part A: Engineering and Innovation, 11(1), 203-209. https://doi.org/10.54287/gujsa.1444350