Research Article
BibTex RIS Cite
Year 2022, Volume: 9 Issue: 4, 359 - 366, 31.12.2022
https://doi.org/10.54287/gujsa.1119622

Abstract

References

  • Ahmed, A. S., Capello, K., Chiang, A., Cardenas-Mendez, E., & Kramer, G. H. (2009). Optimization of geometric parameters for Marinelli beaker to maximize the detection efficiency of an HPGe detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 610(3), 718-723. doi:10.1016/j.nima.2009.09.020
  • Azli, T., & Chaoui, Z.-E.-A. (2015). Performance Revaluation of a N-Type Coaxial HPGe Detector with Front Edges Crystal Using MCNPX. Applied Radiation and Isotopes. 97, 106-112. doi:10.1016/j.apradiso.2014.12.027
  • Bölükdemir, M. H., Uyar, E., Aksoy, G., Ünlü, H., Dikmen, H., & Özgür, M. (2021). Investigation of Shape Effects and Dead Layer Thicknesses of a Coaxial HPGe Crystal on Detector Efficiency by Using PHITS Monte Carlo Simulation. Radiation Physics and Chemistry, 189, 109746. doi:10.1016/j.radphyschem.2021.109746
  • Britton, R., Burnett, J., Davies, A., & Regan, P. H. (2013). Determining the Efficiency of a Broad-Energy HPGe Detector Using Monte Carlo Simulations. Journal of Radioanalytical and Nuclear Chemistry, 295(3), 2035-2041. doi:10.1007/s10967-012-2203-2
  • Gilmore, G. (2008). Practical Gamma-Ray Spectrometry: Second Edition. John Wiley and Sons.
  • Harb, S., Salahel Din, K., & Abbady, A. (2008, February 19-23). Study of Efficiency Calibrations of HPGe Detectors for Radioactivity Measurements of Environmental Samples. In: Proceedings of the 3rd Environmental Physics Conference, (pp. 207-218), Aswan, Egypt.
  • Huy, N. Q., Binh, D. Q., & An, V. X. (2007). Study on the Increase of Inactive Germanium Layer in a High-Purity Germanium Detector after a Long Time Operation Applying MCNP Code. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 573(3), 384-388. doi:10.1016/j.nima.2006.12.048
  • Huy, N. Q. (2011). Dead-Layer Thickness Effect for Gamma Spectra Measured in an HPGe p-Type Detector. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 641(1), 101-104. doi:10.1016/j.nima.2011.02.097
  • Ješkovský, M., Javorník, A., Breier, R., Slučiak, J., & Povinec, P. P. (2019). Experimental and Monte Carlo Determination of HPGe Detector Efficiency. Journal of Radioanalytical and Nuclear Chemistry, 322(3), 1863-1869. doi:10.1007/s10967-019-06856-4
  • Lépy, M. C., Thiam, C., Anagnostakis, M., Galea, R., Gurau, D., Hurtado, S., Karfopoulos, K., Liang, J., Liu, H., Luca, A., Mitsios, I., Potiriadis, C., Savva, M. I., Thanh, T. T., Thomas, V., Townson, R. W., Vasilopoulou, T., & Zhang, M. (2019). A Benchmark for Monte Carlo Simulation in Gamma-Ray Spectrometry. Applied Radiation and Isotopes, 154, 108850. doi:10.1016/j.apradiso.2019.108850
  • Modarresi, S. M., Masoudi, S. F., & Karimi M. (2017). A Method for Considering the Spatial Variations of Dead Layer Thickness in HPGe Detectors to Improve the FEPE Calculation of Bulky Samples. Radiation Physics and Chemistry, 130, 291-296. doi:10.1016/j.radphyschem.2016.08.020
  • Modarresi, S. M., Masoudi, S. F., & Karimi M. (2018). A Method for Self-Attenuation and Sample-Height Correction for Counting Efficiency of HPGe Using Marinelli Beaker Geometry. Journal of Radioanalytical and Nuclear Chemistry, 316(1), 129-137. doi:10.1007/s10967-018-5725-4
  • Murphy, N. M., León Vintró, L., Burbidge, C. I., & Currivan, L. (2020). An Automated Programme for the Optimisation of HPGe Detector Parameters Using an Evolutionary Algorithm with GESPECOR. Applied Radiation and Isotopes, 156, 108883. doi:10.1016/j.apradiso.2019.108883
  • Ordóñez, J., Gallardo, S., Ortiz, J., Sáez-Muñoz, M., & Martorell, S. (2019). Intercomparison of Full Energy Peak Efficiency Curves for an HPGe Detector Using MCNP6 and GEANT4. Radiation Physics and Chemistry, 155(2), 248-251. doi:10.1016/j.radphyschem.2018.06.049
  • Ródenas, J., Pascual, A., Zarza, I., Serradell, V., Ortiz, J., & Ballesteros, L. (2003). Analysis of the Influence of Germanium Dead Layer on Detector Calibration Simulation for Environmental Radioactive Samples Using the Monte Carlo Method. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 496(2-3), 390-399. doi:10.1016/S0168-9002(02)01748-5
  • Sato, T., Iwamoto, Y., Hashimoto, S., Ogawa, T., Furuta, T., Abe, S., Kai, T., Tsai, P.E., Matsuda, N., Iwase, H., Shigyo, N., Sihver, L., & Niita, K. (2018). Features of Particle and Heavy Ion Transport Code System (PHITS) Version 3.02. Journal of Nuclear Science and Technology, 55(6), 684-690. doi:10.1080/00223131.2017.1419890
  • Sima, O., Arnold, D., & Dovlete, C. (2001). GESPECOR: A Versatile Tool in Gamma-Ray Spectrometry. Journal of Radioanalytical and Nuclear Chemistry, 248, 359-364. doi:10.1023/A:1010619806898
  • Vasconcelos, D. C., Pereira, C., Gallardo, S., Rocha, Z., & Santos, T. O. (2011, October 24-28). Efficiency Simulation of a HPGE Detector for the Environmental Radioactivity Laboratory / CDTN Using a MCNP-Gammavision Method. International Nuclear Atlantic Conference (INAC 2011).
  • Zamzamian, S. M., Hosseini, S. A., Feghhi, S. A., & Samadfam, M. (2020). Determining of the Optimized Dimensions of the Marinelli Beaker Containing Source with Inhomogeneous Emission Rate by Using Genetic Algorithm Coupled with MCNP and Determining Distribution Type by Neural Networks. Applied Radiation and Isotopes, 157, 109039. doi:10.1016/j.apradiso.2020.109039

Comparison of Experimental and Monte Carlo Efficiencies of 0.5g/cc Epoxy Matrix Marinelli Source with Multiple Radioactive Nuclides

Year 2022, Volume: 9 Issue: 4, 359 - 366, 31.12.2022
https://doi.org/10.54287/gujsa.1119622

Abstract

Using the gamma spectroscopy system, it can be determined whether environmental samples or standard radioactive sources are radioactive, and from which elements their radioactivity originates. The purpose of Monte Carlo (MC) simulation is to model a real-life system with its inputs and evaluate the outputs with real results. This study calculates the experimental efficiency of a p-type HPGe detector using a 0.5 g/cc Epoxy Matrix Marinelli beaker and compares these results with GESPECOR and PHITS MC Simulation programs. Thus, the thickness of the dead layer, which thickens over time and affects the detector efficiency, was determined from the most compatible result of the MC calculations made repeatedly at various alternative thicknesses to the experimental results. For 1.5 mm dead layer thickness, less than 2 % error was found between the test and MC results, especially at energies above 165 keV. As a result, it was determined that the dead layer thickness of the detector reached 1.5 mm with an increase of 114 % after its production. The current value of the dead layer thickness of each detector should be checked, as the efficiency affects the determination of the activity.

References

  • Ahmed, A. S., Capello, K., Chiang, A., Cardenas-Mendez, E., & Kramer, G. H. (2009). Optimization of geometric parameters for Marinelli beaker to maximize the detection efficiency of an HPGe detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 610(3), 718-723. doi:10.1016/j.nima.2009.09.020
  • Azli, T., & Chaoui, Z.-E.-A. (2015). Performance Revaluation of a N-Type Coaxial HPGe Detector with Front Edges Crystal Using MCNPX. Applied Radiation and Isotopes. 97, 106-112. doi:10.1016/j.apradiso.2014.12.027
  • Bölükdemir, M. H., Uyar, E., Aksoy, G., Ünlü, H., Dikmen, H., & Özgür, M. (2021). Investigation of Shape Effects and Dead Layer Thicknesses of a Coaxial HPGe Crystal on Detector Efficiency by Using PHITS Monte Carlo Simulation. Radiation Physics and Chemistry, 189, 109746. doi:10.1016/j.radphyschem.2021.109746
  • Britton, R., Burnett, J., Davies, A., & Regan, P. H. (2013). Determining the Efficiency of a Broad-Energy HPGe Detector Using Monte Carlo Simulations. Journal of Radioanalytical and Nuclear Chemistry, 295(3), 2035-2041. doi:10.1007/s10967-012-2203-2
  • Gilmore, G. (2008). Practical Gamma-Ray Spectrometry: Second Edition. John Wiley and Sons.
  • Harb, S., Salahel Din, K., & Abbady, A. (2008, February 19-23). Study of Efficiency Calibrations of HPGe Detectors for Radioactivity Measurements of Environmental Samples. In: Proceedings of the 3rd Environmental Physics Conference, (pp. 207-218), Aswan, Egypt.
  • Huy, N. Q., Binh, D. Q., & An, V. X. (2007). Study on the Increase of Inactive Germanium Layer in a High-Purity Germanium Detector after a Long Time Operation Applying MCNP Code. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 573(3), 384-388. doi:10.1016/j.nima.2006.12.048
  • Huy, N. Q. (2011). Dead-Layer Thickness Effect for Gamma Spectra Measured in an HPGe p-Type Detector. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 641(1), 101-104. doi:10.1016/j.nima.2011.02.097
  • Ješkovský, M., Javorník, A., Breier, R., Slučiak, J., & Povinec, P. P. (2019). Experimental and Monte Carlo Determination of HPGe Detector Efficiency. Journal of Radioanalytical and Nuclear Chemistry, 322(3), 1863-1869. doi:10.1007/s10967-019-06856-4
  • Lépy, M. C., Thiam, C., Anagnostakis, M., Galea, R., Gurau, D., Hurtado, S., Karfopoulos, K., Liang, J., Liu, H., Luca, A., Mitsios, I., Potiriadis, C., Savva, M. I., Thanh, T. T., Thomas, V., Townson, R. W., Vasilopoulou, T., & Zhang, M. (2019). A Benchmark for Monte Carlo Simulation in Gamma-Ray Spectrometry. Applied Radiation and Isotopes, 154, 108850. doi:10.1016/j.apradiso.2019.108850
  • Modarresi, S. M., Masoudi, S. F., & Karimi M. (2017). A Method for Considering the Spatial Variations of Dead Layer Thickness in HPGe Detectors to Improve the FEPE Calculation of Bulky Samples. Radiation Physics and Chemistry, 130, 291-296. doi:10.1016/j.radphyschem.2016.08.020
  • Modarresi, S. M., Masoudi, S. F., & Karimi M. (2018). A Method for Self-Attenuation and Sample-Height Correction for Counting Efficiency of HPGe Using Marinelli Beaker Geometry. Journal of Radioanalytical and Nuclear Chemistry, 316(1), 129-137. doi:10.1007/s10967-018-5725-4
  • Murphy, N. M., León Vintró, L., Burbidge, C. I., & Currivan, L. (2020). An Automated Programme for the Optimisation of HPGe Detector Parameters Using an Evolutionary Algorithm with GESPECOR. Applied Radiation and Isotopes, 156, 108883. doi:10.1016/j.apradiso.2019.108883
  • Ordóñez, J., Gallardo, S., Ortiz, J., Sáez-Muñoz, M., & Martorell, S. (2019). Intercomparison of Full Energy Peak Efficiency Curves for an HPGe Detector Using MCNP6 and GEANT4. Radiation Physics and Chemistry, 155(2), 248-251. doi:10.1016/j.radphyschem.2018.06.049
  • Ródenas, J., Pascual, A., Zarza, I., Serradell, V., Ortiz, J., & Ballesteros, L. (2003). Analysis of the Influence of Germanium Dead Layer on Detector Calibration Simulation for Environmental Radioactive Samples Using the Monte Carlo Method. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 496(2-3), 390-399. doi:10.1016/S0168-9002(02)01748-5
  • Sato, T., Iwamoto, Y., Hashimoto, S., Ogawa, T., Furuta, T., Abe, S., Kai, T., Tsai, P.E., Matsuda, N., Iwase, H., Shigyo, N., Sihver, L., & Niita, K. (2018). Features of Particle and Heavy Ion Transport Code System (PHITS) Version 3.02. Journal of Nuclear Science and Technology, 55(6), 684-690. doi:10.1080/00223131.2017.1419890
  • Sima, O., Arnold, D., & Dovlete, C. (2001). GESPECOR: A Versatile Tool in Gamma-Ray Spectrometry. Journal of Radioanalytical and Nuclear Chemistry, 248, 359-364. doi:10.1023/A:1010619806898
  • Vasconcelos, D. C., Pereira, C., Gallardo, S., Rocha, Z., & Santos, T. O. (2011, October 24-28). Efficiency Simulation of a HPGE Detector for the Environmental Radioactivity Laboratory / CDTN Using a MCNP-Gammavision Method. International Nuclear Atlantic Conference (INAC 2011).
  • Zamzamian, S. M., Hosseini, S. A., Feghhi, S. A., & Samadfam, M. (2020). Determining of the Optimized Dimensions of the Marinelli Beaker Containing Source with Inhomogeneous Emission Rate by Using Genetic Algorithm Coupled with MCNP and Determining Distribution Type by Neural Networks. Applied Radiation and Isotopes, 157, 109039. doi:10.1016/j.apradiso.2020.109039
There are 19 citations in total.

Details

Primary Language English
Journal Section Physics
Authors

Gülper Aksoy 0000-0003-4730-0935

Hasan Ünlü 0000-0003-2006-6165

Nilgün Orhan 0000-0002-5219-6899

Mustafa Hicabi Bölükdemir 0000-0002-7911-7863

Publication Date December 31, 2022
Submission Date May 21, 2022
Published in Issue Year 2022 Volume: 9 Issue: 4

Cite

APA Aksoy, G., Ünlü, H., Orhan, N., Bölükdemir, M. H. (2022). Comparison of Experimental and Monte Carlo Efficiencies of 0.5g/cc Epoxy Matrix Marinelli Source with Multiple Radioactive Nuclides. Gazi University Journal of Science Part A: Engineering and Innovation, 9(4), 359-366. https://doi.org/10.54287/gujsa.1119622