Year 2023,
Volume: 10 Issue: 1, 105 - 112, 28.03.2023
Damla Gül Keleş
,
Hande Karadeniz
,
Serdar Karadeniz
Supporting Institution
Yok
References
- Adıgüzel, A., Açıksöz, S., Çağlar, A., Çetinkaya, H., Esen, Ş., Halis, D., Hamparsunoğlu, A., İlhan, T. B., Kılıçgedik, A., Koçer, O., Oğur, S., Öz, S., Özbey, A., Özcan, V. E., & Ünel, N. G. (2023). Ion Source and LEBT of KAHVELab Proton Beamline. Journal of Instrumentation, 18, T01002. doi:10.1088/1748-0221/18/01/T01002
- Alurralde, M., Tamasi, M. J. L., Bruno, C. J., Martı́nez Bogado, M. G., Plá, J., Fernández Vázquez, J., Durán, J., Schuff, J., Burlon, A. A., Stoliar, P., & Kreiner, A. J. (2004). Experimental and theoretical radiation damage studies on crystalline silicon solar cells. Solar Energy Materials & Solar Cells, 82(4), 531-542. doi:10.1016/j.solmat.2003.11.029
- Bilge Demirkoz, M., Seckin, C., Avaroglu, A., Bulbul, B., Uslu, P., Kılıc, E., Orhan, Y., Akcelik, S., Yigitoglu, M., Saral, C., Uzun Duran, S., Kılıc, U., Efthymiopoulos, I., Berkay Poyrazoglu, A., Albarodi, A., & Celik, N. (2020). Metu-Defocusing Beamline : A 15-30 Mev Proton Irradiation Facility and Beam Measurement System. EPJ Web of Conferences, 225, 01008. doi:10.1051/epjconf/202022501008
- Hadjdida, A., Bourahla, M., Ertan, H. B., & Bekhti, M. (2018). Analytical modelling, simulation and comparative study of multi-junction solar cells efficiency. Int. J. Renew. Energy Res., 8(4) 1824-1832. doi:10.20508/ijrer.v8i4.8135.g7488
- Liu, X., Liu, N., Zhang, G., Zhang, L., & Wang, T. (2022). Structural and Optical Changes in GaAs Irradiated with 100 keV and 2 MeV Protons. J. Phys. D: Appl. Phys., 55, 295105. doi:10.1088/1361-6463/ac6bcd
- Messenger, S. R., Burke, E. A., Morton, T. L., Summers, G. P., Walters, R. J., & Warner, J. H. (2003, May 11-18). Modelling low energy proton radiation effects on solar cells. In: K. Kurokawa, L. L. Kazmerski, B. McNelis, M. Yamaguchi, C. Wronski, W. C. Sinke (Eds.), Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Vol. C, (pp. 716-719), Osaka, Japan.
- Miyazawa, Y., Ikegami, M., Chen, H-S., Ohshima, T., Imaizumi, M., Hirose, K., & Miyasaka, T. (2018). Tolerance of perovskite solar cell to high-energy particle irradiations in space environment. iScience, 2, 148-155. doi:10.1016/j.isci.2018.03.020
- Raya-Armenta, J. M., Bazmohammadi, N., Vasquez, J. C., & Guerrero, J. M. (2021). A Short Review of Radiation-Induced Degradation of III-V Photovoltaic Cells for Space Applications. Solar Energy Materials & Solar Cells, 233, 111379. doi:10.1016/j.solmat.2021.111379
- Song, P., Zhao, J., Liu, J., Yue, H., Pawlak, M., & Sun, X. (2022). Evaluation of the performance degradation of silicon solar cell irradiated by low-level (<1 MeV) energetic particles using photocarrier radiometry. Infrared Physics & Technology, 123, 104177. doi:10.1016/j.infrared.2022.104177
- Srivastava, P. C., Pandey, S. P., & Asokan, K. (2006). A study on swift (~100 MeV) heavy (Si8+) ion irradiated crystalline Si-solar cell. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 244(1), 166-170. doi:10.1016/j.nimb.2005.11.029
- Sultansoy, S. (1993). Regional Project for Elementary Particle Physics: Linac-Ring Type c- τ Factor. Tr. J. Phys., 17, 591-597.
- Tada, H. Y., Carter, J. R. Jr., Anspaugh, B. E, & Downing, R. G. (1982). Solar cell radiation handbook (3rd Ed.). JPL Publication.
- Wang, Y., Ren, Z., Thway, M., Lee, K., Yoon, S. F., Peters, I. M., Buonassisi, T., Fizgerald, E. A., Tan, C. S., & Lee, K. H. (2017). Fabrication and characterization of single junction GaAs solar cells on Si with As-doped Ge buffer. Solar Energy Materials and Solar Cells, 172, 140-144. doi:10.1016/j.solmat.2017.07.028
- Yu, Z., Sun, Y., Zhang, G., Lu, W., & Zuo, D. (2021). Experimental study on machining germanium wafer with ice particle, fixed abrasive tools. The International Journal of Advanced Manufacturing Technology, 115, 3225-3232. doi:10.1007/s00170-021-07352-4
- Ziegler, J. F. (2004). SRIM-2003. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 219-220, 1027-1036. doi:10.1016/j.nimb.2004.01.208
A study of Proton Radiation Effects on a Silicon Based Solar Cell
Year 2023,
Volume: 10 Issue: 1, 105 - 112, 28.03.2023
Damla Gül Keleş
,
Hande Karadeniz
,
Serdar Karadeniz
Abstract
In this study, the changes in the performance parameters of silicon photovoltaic cells were investigated before and after irradiation. For this aim, the current-voltage and power-voltage characteristics of structures were obtained before and after irradiation. The electrical parameters were determined using obtained characteristics. High energetic (24.5 MeV) proton beam was used as the radiation source. In addition, radiation-induced displacement damages were determined using SRIM/TRIM simulations, and the effect of these damages on the photovoltaic cell was investigated. This study, which depends on the radiation hardness as a result of irradiation with protons, was important. Because the displacement damage caused changes on the electrical properties of device. This behavior was attributed to the defects generated by proton irradiation. On the other hand, it was seen that proton irradiation can be a tool for controlling the material and cell properties.
References
- Adıgüzel, A., Açıksöz, S., Çağlar, A., Çetinkaya, H., Esen, Ş., Halis, D., Hamparsunoğlu, A., İlhan, T. B., Kılıçgedik, A., Koçer, O., Oğur, S., Öz, S., Özbey, A., Özcan, V. E., & Ünel, N. G. (2023). Ion Source and LEBT of KAHVELab Proton Beamline. Journal of Instrumentation, 18, T01002. doi:10.1088/1748-0221/18/01/T01002
- Alurralde, M., Tamasi, M. J. L., Bruno, C. J., Martı́nez Bogado, M. G., Plá, J., Fernández Vázquez, J., Durán, J., Schuff, J., Burlon, A. A., Stoliar, P., & Kreiner, A. J. (2004). Experimental and theoretical radiation damage studies on crystalline silicon solar cells. Solar Energy Materials & Solar Cells, 82(4), 531-542. doi:10.1016/j.solmat.2003.11.029
- Bilge Demirkoz, M., Seckin, C., Avaroglu, A., Bulbul, B., Uslu, P., Kılıc, E., Orhan, Y., Akcelik, S., Yigitoglu, M., Saral, C., Uzun Duran, S., Kılıc, U., Efthymiopoulos, I., Berkay Poyrazoglu, A., Albarodi, A., & Celik, N. (2020). Metu-Defocusing Beamline : A 15-30 Mev Proton Irradiation Facility and Beam Measurement System. EPJ Web of Conferences, 225, 01008. doi:10.1051/epjconf/202022501008
- Hadjdida, A., Bourahla, M., Ertan, H. B., & Bekhti, M. (2018). Analytical modelling, simulation and comparative study of multi-junction solar cells efficiency. Int. J. Renew. Energy Res., 8(4) 1824-1832. doi:10.20508/ijrer.v8i4.8135.g7488
- Liu, X., Liu, N., Zhang, G., Zhang, L., & Wang, T. (2022). Structural and Optical Changes in GaAs Irradiated with 100 keV and 2 MeV Protons. J. Phys. D: Appl. Phys., 55, 295105. doi:10.1088/1361-6463/ac6bcd
- Messenger, S. R., Burke, E. A., Morton, T. L., Summers, G. P., Walters, R. J., & Warner, J. H. (2003, May 11-18). Modelling low energy proton radiation effects on solar cells. In: K. Kurokawa, L. L. Kazmerski, B. McNelis, M. Yamaguchi, C. Wronski, W. C. Sinke (Eds.), Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Vol. C, (pp. 716-719), Osaka, Japan.
- Miyazawa, Y., Ikegami, M., Chen, H-S., Ohshima, T., Imaizumi, M., Hirose, K., & Miyasaka, T. (2018). Tolerance of perovskite solar cell to high-energy particle irradiations in space environment. iScience, 2, 148-155. doi:10.1016/j.isci.2018.03.020
- Raya-Armenta, J. M., Bazmohammadi, N., Vasquez, J. C., & Guerrero, J. M. (2021). A Short Review of Radiation-Induced Degradation of III-V Photovoltaic Cells for Space Applications. Solar Energy Materials & Solar Cells, 233, 111379. doi:10.1016/j.solmat.2021.111379
- Song, P., Zhao, J., Liu, J., Yue, H., Pawlak, M., & Sun, X. (2022). Evaluation of the performance degradation of silicon solar cell irradiated by low-level (<1 MeV) energetic particles using photocarrier radiometry. Infrared Physics & Technology, 123, 104177. doi:10.1016/j.infrared.2022.104177
- Srivastava, P. C., Pandey, S. P., & Asokan, K. (2006). A study on swift (~100 MeV) heavy (Si8+) ion irradiated crystalline Si-solar cell. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 244(1), 166-170. doi:10.1016/j.nimb.2005.11.029
- Sultansoy, S. (1993). Regional Project for Elementary Particle Physics: Linac-Ring Type c- τ Factor. Tr. J. Phys., 17, 591-597.
- Tada, H. Y., Carter, J. R. Jr., Anspaugh, B. E, & Downing, R. G. (1982). Solar cell radiation handbook (3rd Ed.). JPL Publication.
- Wang, Y., Ren, Z., Thway, M., Lee, K., Yoon, S. F., Peters, I. M., Buonassisi, T., Fizgerald, E. A., Tan, C. S., & Lee, K. H. (2017). Fabrication and characterization of single junction GaAs solar cells on Si with As-doped Ge buffer. Solar Energy Materials and Solar Cells, 172, 140-144. doi:10.1016/j.solmat.2017.07.028
- Yu, Z., Sun, Y., Zhang, G., Lu, W., & Zuo, D. (2021). Experimental study on machining germanium wafer with ice particle, fixed abrasive tools. The International Journal of Advanced Manufacturing Technology, 115, 3225-3232. doi:10.1007/s00170-021-07352-4
- Ziegler, J. F. (2004). SRIM-2003. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 219-220, 1027-1036. doi:10.1016/j.nimb.2004.01.208