Research Article
BibTex RIS Cite

Modeling Cardiovascular Flow with Artificial Viscosity: Analyzing Navier-Stokes Solutions and Simulating Cardiovascular Diseases

Year 2024, , 463 - 480, 30.09.2024
https://doi.org/10.54287/gujsa.1485920

Abstract

In this paper, the numerical solutions of the Navier-Stokes equations (NSE) used for modeling the flow in the cardiovascular system are investigated using the Finite Element Method (FEM). A fully discrete solution scheme of the NSE and its stability and error analysis are presented. Artificial viscosity stabilization is added to the fully discrete scheme to better model the real flow structure and to remove non-physical oscillations. Numerical tests are also presented to demonstrate the effectiveness of the resulting scheme. Simulations analyzing the flow structure in the case of cardiovascular diseases such as atherosclerosis and brain aneurysm are presented in detail along with wall shear stress values.

References

  • Adams, R. A. (1975). Sobolev Spaces. Academic Press, New York.
  • Ali, S., Najjar, I. M. R., Sadoun, A. M., & Fathy, A. (2024). Navigating cardiovascular dynamics through mathematical modeling of arterial blood flow. Ain Shams Engineering Journal, 15(4), 102594. https://doi.org/10.1016/j.asej.2023.102594
  • Alimov, N. (2023). Blood Supply to the Human Body, Vascular Anatomy and Blood Components. Western European Journal of Medicine and Medical Science, 1(4), 4-14.
  • Arjmandi-Tash, O., Razavi, S. E., & Zanbouri, R. (2011). Possibility of atherosclerosis in an arterial bifurcation model. BioImpacts, 1(4), 225-228. https://doi.org/10.5681/bi.2011.032
  • Chiu, J.-J., & Chien, S. (2011). Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiological Reviews, 91(1), 327-387. https://doi.org/10.1152/physrev.00047.2009
  • Cook, A. W., & Cabot, W. H. (2005). Hyperviscosity for shock-turbulence interactions. Journal of Computational Physics, 203(2), 379-385. https://doi.org/10.1016/j.jcp.2004.09.011
  • Fisher, A. B., Chien, S., Barakat, A. I., & Nerem, R. M. (2001). Endothelial cellular response to altered shear stress. American Journal of Physiology-Lung Cellular and Molecular Physiology, 281(3), L529-L533. https://doi.org/10.1152/ajplung.2001.281.3.L529
  • Formaggia, L., Quarteroni, A., & Veneziani, A. (Eds.). (2010). Cardiovascular Mathematics: Modeling and simulation of the circulatory system (Vol. 1). Springer Science & Business Media.
  • Gaidai, O., Cao, Y., & Loginov, S. (2023). Global cardiovascular diseases death rate prediction. Current Problems in Cardiology, 48(5), 101622. https://doi.org/10.1016/j.cpcardiol.2023.101622
  • Girault, V., & Raviart, P. A. (1979). Finite element approximation of the Navier-Stokes equations (Vol. 749). Berlin: Springer.
  • Hecht. F. (2012). New development in FreeFem++. Journal of Numerical Mathematics, 20(3-4), 251-266. https://doi.org/10.1515/jnum-2012-0013
  • John, V. (2004). Reference values for drag and lift of a two‐dimensional time‐dependent flow around a cylinder. International Journal for Numerical Methods in Fluids, 44(7), 777-788. https://doi.org/10.1002/fld.679
  • Kleinstreuer, C. (2016). Biofluid dynamics: Principles and selected applications. CRC Press.
  • Layton, W. (2008). Introduction to the numerical analysis of incompressible viscous flows. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9780898718904
  • Ma, L., Yan, C., & Yu, J. (2022). Suitability of an Artificial Viscosity Model for Compressible Under-Resolved Turbulence Using a Flux Reconstruction Method. Applied Sciences, 12(23), 12272. https://doi.org/10.3390/app122312272
  • Manzari, M. T. (1999). An explicit finite element algorithm for convection heat transfer problems. International Journal of Numerical Methods for Heat & Fluid Flow, 9(8), 860-877. https://doi.org/10.1108/09615539910297932
  • Margolin, L. G., & Lloyd-Ronning, N. M. (2023). Artificial viscosity—then and now. Meccanica, 58(6), 1039-1052. https://doi.org/10.1007/s11012-022-01541-5
  • Nair, M. (2017). Circulatory system. Fundamentals of anatomy and physiology for nursing and healthcare students (2nd Ed.). Chichester: Wiley Blackwell.
  • Quarteroni, A., Veneziani, A., & Zunino, P. (2002). Mathematical and numerical modeling of solute dynamics in blood flow and arterial walls. SIAM Journal on Numerical Analysis, 39(5), 1488-1511. https://doi.org/10.1137/S0036142900369714
  • Reneman, R. S., & Hoeks, A. P. (2008). Wall shear stress as measured in vivo: consequences for the design of the arterial system. Medical & Biological Engineering & Computing, 46(5), 499-507. https://doi.org/10.1007/s11517-008-0330-2
  • Selmi, M., Belmabrouk, H., & Bajahzar, A. (2019). Numerical study of the blood flow in a deformable human aorta. Applied Sciences, 9(6), 1216. https://doi.org/10.3390/app9061216
  • Sjösten, W., & Vadling, V. (2018). Finite Element Approximations of 2D Incompressible Navier-Stokes Equations Using Residual Viscosity. Uppsala Universitet.
  • Taylor, C. A., Petersen, K., Xiao, N., Sinclair, M., Bai, Y., Lynch, S. R., & Schaap, M. (2023). Patient-specific modeling of blood flow in the coronary arteries. Computer Methods in Applied Mechanics and Engineering, 417(Part B), 116414. https://doi.org/10.1016/j.cma.2023.116414
  • Velten, K., Schmidt, D. M., & Kahlen, K. (2024). Mathematical modeling and simulation: introduction for scientists and engineers. John Wiley & Sons.
  • WHO (World Health Organization) (2019). Cardiovascular diseases (CVDs). (Accessed 11/06/2024) https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1
Year 2024, , 463 - 480, 30.09.2024
https://doi.org/10.54287/gujsa.1485920

Abstract

References

  • Adams, R. A. (1975). Sobolev Spaces. Academic Press, New York.
  • Ali, S., Najjar, I. M. R., Sadoun, A. M., & Fathy, A. (2024). Navigating cardiovascular dynamics through mathematical modeling of arterial blood flow. Ain Shams Engineering Journal, 15(4), 102594. https://doi.org/10.1016/j.asej.2023.102594
  • Alimov, N. (2023). Blood Supply to the Human Body, Vascular Anatomy and Blood Components. Western European Journal of Medicine and Medical Science, 1(4), 4-14.
  • Arjmandi-Tash, O., Razavi, S. E., & Zanbouri, R. (2011). Possibility of atherosclerosis in an arterial bifurcation model. BioImpacts, 1(4), 225-228. https://doi.org/10.5681/bi.2011.032
  • Chiu, J.-J., & Chien, S. (2011). Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiological Reviews, 91(1), 327-387. https://doi.org/10.1152/physrev.00047.2009
  • Cook, A. W., & Cabot, W. H. (2005). Hyperviscosity for shock-turbulence interactions. Journal of Computational Physics, 203(2), 379-385. https://doi.org/10.1016/j.jcp.2004.09.011
  • Fisher, A. B., Chien, S., Barakat, A. I., & Nerem, R. M. (2001). Endothelial cellular response to altered shear stress. American Journal of Physiology-Lung Cellular and Molecular Physiology, 281(3), L529-L533. https://doi.org/10.1152/ajplung.2001.281.3.L529
  • Formaggia, L., Quarteroni, A., & Veneziani, A. (Eds.). (2010). Cardiovascular Mathematics: Modeling and simulation of the circulatory system (Vol. 1). Springer Science & Business Media.
  • Gaidai, O., Cao, Y., & Loginov, S. (2023). Global cardiovascular diseases death rate prediction. Current Problems in Cardiology, 48(5), 101622. https://doi.org/10.1016/j.cpcardiol.2023.101622
  • Girault, V., & Raviart, P. A. (1979). Finite element approximation of the Navier-Stokes equations (Vol. 749). Berlin: Springer.
  • Hecht. F. (2012). New development in FreeFem++. Journal of Numerical Mathematics, 20(3-4), 251-266. https://doi.org/10.1515/jnum-2012-0013
  • John, V. (2004). Reference values for drag and lift of a two‐dimensional time‐dependent flow around a cylinder. International Journal for Numerical Methods in Fluids, 44(7), 777-788. https://doi.org/10.1002/fld.679
  • Kleinstreuer, C. (2016). Biofluid dynamics: Principles and selected applications. CRC Press.
  • Layton, W. (2008). Introduction to the numerical analysis of incompressible viscous flows. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9780898718904
  • Ma, L., Yan, C., & Yu, J. (2022). Suitability of an Artificial Viscosity Model for Compressible Under-Resolved Turbulence Using a Flux Reconstruction Method. Applied Sciences, 12(23), 12272. https://doi.org/10.3390/app122312272
  • Manzari, M. T. (1999). An explicit finite element algorithm for convection heat transfer problems. International Journal of Numerical Methods for Heat & Fluid Flow, 9(8), 860-877. https://doi.org/10.1108/09615539910297932
  • Margolin, L. G., & Lloyd-Ronning, N. M. (2023). Artificial viscosity—then and now. Meccanica, 58(6), 1039-1052. https://doi.org/10.1007/s11012-022-01541-5
  • Nair, M. (2017). Circulatory system. Fundamentals of anatomy and physiology for nursing and healthcare students (2nd Ed.). Chichester: Wiley Blackwell.
  • Quarteroni, A., Veneziani, A., & Zunino, P. (2002). Mathematical and numerical modeling of solute dynamics in blood flow and arterial walls. SIAM Journal on Numerical Analysis, 39(5), 1488-1511. https://doi.org/10.1137/S0036142900369714
  • Reneman, R. S., & Hoeks, A. P. (2008). Wall shear stress as measured in vivo: consequences for the design of the arterial system. Medical & Biological Engineering & Computing, 46(5), 499-507. https://doi.org/10.1007/s11517-008-0330-2
  • Selmi, M., Belmabrouk, H., & Bajahzar, A. (2019). Numerical study of the blood flow in a deformable human aorta. Applied Sciences, 9(6), 1216. https://doi.org/10.3390/app9061216
  • Sjösten, W., & Vadling, V. (2018). Finite Element Approximations of 2D Incompressible Navier-Stokes Equations Using Residual Viscosity. Uppsala Universitet.
  • Taylor, C. A., Petersen, K., Xiao, N., Sinclair, M., Bai, Y., Lynch, S. R., & Schaap, M. (2023). Patient-specific modeling of blood flow in the coronary arteries. Computer Methods in Applied Mechanics and Engineering, 417(Part B), 116414. https://doi.org/10.1016/j.cma.2023.116414
  • Velten, K., Schmidt, D. M., & Kahlen, K. (2024). Mathematical modeling and simulation: introduction for scientists and engineers. John Wiley & Sons.
  • WHO (World Health Organization) (2019). Cardiovascular diseases (CVDs). (Accessed 11/06/2024) https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1
There are 25 citations in total.

Details

Primary Language English
Subjects Finite Element Analysis
Journal Section Mathematics
Authors

Hilal Karadavut 0000-0003-1247-8004

Gülnur Haçat 0000-0001-7343-8466

Aytekin Çıbık 0000-0003-3571-4137

Early Pub Date September 24, 2024
Publication Date September 30, 2024
Submission Date May 17, 2024
Acceptance Date August 6, 2024
Published in Issue Year 2024

Cite

APA Karadavut, H., Haçat, G., & Çıbık, A. (2024). Modeling Cardiovascular Flow with Artificial Viscosity: Analyzing Navier-Stokes Solutions and Simulating Cardiovascular Diseases. Gazi University Journal of Science Part A: Engineering and Innovation, 11(3), 463-480. https://doi.org/10.54287/gujsa.1485920