Research Article
BibTex RIS Cite

Yüksek Yoğunluklu Polietilen (HDPE)/Pinna Nobilis Polimer Karışımının Özelliklerinin İncelenmesi

Year 2021, Volume: 8 Issue: 2, 208 - 217, 28.06.2021

Abstract

Bu çalışmada yüksek yoğunluklu polietilen içerisine %10-20-30 ve 40 oranlarında istiridye veya midye gibi kabuklu bir deniz ürünü olan pinna nobilis ilave edilerek ekstürüzyonda karışımları yapılmış ve bir polimer kompoziti elde edilmiştir. Elde edilen polimer kompozitlerinden enjeksiyon makinesinde standartlara uygun olarak çeşitli test numuneleri basılmıştır. UL 94, oksijen indeksi ve kızgın tel deneyleri yapılarak polimer kompozitinin yanma davranışları belirlenmiştir. Ayrıca elastiklik modülü, akma mukavemeti, kopma mukavemeti, % uzama değeri, Izod darbe mukavemet değeri, sertlik ve yoğunluk değerlerinin pinna nobilis oranının artmasıyla nasıl değiştiği rapor edilmiştir. Bunlara ek olarak taramalı elektron mikroskobisi ile kırık yüzey fotoğrafları çekilerek polietilen ile pinna nobilis partiküllerinin yapışması ve dağılımları belirlenmiştir.

References

  • Axiosdelta (2020). (Accessed:20/12/2020) axiosdelta.gr/en/2020/01/24/pinna-nobilis-critically-endagered-2020
  • Chong, M. H., Chun, B. C., Chung, Y. C., & Cho, B.G. (2006). Fire‐retardant plastic material from oyster‐shell powder and recycled polyethylene. Journal of Applied Polymer Science, 99(4) 1583-1589. doi:10.1002/app.22484
  • Elleithy, R., Ali, I., Ali, M. A., & Al-Zahrani, S. M. (2011). Different factors affecting the mechanical and thermo-mechanical properties of HDPE reinforced with micro-CaCO3. J. of Reinforced Plastics and Composites, 30(9), 769-780. doi:10.1177/0731684411400111
  • Folke, C., & Kautsky, N. (1989). The role of ecosystems for a sustainable development of aquaculture. Ambio, 18, 234-243.
  • Funabashi, M., Ninomiya, F., Flores E. D., & Kunioka, M. (2010). Biomass Carbon Ratio of Polymer Composites Measured by Accelerator Mass Spectrometry. Journal Polymer Environmet, 18, 85-93. doi:10.1007/s10924-010-0166-3
  • Huang, J. W. (2008). Isothermal crystallization of high density polyethylene and nanoscale calcium carbonate composites. J. App. Poly.Sci., 107(5), 316-3172. doi:10.1002/app.27503
  • Jung, J. H., Lee, J. J., Lee, G. W., Yoo, K. S., & Shon, B. H. (2012). Reuse of Waste Shells as a SO2/NOx Removal Sorbent. Material Recycling - Trends and Perspectives, 12, 301-322. doi:10.5772/33887
  • Lazzeria, A., Zebarjadb, S.M., Pracellac, M., Cavalierd, K., & Rosam, R. (2005). Filler toughening of plastics. Part 1-The effect of surface interactions on physico-mechanical properties and rheological behaviour of ultrafine CaCO3/HDPE nanocomposites. Polymer, 46, 827-844. doi:10.1016/j.polymer.2004.11.111
  • Li, H. Y., Tan, Y. Q., Zhang, L., Zhang, Y. X., Song, Y. H., Ye, Y., & Xia, M. S. (2012). Bio-filler from waste shellfish shell: preparation, characterization, and its effect on the mechanical properties on polypropylene composites. Journal of Hazardous Materials, 217-218, 256-262. doi:10.1016/j.jhazmat.2012.03.028
  • Morales, E., & White, J. R. (1998). Residual streses and molrcular orientation in particulate-filled polypropylene. J. Mater Sci, 23, 3612. doi:10.1007/BF00540503
  • Rothon, R. N., (1999). Mineral Fillers in Thermoplastics: Filler Manufacture and Characterisation. Mineral Fillers in Thermoplastics I, 139, 67-107. doi:10.1007/3-540-69220-7_2
  • Rothon, R. N. (1995). Particulate-Filled Polymer Composites, Longman Scientific and Technical: Harlow.
  • Tjong, S. C., Li, R. K. Y., & Cheung, T. (2004). Mechanical behavior of CaCO3 particulate‐filled β‐crystalline phase polypropylene composites. Polym Eng Sci., 37, 166-172. doi:10.1002/pen.11657
  • Wang, H. Y., Kuo, W. T., Lin, C. C., & Po-Yo, C. (2013). Study of the material properties of fly ash added to oyster cement mortar. Construction and Building Materials, 41, 532-537. doi:10.1016/j.conbuildmat.2012.11.021
  • Wang, Z., & Wang, X. (2010). Rheology and Dispersion Behavior of Highly Filled Propylene-Ethylene Copolymer/Calcium Carbonate Composites. Polymer-Plastics Tech. and Eng., 49(7), 637-642. doi:10.1080/03602551003664578
  • Wang, Y., Shi, J., Han, L., & Xiang, F. (2009). Crystallization and mechanical properties of T ZnOw/ HDPE composites. Mater Sci Eng A, 220, 501-510. doi:10.1016/j.msea.2008.09.061
  • Ward, J. E., Zhao, S., Holohan, B. A., Mladinich, K. M., Griffin, T. W. Wozniak, J., & Shumway, S. E. (2019). Selective Ingestion and Egestion of Plastic Particles by the Blue Mussel (Mytilus edulis) and Eastern Oyster (Crassostrea virginica): Implications for Using Bivalves as Bioindicators of Microplastic Pollution. Environ. Sci. Technol., 53(15), 8776-8784. doi:10.1021/acs.est.9b02073
  • Yao, Z. T., Chen, T., Li, H. Y., Xia, M. S., Ye, Y., & Zheng, H. (2013). Mechanical and thermal properties of polypropylene (PP) composites filled with modified shell waste. Journal of Hazardous Materials, 262(15), 212-217. doi:10.1016/j.jhazmat.2013.08.062

Investigation of Properties of High Density Polyethylene (HDPE)/Pinna Nobilis Polymer Composites

Year 2021, Volume: 8 Issue: 2, 208 - 217, 28.06.2021

Abstract

In this study, pinna nobilis, a shellfish such as oyster or mussel, was added into high density polyethylene in the ratio of 10-20-30 and 40%, and blends were made in extrusion and a polymer composite was obtained. Various test samples were molded from the obtained polymer composites in accordance with the standards in the injection molding machine. The burning behavior of the polymer composite was determined by conducting UL 94, limit oxygen index and glow wire tests. In addition, it has been reported how elastic modulus, yield strength, tensile strength, % elongation value, Izod impact strength value, hardness and density values change with the increase of pinna nobilis ratio. In addition to these, the adhesion and distribution of polyethylene and pinna nobilis particles were determined by taking fracture surface photographs with scanning electron microscopy.

References

  • Axiosdelta (2020). (Accessed:20/12/2020) axiosdelta.gr/en/2020/01/24/pinna-nobilis-critically-endagered-2020
  • Chong, M. H., Chun, B. C., Chung, Y. C., & Cho, B.G. (2006). Fire‐retardant plastic material from oyster‐shell powder and recycled polyethylene. Journal of Applied Polymer Science, 99(4) 1583-1589. doi:10.1002/app.22484
  • Elleithy, R., Ali, I., Ali, M. A., & Al-Zahrani, S. M. (2011). Different factors affecting the mechanical and thermo-mechanical properties of HDPE reinforced with micro-CaCO3. J. of Reinforced Plastics and Composites, 30(9), 769-780. doi:10.1177/0731684411400111
  • Folke, C., & Kautsky, N. (1989). The role of ecosystems for a sustainable development of aquaculture. Ambio, 18, 234-243.
  • Funabashi, M., Ninomiya, F., Flores E. D., & Kunioka, M. (2010). Biomass Carbon Ratio of Polymer Composites Measured by Accelerator Mass Spectrometry. Journal Polymer Environmet, 18, 85-93. doi:10.1007/s10924-010-0166-3
  • Huang, J. W. (2008). Isothermal crystallization of high density polyethylene and nanoscale calcium carbonate composites. J. App. Poly.Sci., 107(5), 316-3172. doi:10.1002/app.27503
  • Jung, J. H., Lee, J. J., Lee, G. W., Yoo, K. S., & Shon, B. H. (2012). Reuse of Waste Shells as a SO2/NOx Removal Sorbent. Material Recycling - Trends and Perspectives, 12, 301-322. doi:10.5772/33887
  • Lazzeria, A., Zebarjadb, S.M., Pracellac, M., Cavalierd, K., & Rosam, R. (2005). Filler toughening of plastics. Part 1-The effect of surface interactions on physico-mechanical properties and rheological behaviour of ultrafine CaCO3/HDPE nanocomposites. Polymer, 46, 827-844. doi:10.1016/j.polymer.2004.11.111
  • Li, H. Y., Tan, Y. Q., Zhang, L., Zhang, Y. X., Song, Y. H., Ye, Y., & Xia, M. S. (2012). Bio-filler from waste shellfish shell: preparation, characterization, and its effect on the mechanical properties on polypropylene composites. Journal of Hazardous Materials, 217-218, 256-262. doi:10.1016/j.jhazmat.2012.03.028
  • Morales, E., & White, J. R. (1998). Residual streses and molrcular orientation in particulate-filled polypropylene. J. Mater Sci, 23, 3612. doi:10.1007/BF00540503
  • Rothon, R. N., (1999). Mineral Fillers in Thermoplastics: Filler Manufacture and Characterisation. Mineral Fillers in Thermoplastics I, 139, 67-107. doi:10.1007/3-540-69220-7_2
  • Rothon, R. N. (1995). Particulate-Filled Polymer Composites, Longman Scientific and Technical: Harlow.
  • Tjong, S. C., Li, R. K. Y., & Cheung, T. (2004). Mechanical behavior of CaCO3 particulate‐filled β‐crystalline phase polypropylene composites. Polym Eng Sci., 37, 166-172. doi:10.1002/pen.11657
  • Wang, H. Y., Kuo, W. T., Lin, C. C., & Po-Yo, C. (2013). Study of the material properties of fly ash added to oyster cement mortar. Construction and Building Materials, 41, 532-537. doi:10.1016/j.conbuildmat.2012.11.021
  • Wang, Z., & Wang, X. (2010). Rheology and Dispersion Behavior of Highly Filled Propylene-Ethylene Copolymer/Calcium Carbonate Composites. Polymer-Plastics Tech. and Eng., 49(7), 637-642. doi:10.1080/03602551003664578
  • Wang, Y., Shi, J., Han, L., & Xiang, F. (2009). Crystallization and mechanical properties of T ZnOw/ HDPE composites. Mater Sci Eng A, 220, 501-510. doi:10.1016/j.msea.2008.09.061
  • Ward, J. E., Zhao, S., Holohan, B. A., Mladinich, K. M., Griffin, T. W. Wozniak, J., & Shumway, S. E. (2019). Selective Ingestion and Egestion of Plastic Particles by the Blue Mussel (Mytilus edulis) and Eastern Oyster (Crassostrea virginica): Implications for Using Bivalves as Bioindicators of Microplastic Pollution. Environ. Sci. Technol., 53(15), 8776-8784. doi:10.1021/acs.est.9b02073
  • Yao, Z. T., Chen, T., Li, H. Y., Xia, M. S., Ye, Y., & Zheng, H. (2013). Mechanical and thermal properties of polypropylene (PP) composites filled with modified shell waste. Journal of Hazardous Materials, 262(15), 212-217. doi:10.1016/j.jhazmat.2013.08.062
There are 18 citations in total.

Details

Primary Language Turkish
Journal Section Metallurgical and Materials Engineering
Authors

Münir Taşdemir 0000-0001-8635-7251

Publication Date June 28, 2021
Submission Date December 20, 2020
Published in Issue Year 2021 Volume: 8 Issue: 2

Cite

APA Taşdemir, M. (2021). Yüksek Yoğunluklu Polietilen (HDPE)/Pinna Nobilis Polimer Karışımının Özelliklerinin İncelenmesi. Gazi University Journal of Science Part A: Engineering and Innovation, 8(2), 208-217.