Research Article
BibTex RIS Cite

Super Twisting Sliding Mode Control of Four-Phase Interleaved Boost Converter

Year 2024, , 563 - 576, 30.09.2024
https://doi.org/10.54287/gujsa.1529271

Abstract

This paper presents a novel control method that integrates super-twisting sliding mode (STSM) voltage control with proportional-integral (PI) current control for a four-phase interleaved boost converter (IBC) in fuel cell applications. The STSM control, employed in the outer voltage loop, provides robust voltage regulation by generating precise reference currents for each phase. The conventional PI control in the inner current loop utilizes these reference currents to generate pulse width modulation (PWM) signals for each phase. The effectiveness of the proposed control strategy is evaluated through comprehensive simulation studies in MATLAB/Simulink, demonstrating an improvement in dynamic performance and enhanced robustness compared to conventional methods. Quantitative analysis shows that the output voltage quickly rises to the reference voltage within approximately 0.25 seconds in the proposed STSM-PI control method and improves transient response by 16 times compared to the conventional PI-PI method. This integrated STSM-PI control strategy offers significant advancements in reliability and efficiency making it a promising solution for high-performance fuel cell power systems.

References

  • Abas, N., Kalair, A., & Khan, N. (2015). Review of Fossil Fuels and Future Energy Technologies. Futures, 69, 31-49. https://doi.org/10.1016/J.FUTURES.2015.03.003
  • Alajmi, B. N., Marei, M. I., Abdelsalam, I., & Ahmed, N. A. (2022). Multiphase Interleaved Converter Based on Cascaded Non-Inverting Buck-Boost Converter. IEEE Access, 10, 42497-42506. https://doi.org/10.1109/ACCESS.2022.3168389
  • Banerjee, S., Ghosh, A., & Rana, N. (2017). An Improved Interleaved Boost Converter with PSO-Based Optimal Type-III Controller. IEEE Journal of Emerging and Selected Topics in Power Electronics, 5(1), 323-337. https://doi.org/10.1109/JESTPE.2016.2608504
  • Sagar Bhaskar, M., Ramachandaramurthy, V. K., Padmanaban, S., Blaabjerg, F., Ionel, D. M., Mitolo, M., & Almakhles, D. (2020). Survey of DC-DC Non-Isolated Topologies for Unidirectional Power Flow in Fuel Cell Vehicles. IEEE Access, 8, 178130-178166. https://doi.org/10.1109/ACCESS.2020.3027041
  • Eriksson, E. L. V., & Gray, E.MacA. (2017). Optimization and Integration of Hybrid Renewable Energy Hydrogen Fuel Cell Energy Systems – A Critical Review. Applied Energy, 202, 348-364. https://doi.org/10.1016/J.APENERGY.2017.03.132
  • Gonzalez, T., Moreno, J. A., & Fridman, L. (2012). Variable Gain Super-Twisting Sliding Mode Control. IEEE Transactions on Automatic Control, 57(8), 2100-2105. https://doi.org/10.1109/TAC.2011.2179878
  • Guler, N., Bayhan, S., Fesli, U., Blinov, A., & Vinnikov, D. (2023). Super Twisting Sliding Mode Control Strategy for Input Series Output Parallel Converters. IEEE Access, 11, 107394-107403. https://doi.org/10.1109/ACCESS.2023.3320178
  • Hao, X., Salhi, I., Laghrouche, S., Ait-Amirat, Y., & Djerdir, A. (2021). Robust Control of Four-Phase Interleaved Boost Converter by Considering the Performance of PEM Fuel Cell Current. International Journal of Hydrogen Energy, 46(78), 38827-38840. https://doi.org/10.1016/J.IJHYDENE.2021.09.132
  • Hao, X., Salhi, I., Laghrouche, S., Ait-Amirat, Y., & Djerdir, A. (2022). Backstepping Supertwisting Control of Four-Phase Interleaved Boost Converter for PEM Fuel Cell. IEEE Transactions on Power Electronics, 37(7), 7858-7870. https://doi.org/10.1109/TPEL.2022.3149099
  • Hao, X., Salhi, I., Laghrouche, S., Ait Amirat, Y., & Djerdir, A. (2023). Multiple Inputs Multi-Phase Interleaved Boost Converter for Fuel Cell Systems Applications. Renewable Energy, 204, 521-531. https://doi.org/10.1016/J.RENENE.2023.01.021
  • Kabalo, M., Paire, D., Blunier, B., Bouquain, D., Godoy Simões, M., & Miraoui, A. (2013). Experimental Evaluation of Four-Phase Floating Interleaved Boost Converter Design and Control for Fuel Cell Applications. IET Power Electronics, 6(2), 215-226. https://doi.org/10.1049/IET-PEL.2012.0221
  • Khosroshahi, A., Abapour, M., & Sabahi, M. (2015). Reliability Evaluation of Conventional and Interleaved DC-DC Boost Converters. IEEE Transactions on Power Electronics, 30(10), 5821-5828. https://doi.org/10.1109/TPEL.2014.2380829
  • Komurcugil, H., Biricik, S., Bayhan, S., & Zhang, Z. (2021). Sliding Mode Control: Overview of Its Applications in Power Converters. IEEE Industrial Electronics Magazine, 15(1), 40-49. https://doi.org/10.1109/MIE.2020.2986165
  • Mallikarjuna Reddy, B., & Samuel, P. (2020). Analysis, Modelling and Implementation of Multi-Phase Single-Leg DC/DC Converter for Fuel Cell Hybrid Electric Vehicles. International Journal of Modelling and Simulation, 40(4), 279-290. https://doi.org/10.1080/02286203.2019.1610689
  • Manoharan, Y., Hosseini, S. E., Butler, B., Alzhahrani, H., Senior, B. T. F., Ashuri, T., & Krohn, J. (2019). Hydrogen Fuel Cell Vehicles; Current Status and Future Prospect. Applied Sciences, 9(11), 2296. https://doi.org/10.3390/APP9112296
  • Mekhilef, S., Saidur, R., & Safari, A. (2012). Comparative Study of Different Fuel Cell Technologies. Renewable and Sustainable Energy Reviews, 16(1), 981-989. https://doi.org/10.1016/J.RSER.2011.09.020
  • Nahar, S., & Uddin, M. B. (2018, September 13-15). Analysis the Performance of Interleaved Boost Converter. In: Proceedings of the 4th International Conference on Electrical Engineering and Information and Communication Technology (ICEEiCT 2018) (pp. 547-551). Dhaka, Bangladesh. https://doi.org/10.1109/CEEICT.2018.8628104
  • Napole, C., Derbeli, M., & Barambones, O. (2021). A Global Integral Terminal Sliding Mode Control Based on a Novel Reaching Law for a Proton Exchange Membrane Fuel Cell System. Applied Energy, 301, 117473. https://doi.org/10.1016/J.APENERGY.2021.117473
  • Nikhar, A. R., Apte, S. M., & Somalwar, R. (2016, December 22-24). Review of Various Control Techniques for DC-DC Interleaved Boost Converters. In: Proceedings of the International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC 2016) (pp. 432-437). Jalgaon, India. https://doi.org/10.1109/ICGTSPICC.2016.7955340
  • Sankar, K., Saravanakumar, G., & Jana, A. K. (2021). Nonlinear Multivariable Control of an Integrated PEM Fuel Cell System with a DC-DC Boost Converter. Chemical Engineering Research and Design, 167, 141-156. https://doi.org/10.1016/J.CHERD.2021.01.011
  • Sazali, N., Wan Salleh, W. N., Jamaludin, A. S., & Mhd Razali, M. N. (2020). New Perspectives on Fuel Cell Technology: A Brief Review. Membranes, 10(5), 99. https://doi.org/10.3390/MEMBRANES10050099
  • Schwenzer, M., Ay, M., Bergs, T., & Abel, D. (2021). Review on Model Predictive Control: An Engineering Perspective. The International Journal of Advanced Manufacturing Technology, 117(5-6), 1327-1349. https://doi.org/10.1007/S00170-021-07682-3
  • Seyezhai, R., & Mathur, B. L. (2012). Design and Implementation of Interleaved Boost Converter for Fuel Cell Systems. International Journal of Hydrogen Energy, 37(4), 3897-3903. https://doi.org/10.1016/J.IJHYDENE.2011.09.082
  • Zhuo, S., Xu, L., Huangfu, Y., Gaillard, A., Paire, D., & Gao, F. (2021). Robust Adaptive Control of Interleaved Boost Converter for Fuel Cell Application. IEEE Transactions on Industry Applications, 57(6), 6603-6610. https://doi.org/10.1109/TIA.2021.3113262
Year 2024, , 563 - 576, 30.09.2024
https://doi.org/10.54287/gujsa.1529271

Abstract

References

  • Abas, N., Kalair, A., & Khan, N. (2015). Review of Fossil Fuels and Future Energy Technologies. Futures, 69, 31-49. https://doi.org/10.1016/J.FUTURES.2015.03.003
  • Alajmi, B. N., Marei, M. I., Abdelsalam, I., & Ahmed, N. A. (2022). Multiphase Interleaved Converter Based on Cascaded Non-Inverting Buck-Boost Converter. IEEE Access, 10, 42497-42506. https://doi.org/10.1109/ACCESS.2022.3168389
  • Banerjee, S., Ghosh, A., & Rana, N. (2017). An Improved Interleaved Boost Converter with PSO-Based Optimal Type-III Controller. IEEE Journal of Emerging and Selected Topics in Power Electronics, 5(1), 323-337. https://doi.org/10.1109/JESTPE.2016.2608504
  • Sagar Bhaskar, M., Ramachandaramurthy, V. K., Padmanaban, S., Blaabjerg, F., Ionel, D. M., Mitolo, M., & Almakhles, D. (2020). Survey of DC-DC Non-Isolated Topologies for Unidirectional Power Flow in Fuel Cell Vehicles. IEEE Access, 8, 178130-178166. https://doi.org/10.1109/ACCESS.2020.3027041
  • Eriksson, E. L. V., & Gray, E.MacA. (2017). Optimization and Integration of Hybrid Renewable Energy Hydrogen Fuel Cell Energy Systems – A Critical Review. Applied Energy, 202, 348-364. https://doi.org/10.1016/J.APENERGY.2017.03.132
  • Gonzalez, T., Moreno, J. A., & Fridman, L. (2012). Variable Gain Super-Twisting Sliding Mode Control. IEEE Transactions on Automatic Control, 57(8), 2100-2105. https://doi.org/10.1109/TAC.2011.2179878
  • Guler, N., Bayhan, S., Fesli, U., Blinov, A., & Vinnikov, D. (2023). Super Twisting Sliding Mode Control Strategy for Input Series Output Parallel Converters. IEEE Access, 11, 107394-107403. https://doi.org/10.1109/ACCESS.2023.3320178
  • Hao, X., Salhi, I., Laghrouche, S., Ait-Amirat, Y., & Djerdir, A. (2021). Robust Control of Four-Phase Interleaved Boost Converter by Considering the Performance of PEM Fuel Cell Current. International Journal of Hydrogen Energy, 46(78), 38827-38840. https://doi.org/10.1016/J.IJHYDENE.2021.09.132
  • Hao, X., Salhi, I., Laghrouche, S., Ait-Amirat, Y., & Djerdir, A. (2022). Backstepping Supertwisting Control of Four-Phase Interleaved Boost Converter for PEM Fuel Cell. IEEE Transactions on Power Electronics, 37(7), 7858-7870. https://doi.org/10.1109/TPEL.2022.3149099
  • Hao, X., Salhi, I., Laghrouche, S., Ait Amirat, Y., & Djerdir, A. (2023). Multiple Inputs Multi-Phase Interleaved Boost Converter for Fuel Cell Systems Applications. Renewable Energy, 204, 521-531. https://doi.org/10.1016/J.RENENE.2023.01.021
  • Kabalo, M., Paire, D., Blunier, B., Bouquain, D., Godoy Simões, M., & Miraoui, A. (2013). Experimental Evaluation of Four-Phase Floating Interleaved Boost Converter Design and Control for Fuel Cell Applications. IET Power Electronics, 6(2), 215-226. https://doi.org/10.1049/IET-PEL.2012.0221
  • Khosroshahi, A., Abapour, M., & Sabahi, M. (2015). Reliability Evaluation of Conventional and Interleaved DC-DC Boost Converters. IEEE Transactions on Power Electronics, 30(10), 5821-5828. https://doi.org/10.1109/TPEL.2014.2380829
  • Komurcugil, H., Biricik, S., Bayhan, S., & Zhang, Z. (2021). Sliding Mode Control: Overview of Its Applications in Power Converters. IEEE Industrial Electronics Magazine, 15(1), 40-49. https://doi.org/10.1109/MIE.2020.2986165
  • Mallikarjuna Reddy, B., & Samuel, P. (2020). Analysis, Modelling and Implementation of Multi-Phase Single-Leg DC/DC Converter for Fuel Cell Hybrid Electric Vehicles. International Journal of Modelling and Simulation, 40(4), 279-290. https://doi.org/10.1080/02286203.2019.1610689
  • Manoharan, Y., Hosseini, S. E., Butler, B., Alzhahrani, H., Senior, B. T. F., Ashuri, T., & Krohn, J. (2019). Hydrogen Fuel Cell Vehicles; Current Status and Future Prospect. Applied Sciences, 9(11), 2296. https://doi.org/10.3390/APP9112296
  • Mekhilef, S., Saidur, R., & Safari, A. (2012). Comparative Study of Different Fuel Cell Technologies. Renewable and Sustainable Energy Reviews, 16(1), 981-989. https://doi.org/10.1016/J.RSER.2011.09.020
  • Nahar, S., & Uddin, M. B. (2018, September 13-15). Analysis the Performance of Interleaved Boost Converter. In: Proceedings of the 4th International Conference on Electrical Engineering and Information and Communication Technology (ICEEiCT 2018) (pp. 547-551). Dhaka, Bangladesh. https://doi.org/10.1109/CEEICT.2018.8628104
  • Napole, C., Derbeli, M., & Barambones, O. (2021). A Global Integral Terminal Sliding Mode Control Based on a Novel Reaching Law for a Proton Exchange Membrane Fuel Cell System. Applied Energy, 301, 117473. https://doi.org/10.1016/J.APENERGY.2021.117473
  • Nikhar, A. R., Apte, S. M., & Somalwar, R. (2016, December 22-24). Review of Various Control Techniques for DC-DC Interleaved Boost Converters. In: Proceedings of the International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC 2016) (pp. 432-437). Jalgaon, India. https://doi.org/10.1109/ICGTSPICC.2016.7955340
  • Sankar, K., Saravanakumar, G., & Jana, A. K. (2021). Nonlinear Multivariable Control of an Integrated PEM Fuel Cell System with a DC-DC Boost Converter. Chemical Engineering Research and Design, 167, 141-156. https://doi.org/10.1016/J.CHERD.2021.01.011
  • Sazali, N., Wan Salleh, W. N., Jamaludin, A. S., & Mhd Razali, M. N. (2020). New Perspectives on Fuel Cell Technology: A Brief Review. Membranes, 10(5), 99. https://doi.org/10.3390/MEMBRANES10050099
  • Schwenzer, M., Ay, M., Bergs, T., & Abel, D. (2021). Review on Model Predictive Control: An Engineering Perspective. The International Journal of Advanced Manufacturing Technology, 117(5-6), 1327-1349. https://doi.org/10.1007/S00170-021-07682-3
  • Seyezhai, R., & Mathur, B. L. (2012). Design and Implementation of Interleaved Boost Converter for Fuel Cell Systems. International Journal of Hydrogen Energy, 37(4), 3897-3903. https://doi.org/10.1016/J.IJHYDENE.2011.09.082
  • Zhuo, S., Xu, L., Huangfu, Y., Gaillard, A., Paire, D., & Gao, F. (2021). Robust Adaptive Control of Interleaved Boost Converter for Fuel Cell Application. IEEE Transactions on Industry Applications, 57(6), 6603-6610. https://doi.org/10.1109/TIA.2021.3113262
There are 24 citations in total.

Details

Primary Language English
Subjects Power Electronics
Journal Section Electronics, Sensors and Digital Hardware
Authors

Veli Yenil 0000-0002-0257-5305

Sadık Özdemir 0000-0001-7676-7484

Zafer Ortatepe 0000-0001-7771-1677

Publication Date September 30, 2024
Submission Date August 7, 2024
Acceptance Date September 11, 2024
Published in Issue Year 2024

Cite

APA Yenil, V., Özdemir, S., & Ortatepe, Z. (2024). Super Twisting Sliding Mode Control of Four-Phase Interleaved Boost Converter. Gazi University Journal of Science Part A: Engineering and Innovation, 11(3), 563-576. https://doi.org/10.54287/gujsa.1529271