Research Article
BibTex RIS Cite

Comparing Machine Learning Algorithms for Rice Yield Prediction in Adamawa and Cross Rivers States of Nigeria

Year 2024, , 481 - 496, 30.09.2024
https://doi.org/10.54287/gujsa.1503494

Abstract

Rice production is critical for global food security, and accurate yield prediction empowers informed decision-making. This paper investigates machine learning (ML) techniques for rice yield prediction in Adamawa and Cross River states, with distinct agroclimatic conditions. Traditional yield prediction methods that are commonly used often have limitations such as less insights into the available data and reduced accuracy. Hence, this research explores the potential of machine learning for improved prediction accuracy. We leverage climatic data and historical rice yields to train and evaluate Decision Trees, Random Forest, Support Vector Regressor, Polynomial Regressor, Multiple Linear Regression and Long Short-Term Memory (LSTM) models. Performance is compared using Mean Squared Error, Root Mean Squared Error, Coefficient of Determination, Mean Absolute Error, and Mean Absolute Percentage Error. Feature selection identifies All-sky Photosynthetically Active Radiation (PAR) as the most influential factor. Linear Regression emerges as the superior model, achieving an R² of 0.90 (Adamawa) and 0.91 (Cross River), demonstrating robust generalizability across regions. This research contributes to the development of ML-powered Agro-information systems for two Nigerian regions, enhancing agricultural practices and food security.

References

  • Adebayo, A. A. (1999). Adamawa State in Maps. Paraclete Publishers.
  • ADSPC (Adamawa State Planning Commission) (2022). Adamawa State At A Glance. https://adspc.ad.gov.ng/adamawa-state/
  • Arras, L., Arjona-Medina, J., Widrich, M., Montavon, G., Gillhofer, M., Müller, K.-R., Hochreiter, S., & Samek, W. (2019). Explaining and Interpreting LSTMs. In: W. Samek, G. Montavon, A. Vedaldi, L. K. Hansen, & K.-R. Müller (Eds.), Explainable AI: Interpreting, Explaining and Visualizing Deep Learning (pp. 211-238). Springer-VerlagBerlin, Heidelberg. https://doi.org/10.1007/978-3-030-28954-6_11
  • Chauhan, N. S. (2022, February 9). Decision Tree Algorithm, Explained. KDnuggets. https://www.kdnuggets.com/2020/01/decision-tree-algorithm-explained.html
  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. https://doi.org/10.1007/BF00994018
  • Das, B., Nair, B., Reddy, V. K., & Venkatesh, P. (2018). Evaluation of multiple linear, neural network and penalised regression models for prediction of rice yield based on weather parameters for west coast of India. International Journal of Biometeorology, 62(10), 1809-1822. https://doi.org/10.1007/s00484-018-1583-6
  • Drucker, H., Burges, C. J. C., Kaufman, L., Smola, A. J., & Vapnik, V. (1996, December 3-5). Support Vector Regression Machines. In: M. C. Mozer, M. Jordan, & T. Petsche (Eds.) Proceedings of the Advances in Neural Information Processing Systems 9 (NIPS 1996) (pp. 155-161), Denver Colorado.
  • Elbeheiry, N., & Balog, R. S. (2022). Technologies Driving the Shift to Smart Farming: A Review. IEEE Sensors Journal, 23(3), 1752-1769. https://doi.org/10.1109/JSEN.2022.3225183
  • FAO, IFAD, UNICEF, WFP, & WHO. (2023). The State of Food Security and Nutrition in the World 2023. Urbanization, agrifood systems transformation and healthy diets across the rural–urban continuum. Rome, FAO. https://doi.org/10.4060/cc3017en
  • Geetha, M. C. S. (2015). A Survey on Data Mining Techniques in Agriculture. International Journal of Innovative Research in Computer and Communication Engineering, 3(2), 887-892.
  • Gnanamanickam, S. S. (2009). Rice and Its Importance to Human Life. In: S. S. Gnanamanickam (Eds.), Biological Control of Rice Diseases (pp. 1-11). Springer Netherlands. https://doi.org/10.1007/978-90-481-2465-7_1
  • Gyimah-Brempong, K., Johnson, M., & Takeshima, H. (2016). Chapter 1. Rice in the Nigerian Economy and Agricultural Policies. In: K. Gyimah-Brempong, M. Johnson, & H. Takeshima (Eds.), The Nigerian Rice Economy (pp. 1-20). University of Pennsylvania Press. https://doi.org/10.9783/9780812293753-005
  • Imani, M. (2019, August 26-27). Long Short-Term Memory Network and Support Vector Regression for Electrical Load Forecasting. In: Proceedings of the 2019 International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET), Istanbul, Türkiye. https://doi.org/10.1109/PGSRET.2019.8882730
  • Iorliam, I. B., Ikyo, B. A., Iorliam, A., Okube, E. O., Kwaghtyo, K. D., & Shehu, Y. I. (2021). Application of Machine Learning Techniques for Okra Shelf Life Prediction. Journal of Data Analysis and Information Processing, 9(3), 136-150. https://doi.org/10.4236/jdaip.2021.93009
  • Jiya, E. A., Illiyasu, U., & Akinyemi, M. (2023). Rice Yield Forecasting: A Comparative Analysis of Multiple Machine Learning Algorithms. Journal of Information Systems and Informatics, 5(2), 785-799. https://doi.org/10.51519/journalisi.v5i2.506
  • Kamai, N., Omoigui, L. O., Kamara, A. Y., & Ekeleme, F. (2020). Guide to rice production in Northern Nigeria. International Institute of Tropical Agriculture (IITA).
  • Karasev, A. (2023). Excursion to the History of Tractor Building and the Introduction of Tractors in Agriculture. Tekhnicheskiy Servis Mashin, 61(1), 155-163. https://doi.org/10.22314/2618-8287-2023-61-1-155-163
  • Khaki, S., & Wang, L. (2020). Crop Yield Prediction Using Deep Neural Networks. In: H. Yang, R. Qiu, & W. Chen (Eds.), Proceedings of the 2019 INFORMS International Conference on Service Science (pp. 139-147). https://doi.org/10.1007/978-3-030-30967-1_13
  • Mariappan, A. K., & Ben Das, J. A. (2017, April 07-08). A paradigm for rice yield prediction in Tamilnadu. In: Proceedings of the 2017 IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR), (pp. 18-21), Chennai, India. https://doi.org/10.1109/TIAR.2017.8273679
  • Maulud, D. H., & Abdulazeez, A. M. (2020). A Review on Linear Regression Comprehensive in Machine Learning. Journal of Applied Science and Technology Trends, 1(2), 140-147. https://doi.org/10.38094/jastt1457
  • Mwiti, D. (2022, July 21). Random Forest Regression: When Does It Fail and Why? Neptune.Ai. https://neptune.ai/blog/random-forest-regression-when-does-it-fail-and-why
  • NBS (National Bureau of Statistics) (2020). Demographic Statistics Bulletin. https://nigerianstat.gov.ng/download/1241121
  • Oguntunde, P. G., Lischeid, G., & Dietrich, O. (2018). Relationship between rice yield and climate variables in southwest Nigeria using multiple linear regression and support vector machine analysis. International Journal of Biometeorology, 62(3), 459-469. https://doi.org/10.1007/s00484-017-1454-6
  • Okonkwo, U. U., Ukaogo, V., Kenechukwu, D., Nwanshindu, V., & Okeagu, G. (2021). The politics of rice production in Nigeria: The Abakaliki example, 1942-2020. Cogent Arts & Humanities, 8(1), 1880680. https://doi.org/10.1080/23311983.2021.1880680
  • Onwude, D. I., Chen, G., Hashim, N., Esdaile, J. R., Gomes, C., Khaled, A. Y., Alonge, A. F., & Ikrang, E. (2018). Mechanization of Agricultural Production in Developing Countries. In: G. Chen (Eds.), Advances in Agricultural Machinery and Technologies (pp. 3-26). CRC Press. https://doi.org/10.1201/9781351132398-1
  • Ostertagová, E. (2012). Modelling using Polynomial Regression. Procedia Engineering, 48, 500-506. https://doi.org/10.1016/j.proeng.2012.09.545
  • Özdoğan-Sarıkoç, G., Sarıkoç, M., Celik, M., & Dadaser-Celik, F. (2023). Reservoir volume forecasting using artificial intelligence-based models: Artificial Neural Networks, Support Vector Regression, and Long Short-Term Memory. Journal of Hydrology, 616, 128766. https://doi.org/10.1016/j.jhydrol.2022.128766
  • Patrio, U., Yuliska, Y., & Widyasari, Y. D. L. (2024). Predicting Rice Production In Sumatra Island Using Linear Regression. In: B. Santoso, B. Bustami & A. Satria (Eds.), Proceedings of the 11th International Applied Business and Engineering Conference (ABEC 2023), (2023, September 21). Bengkalis, Riau, Indonesia. http://doi.org/10.4108/eai.21-9-2023.2342997
  • Paudel, D., Boogaard, H., de Wit, A., Janssen, S., Osinga, S., Pylianidis, C., & Athanasiadis, I. N. (2021). Machine learning for large-scale crop yield forecasting. Agricultural Systems, 187, 103016. https://doi.org/10.1016/j.agsy.2020.103016
  • Pečkov, A. (2012). A Machine Learning Approach to Polynomial Regression. PhD Thesis. Jožef Stefan International Postgraduate School.
  • Pierce, F. J., & Nowak, P. (1999). Aspects of Precision Agriculture. Advances in Agronomy, 67, 1-85. https://doi.org/10.1016/S0065-2113(08)60513-1
  • Ritchie, J. T., Singh, U., Godwin, D. C., & Bowen, W. T. (1998). Cereal growth, development and yield. In: G. Y. Tsuji, G. Hoogenboom, & P. K. Thornton (Eds.), Understanding Options for Agricultural Production (pp. 79-98). Springer Netherlands. https://doi.org/10.1007/978-94-017-3624-4_5
  • Rosa, W. (Eds.) (2017). Transforming Our World: The 2030 Agenda for Sustainable Development. In: A New Era in Global Health (pp. 529-567). Springer Publishing Company. https://doi.org/10.1891/9780826190123.ap02
  • Sasu, D. D. (2023, November 9). Nigeria: Production of milled rice 2010-2023. Statista. https://www.statista.com/statistics/1134510/production-of-milled-rice-in-nigeria/
  • Seber, G. A. F., & Lee, A. J. (2003). Linear Regression Analysis (2nd Ed.). John Wiley & Sons. https://doi.org/10.1002/9780471722199
  • Sharma, A., Jain, A., Gupta, P., & Chowdary, V. (2021). Machine Learning Applications for Precision Agriculture: A Comprehensive Review. IEEE Access, 9, 4843-4873. https://doi.org/10.1109/ACCESS.2020.3048415
  • Van Asten, P. J. A., Kaaria, S., Fermont, A. M., & Delve, R. J. (2009). Challenges and lessons when using farmer knowledge in agricultural research and development projects in Africa. Experimental Agriculture, 45(1), 1-14. https://doi.org/10.1017/S0014479708006984
  • van Klompenburg, T., Kassahun, A., & Catal, C. (2020). Crop yield prediction using machine learning: A systematic literature review. Computers and Electronics in Agriculture, 177, 105709. https://doi.org/10.1016/j.compag.2020.105709
  • Vanitha, C. N., Archana, N., & Sowmiya, R. (2019, March 15-16). Agriculture Analysis Using Data Mining And Machine Learning Techniques. In: Proceedings of the 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS), (pp. 984-990), Coimbatore, India. https://doi.org/10.1109/ICACCS.2019.8728382
  • Veenadhari, S., Misra, B., & Singh, C. (2014, January 03-05). Machine learning approach for forecasting crop yield based on climatic parameters. In: Proceedings of the 2014 International Conference on Computer Communication and Informatics, (pp. 1-5), Coimbatore, India. https://doi.org/10.1109/ICCCI.2014.6921718
  • Wart, J. V., Kersebaum, K. C., Peng, S., Milner, M., & Cassman, K. G. (2013). Estimating crop yield potential at regional to national scales. Field Crops Research, 143, 34-43. https://doi.org/10.1016/j.fcr.2012.11.018
  • Zeigler, R. S., & Barclay, A. (2008). The Relevance of Rice. Rice, 1(1), 3-10. https://doi.org/10.1007/s12284-008-9001-z
Year 2024, , 481 - 496, 30.09.2024
https://doi.org/10.54287/gujsa.1503494

Abstract

References

  • Adebayo, A. A. (1999). Adamawa State in Maps. Paraclete Publishers.
  • ADSPC (Adamawa State Planning Commission) (2022). Adamawa State At A Glance. https://adspc.ad.gov.ng/adamawa-state/
  • Arras, L., Arjona-Medina, J., Widrich, M., Montavon, G., Gillhofer, M., Müller, K.-R., Hochreiter, S., & Samek, W. (2019). Explaining and Interpreting LSTMs. In: W. Samek, G. Montavon, A. Vedaldi, L. K. Hansen, & K.-R. Müller (Eds.), Explainable AI: Interpreting, Explaining and Visualizing Deep Learning (pp. 211-238). Springer-VerlagBerlin, Heidelberg. https://doi.org/10.1007/978-3-030-28954-6_11
  • Chauhan, N. S. (2022, February 9). Decision Tree Algorithm, Explained. KDnuggets. https://www.kdnuggets.com/2020/01/decision-tree-algorithm-explained.html
  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. https://doi.org/10.1007/BF00994018
  • Das, B., Nair, B., Reddy, V. K., & Venkatesh, P. (2018). Evaluation of multiple linear, neural network and penalised regression models for prediction of rice yield based on weather parameters for west coast of India. International Journal of Biometeorology, 62(10), 1809-1822. https://doi.org/10.1007/s00484-018-1583-6
  • Drucker, H., Burges, C. J. C., Kaufman, L., Smola, A. J., & Vapnik, V. (1996, December 3-5). Support Vector Regression Machines. In: M. C. Mozer, M. Jordan, & T. Petsche (Eds.) Proceedings of the Advances in Neural Information Processing Systems 9 (NIPS 1996) (pp. 155-161), Denver Colorado.
  • Elbeheiry, N., & Balog, R. S. (2022). Technologies Driving the Shift to Smart Farming: A Review. IEEE Sensors Journal, 23(3), 1752-1769. https://doi.org/10.1109/JSEN.2022.3225183
  • FAO, IFAD, UNICEF, WFP, & WHO. (2023). The State of Food Security and Nutrition in the World 2023. Urbanization, agrifood systems transformation and healthy diets across the rural–urban continuum. Rome, FAO. https://doi.org/10.4060/cc3017en
  • Geetha, M. C. S. (2015). A Survey on Data Mining Techniques in Agriculture. International Journal of Innovative Research in Computer and Communication Engineering, 3(2), 887-892.
  • Gnanamanickam, S. S. (2009). Rice and Its Importance to Human Life. In: S. S. Gnanamanickam (Eds.), Biological Control of Rice Diseases (pp. 1-11). Springer Netherlands. https://doi.org/10.1007/978-90-481-2465-7_1
  • Gyimah-Brempong, K., Johnson, M., & Takeshima, H. (2016). Chapter 1. Rice in the Nigerian Economy and Agricultural Policies. In: K. Gyimah-Brempong, M. Johnson, & H. Takeshima (Eds.), The Nigerian Rice Economy (pp. 1-20). University of Pennsylvania Press. https://doi.org/10.9783/9780812293753-005
  • Imani, M. (2019, August 26-27). Long Short-Term Memory Network and Support Vector Regression for Electrical Load Forecasting. In: Proceedings of the 2019 International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET), Istanbul, Türkiye. https://doi.org/10.1109/PGSRET.2019.8882730
  • Iorliam, I. B., Ikyo, B. A., Iorliam, A., Okube, E. O., Kwaghtyo, K. D., & Shehu, Y. I. (2021). Application of Machine Learning Techniques for Okra Shelf Life Prediction. Journal of Data Analysis and Information Processing, 9(3), 136-150. https://doi.org/10.4236/jdaip.2021.93009
  • Jiya, E. A., Illiyasu, U., & Akinyemi, M. (2023). Rice Yield Forecasting: A Comparative Analysis of Multiple Machine Learning Algorithms. Journal of Information Systems and Informatics, 5(2), 785-799. https://doi.org/10.51519/journalisi.v5i2.506
  • Kamai, N., Omoigui, L. O., Kamara, A. Y., & Ekeleme, F. (2020). Guide to rice production in Northern Nigeria. International Institute of Tropical Agriculture (IITA).
  • Karasev, A. (2023). Excursion to the History of Tractor Building and the Introduction of Tractors in Agriculture. Tekhnicheskiy Servis Mashin, 61(1), 155-163. https://doi.org/10.22314/2618-8287-2023-61-1-155-163
  • Khaki, S., & Wang, L. (2020). Crop Yield Prediction Using Deep Neural Networks. In: H. Yang, R. Qiu, & W. Chen (Eds.), Proceedings of the 2019 INFORMS International Conference on Service Science (pp. 139-147). https://doi.org/10.1007/978-3-030-30967-1_13
  • Mariappan, A. K., & Ben Das, J. A. (2017, April 07-08). A paradigm for rice yield prediction in Tamilnadu. In: Proceedings of the 2017 IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR), (pp. 18-21), Chennai, India. https://doi.org/10.1109/TIAR.2017.8273679
  • Maulud, D. H., & Abdulazeez, A. M. (2020). A Review on Linear Regression Comprehensive in Machine Learning. Journal of Applied Science and Technology Trends, 1(2), 140-147. https://doi.org/10.38094/jastt1457
  • Mwiti, D. (2022, July 21). Random Forest Regression: When Does It Fail and Why? Neptune.Ai. https://neptune.ai/blog/random-forest-regression-when-does-it-fail-and-why
  • NBS (National Bureau of Statistics) (2020). Demographic Statistics Bulletin. https://nigerianstat.gov.ng/download/1241121
  • Oguntunde, P. G., Lischeid, G., & Dietrich, O. (2018). Relationship between rice yield and climate variables in southwest Nigeria using multiple linear regression and support vector machine analysis. International Journal of Biometeorology, 62(3), 459-469. https://doi.org/10.1007/s00484-017-1454-6
  • Okonkwo, U. U., Ukaogo, V., Kenechukwu, D., Nwanshindu, V., & Okeagu, G. (2021). The politics of rice production in Nigeria: The Abakaliki example, 1942-2020. Cogent Arts & Humanities, 8(1), 1880680. https://doi.org/10.1080/23311983.2021.1880680
  • Onwude, D. I., Chen, G., Hashim, N., Esdaile, J. R., Gomes, C., Khaled, A. Y., Alonge, A. F., & Ikrang, E. (2018). Mechanization of Agricultural Production in Developing Countries. In: G. Chen (Eds.), Advances in Agricultural Machinery and Technologies (pp. 3-26). CRC Press. https://doi.org/10.1201/9781351132398-1
  • Ostertagová, E. (2012). Modelling using Polynomial Regression. Procedia Engineering, 48, 500-506. https://doi.org/10.1016/j.proeng.2012.09.545
  • Özdoğan-Sarıkoç, G., Sarıkoç, M., Celik, M., & Dadaser-Celik, F. (2023). Reservoir volume forecasting using artificial intelligence-based models: Artificial Neural Networks, Support Vector Regression, and Long Short-Term Memory. Journal of Hydrology, 616, 128766. https://doi.org/10.1016/j.jhydrol.2022.128766
  • Patrio, U., Yuliska, Y., & Widyasari, Y. D. L. (2024). Predicting Rice Production In Sumatra Island Using Linear Regression. In: B. Santoso, B. Bustami & A. Satria (Eds.), Proceedings of the 11th International Applied Business and Engineering Conference (ABEC 2023), (2023, September 21). Bengkalis, Riau, Indonesia. http://doi.org/10.4108/eai.21-9-2023.2342997
  • Paudel, D., Boogaard, H., de Wit, A., Janssen, S., Osinga, S., Pylianidis, C., & Athanasiadis, I. N. (2021). Machine learning for large-scale crop yield forecasting. Agricultural Systems, 187, 103016. https://doi.org/10.1016/j.agsy.2020.103016
  • Pečkov, A. (2012). A Machine Learning Approach to Polynomial Regression. PhD Thesis. Jožef Stefan International Postgraduate School.
  • Pierce, F. J., & Nowak, P. (1999). Aspects of Precision Agriculture. Advances in Agronomy, 67, 1-85. https://doi.org/10.1016/S0065-2113(08)60513-1
  • Ritchie, J. T., Singh, U., Godwin, D. C., & Bowen, W. T. (1998). Cereal growth, development and yield. In: G. Y. Tsuji, G. Hoogenboom, & P. K. Thornton (Eds.), Understanding Options for Agricultural Production (pp. 79-98). Springer Netherlands. https://doi.org/10.1007/978-94-017-3624-4_5
  • Rosa, W. (Eds.) (2017). Transforming Our World: The 2030 Agenda for Sustainable Development. In: A New Era in Global Health (pp. 529-567). Springer Publishing Company. https://doi.org/10.1891/9780826190123.ap02
  • Sasu, D. D. (2023, November 9). Nigeria: Production of milled rice 2010-2023. Statista. https://www.statista.com/statistics/1134510/production-of-milled-rice-in-nigeria/
  • Seber, G. A. F., & Lee, A. J. (2003). Linear Regression Analysis (2nd Ed.). John Wiley & Sons. https://doi.org/10.1002/9780471722199
  • Sharma, A., Jain, A., Gupta, P., & Chowdary, V. (2021). Machine Learning Applications for Precision Agriculture: A Comprehensive Review. IEEE Access, 9, 4843-4873. https://doi.org/10.1109/ACCESS.2020.3048415
  • Van Asten, P. J. A., Kaaria, S., Fermont, A. M., & Delve, R. J. (2009). Challenges and lessons when using farmer knowledge in agricultural research and development projects in Africa. Experimental Agriculture, 45(1), 1-14. https://doi.org/10.1017/S0014479708006984
  • van Klompenburg, T., Kassahun, A., & Catal, C. (2020). Crop yield prediction using machine learning: A systematic literature review. Computers and Electronics in Agriculture, 177, 105709. https://doi.org/10.1016/j.compag.2020.105709
  • Vanitha, C. N., Archana, N., & Sowmiya, R. (2019, March 15-16). Agriculture Analysis Using Data Mining And Machine Learning Techniques. In: Proceedings of the 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS), (pp. 984-990), Coimbatore, India. https://doi.org/10.1109/ICACCS.2019.8728382
  • Veenadhari, S., Misra, B., & Singh, C. (2014, January 03-05). Machine learning approach for forecasting crop yield based on climatic parameters. In: Proceedings of the 2014 International Conference on Computer Communication and Informatics, (pp. 1-5), Coimbatore, India. https://doi.org/10.1109/ICCCI.2014.6921718
  • Wart, J. V., Kersebaum, K. C., Peng, S., Milner, M., & Cassman, K. G. (2013). Estimating crop yield potential at regional to national scales. Field Crops Research, 143, 34-43. https://doi.org/10.1016/j.fcr.2012.11.018
  • Zeigler, R. S., & Barclay, A. (2008). The Relevance of Rice. Rice, 1(1), 3-10. https://doi.org/10.1007/s12284-008-9001-z
There are 42 citations in total.

Details

Primary Language English
Subjects Machine Learning (Other), Data Engineering and Data Science
Journal Section Information and Computing Sciences
Authors

Joseph Abunimye Ingio 0009-0007-3574-8560

Augustine Shey Nsang 0000-0002-6466-9032

Aamo Iorliam 0000-0001-8238-9686

Early Pub Date September 28, 2024
Publication Date September 30, 2024
Submission Date June 23, 2024
Acceptance Date August 6, 2024
Published in Issue Year 2024

Cite

APA Abunimye Ingio, J., Shey Nsang, A., & Iorliam, A. (2024). Comparing Machine Learning Algorithms for Rice Yield Prediction in Adamawa and Cross Rivers States of Nigeria. Gazi University Journal of Science Part A: Engineering and Innovation, 11(3), 481-496. https://doi.org/10.54287/gujsa.1503494