Research Article
BibTex RIS Cite
Year 2022, Volume: 9 Issue: 4, 452 - 460, 31.12.2022
https://doi.org/10.54287/gujsa.1185023

Abstract

References

  • Ali, M. A., Ullah, R., Abdullah, S., Khan, M. A., Murtaza, G., Laref, A., & Kattan, N. A. (2021). An investigation of half-metallic variant perovskites A2NbCl6 (A= K, Rb) for spintronic based applications. Journal of Solid State Chemistry, 293, 121823. doi:10.1016/j.jssc.2020.121823
  • Birsan, A., & Kuncser, V. (2022). Half-metallic properties of Zr2CrAl ferrimagnetic full-Heusler compound, investigated in tetragonal, orthorhombic and rhombohedral crystal structures. Journal of Alloys and Compounds, 900, 163491. doi:10.1016/j.jallcom.2021.163491
  • Blaha, P., Schwarz, K., Tran, F., Laskowski, R., Madsen, G. H. K., & Marks, L. D. (2020). WIEN2k: an APW+lo program for calculating the properties of solids. The Journal of Chemical Physics, 152, 074101. doi:10.1063/1.5143061
  • Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D., Luitz, J., Laskowski, R., Tran, F., & Marks, L. D. (2022) WIEN2k An Augmented Plane Wave Local Orbitals Program for Calculating Crystal Properties. Vienna University of Technology Institute of Materials Chemistry, Vienna, Austria. ISBN 3-9501031-1-2 PDF
  • Bouhbou, M., Moubah, R., Bakkari, K., Zaari, H., Sabrallah, A., Khelfaoui, F., Mliki, N., Abid, M., Belayachi, A., & Lassri, H. (2019). Magnetic, half-metallicity and electronic studies of Cd1-xZnxCr2Se4 chromium selenospinels. Journal of Magnetism and Magnetic Materials, 476, 86-91. doi:10.1016/j.jmmm.2018.12.063
  • de Groot, R. A., Mueller, F. M., van Engen, P. G., & Buschow, K. H. J. (1983). New class of materials: half-metallic ferromagnets. Physical Review Letters, 50(25), 2024-2027. doi:10.1103/PhysRevLett.50.2024
  • Hirohata, A., Yamada, K., Nakatani, Y., Prejbeanu, I.-L., Diény, B., Pirro, P., & Hillebrands, B. (2020). Review on spintronics: Principles and device applications. Journal of Magnetism and Magnetic Materials, 509, 166711. doi:10.1016/j.jmmm.2020.166711
  • Khanal, P., Zhou, B., Andrade, M., Mastrangelo, C., Habiboglu, A., Enriquez, A., Fox, D., Warrilow, K., & Wang, W.-G. (2022). Enhanced magnetoresistance in perpendicular magnetic tunneling junctions with MgAl2O4 barrier. Journal of Magnetism and Magnetic Materials, 563, 169914. doi:10.1016/j.jmmm.2022.169914
  • Mahmood, Q., Nazir, G., Alzahrani, J., Kattan, N. A., Al-Qaisi, S., Albalawi, H., Mera, A., Mersal, G. A. M., Ibrahim, M. M., & Amin, M. A. (2022). Room temperature ferromagnetism and thermoelectric behavior of calcium based spinel chalcogenides CaZ2S4 (Z= Ti, V, Cr, Fe) for spintronic applications. Journal of Physics and Chemistry of Solids, 167, 110742. doi:10.1016/j.jpcs.2022.110742
  • Murnaghan, F. D. (1944). The Compressibility of Media under Extreme Pressure. Proceedings of the National Academy of Sciences, 30(9) 244-247. doi:10.1073/pnas.30.9.244
  • Nadeem, A., Bashir, A. I, Azam, S., Rahman, A. U., & Iqbal, M. A. (2022). First-principles quantum analysis on the role of V-doping on the tuning of electronic and optical properties of spinel oxides MnTi2O4. Materials Science & Engineering B, 278, 115643. doi:10.1016/j.mseb.2022.115643
  • Nazar, M., Nasarullah, Aldaghfag, S. A., Yaseen, M., Ishfaq, M., Khera, R. A., Noreen, S., & Abdellattif, M. H. (2022). First-principles calculations to investigate structural, magnetic, optical, electronic and thermoelectric properties of X2MgS4 (X= Gd, Tm) spinel sulfides. Journal of Physics and Chemistry of Solids, 166, 110719. doi:10.1016/j.jpcs.2022.110719
  • Patel, P. D., Pandya, J., Shinde, S., Gupta, S. D., & Jha, P. K. (2022). Robust half metallic ferrimagnetic behavior and thermoelectric response of newly discovered Full-Heusler compound Mn2SiRh: DFT study. Materials Today: Proceedings, 67(6), 939-942. doi:10.1016/j.matpr.2022.07.468
  • Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77, 3865. doi:10.1103/PhysRevLett.77.3865
  • Quiroz, H. P., Calderón, J. A., & Dussan, A. (2020). Magnetic switching control in Co/TiO2 bilayer and TiO2:Co thin films for Magnetic-Resistive Random Access Memories (M-RRAM). Journal of Alloys and Compounds, 840, 155674. doi:10.1016/j.jallcom.2020.155674
  • Rafiq, M. A., Javed, A., Rasul, M. N., Nadeem, M., Iqbal, F., & Hussain, A. (2022). Structural, electronic, magnetic and optical properties of AB2O4 (A = Ge, Co and B = Ga, Co) spinel oxides. Materials Chemistry and Physics, 257, 123794. doi:10.1016/j.matchemphys.2020.123794
  • Ravi, S. (2020). Spin transport through silicon using a double perovskite-based magnetic tunnel junction. Superlattices and Microstructures, 147, 106688. doi:10.1016/j.spmi.2020.106688
  • Saberi, S. H., Baizaee, S. M., & Kahnouji, H. (2014). Electronic structure and magnetic properties of transition-metal (Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag and Cd) doped in GaN nanotubes. Superlattices and Microstructures, 74, 52-60. doi:10.1016/j.spmi.2014.05.013
  • Shin, B., Park, I. H., & Chung, C. W. (2006). Inductively coupled plasma reactive ion etching of Co2MnSi magnetic films for magnetic random access memory. Studies in Surface Science and Catalysis, 159, 377-380. doi:10.1016/S0167-2991(06)81612-5
  • Singh, D. J. (1994). Planewaves, Pseudopotentials and the LAPW Method. Kluwer Academic, Boston. doi:10.1007/978-1-4757-2312-0
  • Tran, F., & Blaha, P. (2009). Accurate band gaps of semiconductors and insulators with a semi-local exchange-correlation potential. Physical Review Letters, 102(22), 226401. doi:10.1103/PhysRevLett.102.226401
  • Xu, M., Zhang, Q., Tan, Q., Zhang, W., Sang, S., Yang, K., & Ge, Y. (2022). A magnetostrictive BaTiO3-Fe-Ga&PDMS magnetic field sensor: Research on magnetic detection performance. Sensors and Actuators: A. Physical, 335, 113383. doi:10.1016/j.sna.2022.113383
  • Zhang, J.-M., Duan, J.-P., Huang, Y.-H., & Wei, X.-M. (2022). Effects of the Tc, Ru, Rh and Cd substitution doping on the structural, electronic, magnetic and optical properties of blue P monolayer. Thin Solid Films, 756, 139386. doi:10.1016/j.tsf.2022.139386
  • Zhang, Z., Sang, L., Huang, J., Chen, W., Wang, L., Takahashi, Y., Mitani, S., Koide, Y., Koizumi, S., & Liao, M. (2020). Enhanced magnetic sensing performance of diamond MEMS magnetic sensor with boron-doped FeGa film. Carbon, 170, 294-301. doi:10.1016/j.carbon.2020.08.049

Comparison of Electronic and Magnetic Properties of 4d Transition Metals Based NbAl2F4 and TcAl2F4 Spinels

Year 2022, Volume: 9 Issue: 4, 452 - 460, 31.12.2022
https://doi.org/10.54287/gujsa.1185023

Abstract

Half-metallic properties of NbAl2F4 spinel and semiconductor characteristics of TcAl2F4 spinel were investigated with the help of the WIEN2k program. NbAl2F4 spinel shows a metallic character in the up-electron states, while it has a semiconductor nature in the down-electron states. In NbAl2F4 spinel, the Eg bandgaps were calculated in GGA and GGA+mBJ 1.551 eV and 1.622 eV, respectively. The EHM half-metallic bandgaps were obtained 0.410 eV and 0.422 eV, respectively. In the up-spin states of TcAl2F4 spinel, Eg values were obtained 1.199 eV and 1.447 eV for the GGA and GGA+mBJ methods, respectively, while they were obtained 1.281 eV and 1.519 eV in the down-spin states, respectively. When GGA+mBJ is used, it is easily observed that the semiconductor characters increase. Total magnetic moments of NbAl2F4 and TcAl2F4 spinels were calculated 6.00 µB/cell and 10.0 µB/cell, respectively. When both electronic and magnetic moment values are carefully examined, NbAl2F4 and TcAl2F4 spinels can be used as alternative compounds in spintronic applications.

References

  • Ali, M. A., Ullah, R., Abdullah, S., Khan, M. A., Murtaza, G., Laref, A., & Kattan, N. A. (2021). An investigation of half-metallic variant perovskites A2NbCl6 (A= K, Rb) for spintronic based applications. Journal of Solid State Chemistry, 293, 121823. doi:10.1016/j.jssc.2020.121823
  • Birsan, A., & Kuncser, V. (2022). Half-metallic properties of Zr2CrAl ferrimagnetic full-Heusler compound, investigated in tetragonal, orthorhombic and rhombohedral crystal structures. Journal of Alloys and Compounds, 900, 163491. doi:10.1016/j.jallcom.2021.163491
  • Blaha, P., Schwarz, K., Tran, F., Laskowski, R., Madsen, G. H. K., & Marks, L. D. (2020). WIEN2k: an APW+lo program for calculating the properties of solids. The Journal of Chemical Physics, 152, 074101. doi:10.1063/1.5143061
  • Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D., Luitz, J., Laskowski, R., Tran, F., & Marks, L. D. (2022) WIEN2k An Augmented Plane Wave Local Orbitals Program for Calculating Crystal Properties. Vienna University of Technology Institute of Materials Chemistry, Vienna, Austria. ISBN 3-9501031-1-2 PDF
  • Bouhbou, M., Moubah, R., Bakkari, K., Zaari, H., Sabrallah, A., Khelfaoui, F., Mliki, N., Abid, M., Belayachi, A., & Lassri, H. (2019). Magnetic, half-metallicity and electronic studies of Cd1-xZnxCr2Se4 chromium selenospinels. Journal of Magnetism and Magnetic Materials, 476, 86-91. doi:10.1016/j.jmmm.2018.12.063
  • de Groot, R. A., Mueller, F. M., van Engen, P. G., & Buschow, K. H. J. (1983). New class of materials: half-metallic ferromagnets. Physical Review Letters, 50(25), 2024-2027. doi:10.1103/PhysRevLett.50.2024
  • Hirohata, A., Yamada, K., Nakatani, Y., Prejbeanu, I.-L., Diény, B., Pirro, P., & Hillebrands, B. (2020). Review on spintronics: Principles and device applications. Journal of Magnetism and Magnetic Materials, 509, 166711. doi:10.1016/j.jmmm.2020.166711
  • Khanal, P., Zhou, B., Andrade, M., Mastrangelo, C., Habiboglu, A., Enriquez, A., Fox, D., Warrilow, K., & Wang, W.-G. (2022). Enhanced magnetoresistance in perpendicular magnetic tunneling junctions with MgAl2O4 barrier. Journal of Magnetism and Magnetic Materials, 563, 169914. doi:10.1016/j.jmmm.2022.169914
  • Mahmood, Q., Nazir, G., Alzahrani, J., Kattan, N. A., Al-Qaisi, S., Albalawi, H., Mera, A., Mersal, G. A. M., Ibrahim, M. M., & Amin, M. A. (2022). Room temperature ferromagnetism and thermoelectric behavior of calcium based spinel chalcogenides CaZ2S4 (Z= Ti, V, Cr, Fe) for spintronic applications. Journal of Physics and Chemistry of Solids, 167, 110742. doi:10.1016/j.jpcs.2022.110742
  • Murnaghan, F. D. (1944). The Compressibility of Media under Extreme Pressure. Proceedings of the National Academy of Sciences, 30(9) 244-247. doi:10.1073/pnas.30.9.244
  • Nadeem, A., Bashir, A. I, Azam, S., Rahman, A. U., & Iqbal, M. A. (2022). First-principles quantum analysis on the role of V-doping on the tuning of electronic and optical properties of spinel oxides MnTi2O4. Materials Science & Engineering B, 278, 115643. doi:10.1016/j.mseb.2022.115643
  • Nazar, M., Nasarullah, Aldaghfag, S. A., Yaseen, M., Ishfaq, M., Khera, R. A., Noreen, S., & Abdellattif, M. H. (2022). First-principles calculations to investigate structural, magnetic, optical, electronic and thermoelectric properties of X2MgS4 (X= Gd, Tm) spinel sulfides. Journal of Physics and Chemistry of Solids, 166, 110719. doi:10.1016/j.jpcs.2022.110719
  • Patel, P. D., Pandya, J., Shinde, S., Gupta, S. D., & Jha, P. K. (2022). Robust half metallic ferrimagnetic behavior and thermoelectric response of newly discovered Full-Heusler compound Mn2SiRh: DFT study. Materials Today: Proceedings, 67(6), 939-942. doi:10.1016/j.matpr.2022.07.468
  • Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77, 3865. doi:10.1103/PhysRevLett.77.3865
  • Quiroz, H. P., Calderón, J. A., & Dussan, A. (2020). Magnetic switching control in Co/TiO2 bilayer and TiO2:Co thin films for Magnetic-Resistive Random Access Memories (M-RRAM). Journal of Alloys and Compounds, 840, 155674. doi:10.1016/j.jallcom.2020.155674
  • Rafiq, M. A., Javed, A., Rasul, M. N., Nadeem, M., Iqbal, F., & Hussain, A. (2022). Structural, electronic, magnetic and optical properties of AB2O4 (A = Ge, Co and B = Ga, Co) spinel oxides. Materials Chemistry and Physics, 257, 123794. doi:10.1016/j.matchemphys.2020.123794
  • Ravi, S. (2020). Spin transport through silicon using a double perovskite-based magnetic tunnel junction. Superlattices and Microstructures, 147, 106688. doi:10.1016/j.spmi.2020.106688
  • Saberi, S. H., Baizaee, S. M., & Kahnouji, H. (2014). Electronic structure and magnetic properties of transition-metal (Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag and Cd) doped in GaN nanotubes. Superlattices and Microstructures, 74, 52-60. doi:10.1016/j.spmi.2014.05.013
  • Shin, B., Park, I. H., & Chung, C. W. (2006). Inductively coupled plasma reactive ion etching of Co2MnSi magnetic films for magnetic random access memory. Studies in Surface Science and Catalysis, 159, 377-380. doi:10.1016/S0167-2991(06)81612-5
  • Singh, D. J. (1994). Planewaves, Pseudopotentials and the LAPW Method. Kluwer Academic, Boston. doi:10.1007/978-1-4757-2312-0
  • Tran, F., & Blaha, P. (2009). Accurate band gaps of semiconductors and insulators with a semi-local exchange-correlation potential. Physical Review Letters, 102(22), 226401. doi:10.1103/PhysRevLett.102.226401
  • Xu, M., Zhang, Q., Tan, Q., Zhang, W., Sang, S., Yang, K., & Ge, Y. (2022). A magnetostrictive BaTiO3-Fe-Ga&PDMS magnetic field sensor: Research on magnetic detection performance. Sensors and Actuators: A. Physical, 335, 113383. doi:10.1016/j.sna.2022.113383
  • Zhang, J.-M., Duan, J.-P., Huang, Y.-H., & Wei, X.-M. (2022). Effects of the Tc, Ru, Rh and Cd substitution doping on the structural, electronic, magnetic and optical properties of blue P monolayer. Thin Solid Films, 756, 139386. doi:10.1016/j.tsf.2022.139386
  • Zhang, Z., Sang, L., Huang, J., Chen, W., Wang, L., Takahashi, Y., Mitani, S., Koide, Y., Koizumi, S., & Liao, M. (2020). Enhanced magnetic sensing performance of diamond MEMS magnetic sensor with boron-doped FeGa film. Carbon, 170, 294-301. doi:10.1016/j.carbon.2020.08.049
There are 24 citations in total.

Details

Primary Language English
Journal Section Physics
Authors

Evren Görkem Özdemir 0000-0001-9794-1381

Publication Date December 31, 2022
Submission Date October 6, 2022
Published in Issue Year 2022 Volume: 9 Issue: 4

Cite

APA Özdemir, E. G. (2022). Comparison of Electronic and Magnetic Properties of 4d Transition Metals Based NbAl2F4 and TcAl2F4 Spinels. Gazi University Journal of Science Part A: Engineering and Innovation, 9(4), 452-460. https://doi.org/10.54287/gujsa.1185023