Research Article
BibTex RIS Cite

Estimation of Organ Doses in Pediatric Patients for Different Imaging Protocols and Examinations

Year 2024, , 379 - 391, 29.06.2024
https://doi.org/10.54287/gujsa.1486406

Abstract

In this study, the Volume Computed Tomography Dose Index (CTDIvol) Dose Length Product (DLP), effective patient doses (ED), and organ doses were calculated for pediatric patients aged 0, 1, 5, and 10 years undergoing computed tomography (CT) examinations using the VirtualDose program, a software designed for reporting such doses. The study utilized a Toshiba Aquilion 16 CT scanner. Head, chest, and pelvis CT scans were simulated with commonly used kVp, mAs, and pitch values. The results indicated a significant difference in organ doses between standard and low-dose protocols. When kVp and mAs values were increased, ED and organ doses increased by an average of 2.5 times. Conversely, when kVp and mAs values were held constant and pitch value was increased, ED and organ doses decreased by an average of 2 times. Physicians requesting pediatric CT scans should continuously evaluate the requested examinations based on their benefits and risks. To reduce organ doses, scanning protocols should be reviewed, and low-dose protocols should be preferred. Additionally, newer generation devices that provide lower dose scanning should be utilized.

Ethical Statement

The conducted research is not related to either human or animal use.

References

  • AAPM. (2010). Comprehensive Methodology for the Evaluation of Radiation Dose in X-Ray Computed Tomography. Report of the American Association of Physicists in Medicine Task Group 111. Report No. 111. https://doi.org/10.37206/109
  • Al Mahrooqi, K. M. S., Ng, C. K. C., & Sun, Z. (2015). Pediatric Computed Tomography Dose Optimization Strategies: A Literature Review. Journal of Medical Imaging and Radiation Sciences, 46(2), 241-249. https://doi.org/10.1016/j.jmir.2015.03.003
  • Ataç, G. K., & İnal, T. (2020). BT İncelemelerde Görüntü Kalitesi ve Artefaktlar. Türk Radyoloji Seminerleri, 8(1), 110-128. https://doi.org/10.5152/trs.2020.842
  • Ataç, G. K., Parmaksız, A., İnal, T., Bulur, E., Bulgurlu, F., Öncü, T., & Gündoğdu, S. (2015). Patient doses from CT examinations in Turkey. Diagnostic and Interventional Radiology, 21(5), 428-434. https://doi.org/10.5152/dir.2015.14306
  • Çakmak, E. D., Tuncel, N., & Sindir, B. (2015). Assessment of organ dose by direct and indirect measurements for a wide bore X-ray computed tomography unit that used in radiotherapy. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 4(2), 132-142. https://doi.org/10.4236/ijmpcero.2015.42017
  • Ding, A., Gao, Y., Liu, H., Caracappa, P. F., Long, D. J., Bolch, W. E., Liu, B., & Xu, X. G. (2015). VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients. Physics in Medicine & Biology, 60(14), 5601. https://doi.org/10.1088/0031-9155/60/14/5601
  • EC. (2000). European Guidelines on Quality Criteria for Computed Tomography. European Commission Report No: EUR 16262.
  • Frush, D. P., Donnelly, L. F., & Rosen, N. S. (2003). Computed tomography and radiation risks: what pediatric health care providers should know. Pediatrics, 112(4), 951-957. https://doi.org/10.1542/peds.112.4.951
  • Gul, O. V., Sengul, A., & Demir, H. (2024). Effects of radiation at different dose rates on hematologic parameters in rats. Journal of Radiation Research and Applied Sciences, 17(2), 100873. https://doi.org/10.1016/j.jrras.2024.100873
  • Gul, O. V., Basaran, H., & Inan, G. (2022). Evaluation of incidental testicular dose with thermoluminescence dosimetry during prostate radiotherapy. Medical Dosimetry, 47(3), 203-206. https://doi.org/10.1016/j.meddos.2022.02.007
  • Habib Geryes, B. H., Hornbeck, A., Jarrige, V., Pierrat, N., Ducou Le Pointe, H., & Dreuil, S. (2019). Patient dose evaluation in computed tomography: a French national study based on clinical indications. Physica Medica, 61, 18-27. https://doi.org/10.1016/j.ejmp.2019.04.004
  • Huang, W.-Y., Muo, C.-H., Lin, C.-Y., Jen, Y.-M., Yang, M.-H., Lin, J.-C., Sung, F-C., & Kao, C.-H. (2014). Paediatric head CT scan and subsequent risk of malignancy and benign brain tumour: a nation-wide population-based cohort study. British Journal of Cancer, 110(9), 2354-2360. https://doi.org/10.1038/bjc.2014.103
  • ICRP. (1977). Recommendations of the International Commission on Radiological Protection. International Commission on Radiological Protection Publication 26.
  • Journy, N. M. Y., Lee, C., Harbron, R. W., McHugh, K., Pearce, M. S., & Berrington de González, A. (2017). Projected cancer risks potentially related to past, current, and future practices in paediatric CT in the United Kingdom, 1990–2020. British Journal of Cancer, 116(1), 109-116. https://doi.org/10.1038/bjc.2016.351
  • Kamdem, F. E., Ngano, S. O., Alla Takam, C., Fotue, A. J., Abogo, S., & Fai, C. L. (2021). Optimization of pediatric CT scans in a developing country. BMC Pediatrics, 21, 44. https://doi.org/10.1186/s12887-021-02498-2
  • Kamel, I. R., Hernandez, R. J., Martin, J. E., Schlesinger, A. E., Niklason, L. T., & Guire, K. E. (1994). Radiation dose reduction in CT of the pediatric pelvis. Radiology, 190(3), 683-687. https://doi.org/10.1148/radiology.190.3.8115611
  • Kost, S. D., Fraser, N. D., Carver, D. E., Pickens, D. R., Price, R. R., Hernanz-Schulman, M., & Stabin, M. G. (2015). Patient-specific dose calculations for pediatric CT of the chest, abdomen and pelvis. Pediatric Radiology, 45(12), 1771-1780. https://doi.org/10.1007/s00247-015-3400-2
  • Lee, C., Pearce, M. S., Salotti, J. A., Harbron, R. W., Little, M. P., McHugh, K., Chapple, C.-L., & Berrington de Gonzalez, A. (2016). Reduction in radiation doses from paediatric CT scans in Great Britain. The British Journal of Radiology, 89(1060), 20150305. https://doi.org/10.1259/bjr.20150305
  • Lee, S. M., Lee, W., Chung, J. W., Park, E.-A., & Park, J. H. (2013). Effect of kVp on image quality and accuracy in coronary CT angiography according to patient body size: a phantom study. The international Journal of Cardiovascular Imaging, 29(S2), 83-91. https://doi.org/10.1007/s10554-013-0298-3
  • Li, Q., Yu, H., Zhang, L., Fan, L., & Liu, S.-y. (2013). Combining low tube voltage and iterative reconstruction for contrast-enhanced CT imaging of the chest initial clinical experience. Clinical Radiology, 68(5), e249-e253. https://doi.org/10.1016/j.crad.2012.12.009
  • Malchair, F., & Maccia, C. (2020). Practical advices for optimal CT scanner dose in children. Radioprotection, 55(2), 117-122. https://doi.org/10.1051/radiopro/2020046
  • Mathews, J. D., Forsythe, A. V., Brady, Z., Butler, M. W., Goergen, S. K., Byrnes, G. B., Giles, G. G., Wallace, A. B., Anderson, P. R., Guiver, T. A., McGale, P., Cain, T. M., Dowty, J. G., Bickerstaffe, A. C., & Darby, S. C. (2013). Cancer risk in 680 000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ, 346, f2360. https://doi.org/10.1136/bmj.f2360
  • McCollough, C. H., Chen, G. H., Kalender, W., Leng, S., Samei, E., Taguchi, K., Wang, G., Yu, L., & Pettigrew, R. I. (2012). Achieving routine submillisievert CT scanning: report from the summit on management of radiation dose in CT. Radiology, 264(2), 567-580. https://doi.org/10.1148/radiol.12112265
  • Meulepas, J. M., Ronckers, C. M., Smets, A. M. J. B., Nievelstein, R. A. J., Gradowska, P., Lee, C., Jahnen, A., van Straten, M., de Wit, M.-C. Y., Zonnenberg, B., Klein, W. M., Merks, J. H., Visser, O., van Leeuwen, F. E., & Hauptmann, M. (2019). Radiation exposure from pediatric CT scans and subsequent cancer risk in the Netherlands. JNCI: Journal of the National Cancer Institute, 111(3), 256-263. https://doi.org/10.1093/jnci/djy104
  • Muhogora, W. E., Ahmed, N. A., AlSuwaidi, J. S., Beganovic, A., Ciraj-Bjelac, O., Gershan, V., Gershkevitsh, E., Grupetta, E., Kharita, M. H., Manatrakul, N., Maroufi, B., Milakovic, M., Ohno, K., Ben Omrane, L., Ptacek, J., Schandorf, C., Shaaban, M. S., Toutaoui, N., Sakkas, D., … Rehani, M. M. (2010). Paediatric CT examinations in 19 developing countries: frequency and radiation dose. Radiation Protection Dosimetry, 140(1), 49-58. https://doi.org/10.1093/rpd/ncq015
  • NCRP. (2009). Ionizing Radiation Exposure of the Population of the United States. National Council on Radiation Protection and Measurements Report No.160. Bethesda.
  • Olgar, T., & Şahmaran, T. (2017). Establishment of radiation doses for pediatric x-ray examinations in a large pediatric hospital in Turkey. Radiation Protection Dosimetry, 176(3), 302-308. https://doi.org/10.1093/rpd/ncx010
  • Pace, E., & Borg, M. (2018). Optimisation of a paediatric CT brain protocol: a figure-of-merit approach. Radiation Protection Dosimetry, 182(3), 394-404. https://doi.org/10.1093/rpd/ncy078
  • Pearce, M. S., Salotti, J. A., Little, M. P., McHugh, K., Lee, C., Kim, K. P., Howe, N. L., Ronckers, C. M., Rajaraman, P., Craft, A. W., Parker, L., & Berrington de González, A. (2012). Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. The Lancet, 380(9840), 499-505. https://doi.org/10.1016/S0140-6736(12)60815-0
  • Power, S. P., Moloney, F., Twomey, M., James, K., O’Connor, O. J., & Maher, M. M. (2016). Computed tomography and patient risk: Facts, perceptions and uncertainties. World Journal of Radiology, 8(12), 902-915. https://doi.org/10.4329/wjr.v8.i12.902
  • Priyanka, Kadavigere, R., & Sukumar, S. (2024). Low Dose Pediatric CT Head Protocol using Iterative Reconstruction Techniques: A Comparison with Standard Dose Protocol. Clinical Neuroradiology, 34(1), 229-239. https://doi.org/10.1007/s00062-023-01361-4
  • Sarpün, İ. H., İnal, A., & Çeçen, B. (2019). Voltaj ve Akım Değerlerinin Hasta Dozu Üzerindeki Etkilerinin CTDI Fantomu ile Araştırılması. Süleyman Demirel University Faculty of Arts and Science Journal of Science, 14(2), 327-334. https://doi.org/10.29233/sdufeffd.605430
  • Schimmöller, L., Lanzman, R. S., Dietrich, S., Boos, J., Heusch, P., Miese, F., Antoch, G., & Kröpil, P. (2014). Evaluation of automated attenuation-based tube potential selection in combination with organ-specific dose reduction for contrast-enhanced chest CT examinations. Clinical Radiology, 69(7), 721-726. https://doi.org/10.1016/j.crad.2014.02.008
  • Shah, R., Gupta, A. K., Rehani, M. M., Pandey, A. K., & Mukhopadhyay, S. (2005). Effect of reduction in tube current on reader confidence in paediatric computed tomography. Clinical Radiology, 60(2), 224-231. https://doi.org/10.1016/j.crad.2004.08.011
  • Shrimpton, P. C., & Wall, B. F. (2000). Reference doses for paediatric computed tomography. Radiation Protection Dosimetry, 90(1-2), 249-252. https://doi.org/10.1093/oxfordjournals.rpd.a033130
  • Smith-Bindman, R., Wang, Y., Chu, P., Chung, R., Einstein, A. J., Balcombe, J., Cocker, M., Das, M., Delman, B. N., Flynn, M., Gould, R., Lee, R. K., Nelson, T. R., Schindera, S., Seibert, A., Starkey, J., Suntharalingam, S., Wetter, A., Wildberger, J. E., & Miglioretti, D. L. (2019). International variation in radiation dose for computed tomography examinations: prospective cohort study. BMJ, 364, k4931. https://doi.org/10.1136/bmj.k4931
  • Strauss, K. J., Somasundaram, E., Sengupta, D., Marin, J. R., & Brady, S. L. (2019). Radiation dose for pediatric CT: comparison of pediatric versus adult imaging facilities. Radiology, 291(1), 158-167. https://doi.org/10.1148/radiol.2019181753
  • Szucs-Farkas, Z., Schaller, C., Bensler, S., Patak, M. A., Vock, P., & Schindera, S. T. (2009). Detection of pulmonary emboli with CT angiography at reduced radiation exposure and contrast material volume: comparison of 80 kVp and 120 kVp protocols in a matched cohort. Investigative Radiology, 44(12), 793-799. https://doi.org/10.1097/RLI.0b013e3181bfe230
  • Tahmasebzadeh, A., Maziyar, A., Reiazi, R., Kermanshahi, M. S., Anijdan, S. H. M., & Paydar, R. (2022). Pediatric effective dose assessment for routine computed tomography examinations in Tehran, Iran. Journal of Medical Signals & Sensors, 12(3), 227-232. https://doi.org/10.4103/jmss.jmss_115_21
  • UNSCEAR. (2013). Sources, effects and risks of ionizing radiation. New York: United Nations Scientific Committee on the Effects of Atomic Radiation Report.
  • Zhang, Y., Li, X., Paul Segars, W., & Samei, E. (2012). Organ doses, effective doses, and risk indices in adult CT: comparison of four types of reference phantoms across different examination protocols. Medical Physics, 39(6Part1), 3404-3423. http://dx.doi.org/10.1118/1.4718710
Year 2024, , 379 - 391, 29.06.2024
https://doi.org/10.54287/gujsa.1486406

Abstract

References

  • AAPM. (2010). Comprehensive Methodology for the Evaluation of Radiation Dose in X-Ray Computed Tomography. Report of the American Association of Physicists in Medicine Task Group 111. Report No. 111. https://doi.org/10.37206/109
  • Al Mahrooqi, K. M. S., Ng, C. K. C., & Sun, Z. (2015). Pediatric Computed Tomography Dose Optimization Strategies: A Literature Review. Journal of Medical Imaging and Radiation Sciences, 46(2), 241-249. https://doi.org/10.1016/j.jmir.2015.03.003
  • Ataç, G. K., & İnal, T. (2020). BT İncelemelerde Görüntü Kalitesi ve Artefaktlar. Türk Radyoloji Seminerleri, 8(1), 110-128. https://doi.org/10.5152/trs.2020.842
  • Ataç, G. K., Parmaksız, A., İnal, T., Bulur, E., Bulgurlu, F., Öncü, T., & Gündoğdu, S. (2015). Patient doses from CT examinations in Turkey. Diagnostic and Interventional Radiology, 21(5), 428-434. https://doi.org/10.5152/dir.2015.14306
  • Çakmak, E. D., Tuncel, N., & Sindir, B. (2015). Assessment of organ dose by direct and indirect measurements for a wide bore X-ray computed tomography unit that used in radiotherapy. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 4(2), 132-142. https://doi.org/10.4236/ijmpcero.2015.42017
  • Ding, A., Gao, Y., Liu, H., Caracappa, P. F., Long, D. J., Bolch, W. E., Liu, B., & Xu, X. G. (2015). VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients. Physics in Medicine & Biology, 60(14), 5601. https://doi.org/10.1088/0031-9155/60/14/5601
  • EC. (2000). European Guidelines on Quality Criteria for Computed Tomography. European Commission Report No: EUR 16262.
  • Frush, D. P., Donnelly, L. F., & Rosen, N. S. (2003). Computed tomography and radiation risks: what pediatric health care providers should know. Pediatrics, 112(4), 951-957. https://doi.org/10.1542/peds.112.4.951
  • Gul, O. V., Sengul, A., & Demir, H. (2024). Effects of radiation at different dose rates on hematologic parameters in rats. Journal of Radiation Research and Applied Sciences, 17(2), 100873. https://doi.org/10.1016/j.jrras.2024.100873
  • Gul, O. V., Basaran, H., & Inan, G. (2022). Evaluation of incidental testicular dose with thermoluminescence dosimetry during prostate radiotherapy. Medical Dosimetry, 47(3), 203-206. https://doi.org/10.1016/j.meddos.2022.02.007
  • Habib Geryes, B. H., Hornbeck, A., Jarrige, V., Pierrat, N., Ducou Le Pointe, H., & Dreuil, S. (2019). Patient dose evaluation in computed tomography: a French national study based on clinical indications. Physica Medica, 61, 18-27. https://doi.org/10.1016/j.ejmp.2019.04.004
  • Huang, W.-Y., Muo, C.-H., Lin, C.-Y., Jen, Y.-M., Yang, M.-H., Lin, J.-C., Sung, F-C., & Kao, C.-H. (2014). Paediatric head CT scan and subsequent risk of malignancy and benign brain tumour: a nation-wide population-based cohort study. British Journal of Cancer, 110(9), 2354-2360. https://doi.org/10.1038/bjc.2014.103
  • ICRP. (1977). Recommendations of the International Commission on Radiological Protection. International Commission on Radiological Protection Publication 26.
  • Journy, N. M. Y., Lee, C., Harbron, R. W., McHugh, K., Pearce, M. S., & Berrington de González, A. (2017). Projected cancer risks potentially related to past, current, and future practices in paediatric CT in the United Kingdom, 1990–2020. British Journal of Cancer, 116(1), 109-116. https://doi.org/10.1038/bjc.2016.351
  • Kamdem, F. E., Ngano, S. O., Alla Takam, C., Fotue, A. J., Abogo, S., & Fai, C. L. (2021). Optimization of pediatric CT scans in a developing country. BMC Pediatrics, 21, 44. https://doi.org/10.1186/s12887-021-02498-2
  • Kamel, I. R., Hernandez, R. J., Martin, J. E., Schlesinger, A. E., Niklason, L. T., & Guire, K. E. (1994). Radiation dose reduction in CT of the pediatric pelvis. Radiology, 190(3), 683-687. https://doi.org/10.1148/radiology.190.3.8115611
  • Kost, S. D., Fraser, N. D., Carver, D. E., Pickens, D. R., Price, R. R., Hernanz-Schulman, M., & Stabin, M. G. (2015). Patient-specific dose calculations for pediatric CT of the chest, abdomen and pelvis. Pediatric Radiology, 45(12), 1771-1780. https://doi.org/10.1007/s00247-015-3400-2
  • Lee, C., Pearce, M. S., Salotti, J. A., Harbron, R. W., Little, M. P., McHugh, K., Chapple, C.-L., & Berrington de Gonzalez, A. (2016). Reduction in radiation doses from paediatric CT scans in Great Britain. The British Journal of Radiology, 89(1060), 20150305. https://doi.org/10.1259/bjr.20150305
  • Lee, S. M., Lee, W., Chung, J. W., Park, E.-A., & Park, J. H. (2013). Effect of kVp on image quality and accuracy in coronary CT angiography according to patient body size: a phantom study. The international Journal of Cardiovascular Imaging, 29(S2), 83-91. https://doi.org/10.1007/s10554-013-0298-3
  • Li, Q., Yu, H., Zhang, L., Fan, L., & Liu, S.-y. (2013). Combining low tube voltage and iterative reconstruction for contrast-enhanced CT imaging of the chest initial clinical experience. Clinical Radiology, 68(5), e249-e253. https://doi.org/10.1016/j.crad.2012.12.009
  • Malchair, F., & Maccia, C. (2020). Practical advices for optimal CT scanner dose in children. Radioprotection, 55(2), 117-122. https://doi.org/10.1051/radiopro/2020046
  • Mathews, J. D., Forsythe, A. V., Brady, Z., Butler, M. W., Goergen, S. K., Byrnes, G. B., Giles, G. G., Wallace, A. B., Anderson, P. R., Guiver, T. A., McGale, P., Cain, T. M., Dowty, J. G., Bickerstaffe, A. C., & Darby, S. C. (2013). Cancer risk in 680 000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ, 346, f2360. https://doi.org/10.1136/bmj.f2360
  • McCollough, C. H., Chen, G. H., Kalender, W., Leng, S., Samei, E., Taguchi, K., Wang, G., Yu, L., & Pettigrew, R. I. (2012). Achieving routine submillisievert CT scanning: report from the summit on management of radiation dose in CT. Radiology, 264(2), 567-580. https://doi.org/10.1148/radiol.12112265
  • Meulepas, J. M., Ronckers, C. M., Smets, A. M. J. B., Nievelstein, R. A. J., Gradowska, P., Lee, C., Jahnen, A., van Straten, M., de Wit, M.-C. Y., Zonnenberg, B., Klein, W. M., Merks, J. H., Visser, O., van Leeuwen, F. E., & Hauptmann, M. (2019). Radiation exposure from pediatric CT scans and subsequent cancer risk in the Netherlands. JNCI: Journal of the National Cancer Institute, 111(3), 256-263. https://doi.org/10.1093/jnci/djy104
  • Muhogora, W. E., Ahmed, N. A., AlSuwaidi, J. S., Beganovic, A., Ciraj-Bjelac, O., Gershan, V., Gershkevitsh, E., Grupetta, E., Kharita, M. H., Manatrakul, N., Maroufi, B., Milakovic, M., Ohno, K., Ben Omrane, L., Ptacek, J., Schandorf, C., Shaaban, M. S., Toutaoui, N., Sakkas, D., … Rehani, M. M. (2010). Paediatric CT examinations in 19 developing countries: frequency and radiation dose. Radiation Protection Dosimetry, 140(1), 49-58. https://doi.org/10.1093/rpd/ncq015
  • NCRP. (2009). Ionizing Radiation Exposure of the Population of the United States. National Council on Radiation Protection and Measurements Report No.160. Bethesda.
  • Olgar, T., & Şahmaran, T. (2017). Establishment of radiation doses for pediatric x-ray examinations in a large pediatric hospital in Turkey. Radiation Protection Dosimetry, 176(3), 302-308. https://doi.org/10.1093/rpd/ncx010
  • Pace, E., & Borg, M. (2018). Optimisation of a paediatric CT brain protocol: a figure-of-merit approach. Radiation Protection Dosimetry, 182(3), 394-404. https://doi.org/10.1093/rpd/ncy078
  • Pearce, M. S., Salotti, J. A., Little, M. P., McHugh, K., Lee, C., Kim, K. P., Howe, N. L., Ronckers, C. M., Rajaraman, P., Craft, A. W., Parker, L., & Berrington de González, A. (2012). Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. The Lancet, 380(9840), 499-505. https://doi.org/10.1016/S0140-6736(12)60815-0
  • Power, S. P., Moloney, F., Twomey, M., James, K., O’Connor, O. J., & Maher, M. M. (2016). Computed tomography and patient risk: Facts, perceptions and uncertainties. World Journal of Radiology, 8(12), 902-915. https://doi.org/10.4329/wjr.v8.i12.902
  • Priyanka, Kadavigere, R., & Sukumar, S. (2024). Low Dose Pediatric CT Head Protocol using Iterative Reconstruction Techniques: A Comparison with Standard Dose Protocol. Clinical Neuroradiology, 34(1), 229-239. https://doi.org/10.1007/s00062-023-01361-4
  • Sarpün, İ. H., İnal, A., & Çeçen, B. (2019). Voltaj ve Akım Değerlerinin Hasta Dozu Üzerindeki Etkilerinin CTDI Fantomu ile Araştırılması. Süleyman Demirel University Faculty of Arts and Science Journal of Science, 14(2), 327-334. https://doi.org/10.29233/sdufeffd.605430
  • Schimmöller, L., Lanzman, R. S., Dietrich, S., Boos, J., Heusch, P., Miese, F., Antoch, G., & Kröpil, P. (2014). Evaluation of automated attenuation-based tube potential selection in combination with organ-specific dose reduction for contrast-enhanced chest CT examinations. Clinical Radiology, 69(7), 721-726. https://doi.org/10.1016/j.crad.2014.02.008
  • Shah, R., Gupta, A. K., Rehani, M. M., Pandey, A. K., & Mukhopadhyay, S. (2005). Effect of reduction in tube current on reader confidence in paediatric computed tomography. Clinical Radiology, 60(2), 224-231. https://doi.org/10.1016/j.crad.2004.08.011
  • Shrimpton, P. C., & Wall, B. F. (2000). Reference doses for paediatric computed tomography. Radiation Protection Dosimetry, 90(1-2), 249-252. https://doi.org/10.1093/oxfordjournals.rpd.a033130
  • Smith-Bindman, R., Wang, Y., Chu, P., Chung, R., Einstein, A. J., Balcombe, J., Cocker, M., Das, M., Delman, B. N., Flynn, M., Gould, R., Lee, R. K., Nelson, T. R., Schindera, S., Seibert, A., Starkey, J., Suntharalingam, S., Wetter, A., Wildberger, J. E., & Miglioretti, D. L. (2019). International variation in radiation dose for computed tomography examinations: prospective cohort study. BMJ, 364, k4931. https://doi.org/10.1136/bmj.k4931
  • Strauss, K. J., Somasundaram, E., Sengupta, D., Marin, J. R., & Brady, S. L. (2019). Radiation dose for pediatric CT: comparison of pediatric versus adult imaging facilities. Radiology, 291(1), 158-167. https://doi.org/10.1148/radiol.2019181753
  • Szucs-Farkas, Z., Schaller, C., Bensler, S., Patak, M. A., Vock, P., & Schindera, S. T. (2009). Detection of pulmonary emboli with CT angiography at reduced radiation exposure and contrast material volume: comparison of 80 kVp and 120 kVp protocols in a matched cohort. Investigative Radiology, 44(12), 793-799. https://doi.org/10.1097/RLI.0b013e3181bfe230
  • Tahmasebzadeh, A., Maziyar, A., Reiazi, R., Kermanshahi, M. S., Anijdan, S. H. M., & Paydar, R. (2022). Pediatric effective dose assessment for routine computed tomography examinations in Tehran, Iran. Journal of Medical Signals & Sensors, 12(3), 227-232. https://doi.org/10.4103/jmss.jmss_115_21
  • UNSCEAR. (2013). Sources, effects and risks of ionizing radiation. New York: United Nations Scientific Committee on the Effects of Atomic Radiation Report.
  • Zhang, Y., Li, X., Paul Segars, W., & Samei, E. (2012). Organ doses, effective doses, and risk indices in adult CT: comparison of four types of reference phantoms across different examination protocols. Medical Physics, 39(6Part1), 3404-3423. http://dx.doi.org/10.1118/1.4718710
There are 41 citations in total.

Details

Primary Language English
Subjects Medical Physics
Journal Section Medical Physics
Authors

Turan Şahmaran 0000-0003-3708-6162

Early Pub Date June 26, 2024
Publication Date June 29, 2024
Submission Date May 19, 2024
Acceptance Date June 14, 2024
Published in Issue Year 2024

Cite

APA Şahmaran, T. (2024). Estimation of Organ Doses in Pediatric Patients for Different Imaging Protocols and Examinations. Gazi University Journal of Science Part A: Engineering and Innovation, 11(2), 379-391. https://doi.org/10.54287/gujsa.1486406