Research Article
BibTex RIS Cite

Zeolite A Thin Film Growth on Silica Optical Fibers

Year 2024, Volume: 11 Issue: 1, 112 - 122, 28.03.2024
https://doi.org/10.54287/gujsa.1409513

Abstract

Thin films of zeolite A (Linde type A, LTA) were fabricated on silica optical fibers using dip coating method, followed by a secondary growth process. Zeolite A seed crystals with an average crystal size of 247.3 nm were synthesized through hydrothermal method. Then, the dip coating technique was applied to coat silica optical fibers. The one and two-time dip coating resulted in island-like growth, while three-time dip coating process led to the intergrowth of seed crystals, resulting in nearly continuous films on the optical fiber. The seed crystals, initially deposited as a monolayer, were grown by secondary growth method, leading to film thicknesses of 255.3 nm ± 10.1 nm (average ± standard deviation). Upon extending the secondary growth reaction time from 2 hours to 4 hours, the film thickness increased from 255.3 nm ± 10.1 nm to 649.6 nm ± 28.1 nm. Epitaxial growth was identified as the mechanism through which the seed crystals grow. The nanoporous zeolite A films formed on the optical fiber exhibit potential applications as gas sensors. These sensors function by detecting changes in optical reflection caused by the differential adsorption of gases.

Supporting Institution

National Nanotechnology Research Center

Project Number

The current study is supported by TÜBİTAK with the research project numbers of 118F115 and 120F147.

References

  • Antúnez-García, J., Galván, D. H., Petranovskii, V., Murrieta-Rico, F. N., Yocupicio-Gaxiola, R. I., Shelyapina, M. G., & Fuentes-Moyado, S. (2021). The effect of chemical composition on the properties of LTA zeolite: A theoretical study. Computational Materials Science, 196. https://doi.org/10.1016/j.commatsci.2021.110557
  • Babeva, T., Andreev, A., Grand, J., Vasileva, M., Karakoleva, E., Zafirova, B. S., Georgieva, B., Koprinarova, J., & Mintova, S. (2017). Optical fiber–Ta2O5 waveguide coupler covered with hydrophobic zeolite film for vapor sensing. Sensors and Actuators, B: Chemical, 248, 359–366. https://doi.org/10.1016/j.snb.2017.03.157
  • Bennett, T. D., Coudert, F. X., James, S. L., & Cooper, A. I. (2021). The changing state of porous materials. In Nature Materials (Vol. 20, Issue 9, pp. 1179–1187). Nature Research. https://doi.org/10.1038/s41563-021-00957-w
  • Cao, Y., Li, Y. X., Wang, M., Xu, Z. L., Wei, Y. M., Shen, B. J., & Zhu, K. K. (2019). High-flux NaA zeolite pervaporation membranes dynamically synthesized on the alumina hollow fiber inner-surface in a continuous flow system. Journal of Membrane Science, 570–571, 445–454. https://doi.org/10.1016/j.memsci.2018.10.043
  • Deng, Z., & Balkus, K. J. (n.d.). Pulsed laser deposition of zeolite NaX thin films on silica fibers. www.elsevier.com/locate/micromeso
  • Gumidyala, A., Wang, B., & Crossley, S. (2016). Direct carbon-carbon coupling of furanics with acetic acid over Brønsted zeolites. Science Advances, 2(9). https://doi.org/10.1126/sciadv.1601072
  • Hedlund, J., Öhrman, O., Msimang, V., van Steen, E., Böhringer, W., Sibya, S., & Möller, K. (2004). The synthesis and testing of thin film ZSM-5 catalysts. Chemical Engineering Science, 59(13), 2647–2657. https://doi.org/10.1016/j.ces.2004.03.012
  • Structural database of zeolites (2023). International Zeolite Association, IZA. Retrieved 22 November 2023, from https://europe.iza-structure.org/IZA-SC/ftc_table.php
  • Ji, Z., Warzywoda, J., & Sacco, A. (2007). Titanosilicate ETS-10 thin film preparation on fused silica optical fibers. Microporous and Mesoporous Materials, 101(1-2 SPEC. ISS.), 279–287. https://doi.org/10.1016/j.micromeso.2006.10.003
  • Khoramzadeh, E., Mofarahi, M., & Lee, C. H. (2019). Equilibrium Adsorption Study of CO2 and N2 on Synthesized Zeolites 13X, 4A, 5A, and Beta. Journal of Chemical and Engineering Data, 64(12), 5648–5664. https://doi.org/10.1021/acs.jced.9b00690
  • Kong, G., Fan, L., Zhao, L., Feng, Y., Cui, X., Pang, J., Guo, H., Sun, H., Kang, Z., Sun, D., & Mintova, S. (2021). Spray-dispersion of ultra-small EMT zeolite crystals in thin-film composite membrane for high-permeability nanofiltration process. Journal of Membrane Science, 622. https://doi.org/10.1016/j.memsci.2020.119045
  • Kumar, P., Kim, D. W., Rangnekar, N., Xu, H., Fetisov, E. O., Ghosh, S., Zhang, H., Xiao, Q., Shete, M., Siepmann, J. I., Dumitrica, T., McCool, B., Tsapatsis, M., & Mkhoyan, K. A. (2020). One-dimensional intergrowths in two-dimensional zeolite nanosheets and their effect on ultra-selective transport. Nature Materials, 19(4), 443–449. https://doi.org/10.1038/s41563-019-0581-3
  • Li, Y., Li, L., & Yu, J. (2017). Applications of Zeolites in Sustainable Chemistry. In Chem (Vol. 3, Issue 6, pp. 928–949). Elsevier Inc. https://doi.org/10.1016/j.chempr.2017.10.009
  • Mintova, S., Mo, S., & Bein, T. (2001). Humidity sensing with ultrathin LTA-type molecular sieve films grown on piezoelectric devices. Chemistry of Materials, 13(3), 901–905. https://doi.org/10.1021/cm000671w
  • Mintova, S., Olson, N. H., Valtchev, V., & Bein, T. (1999). Mechanism of zeolite a nanocrystal growth from colloids at room temperature. Science, 283(5404), 958–960. https://doi.org/10.1126/science.283.5404.958
  • Nazari, M., Hill, M. R., Duke, M., Sidiroglou, F., & Collins, S. F. (2014). Selective sensing of alcohols in water influenced by chemically Zeolite coatings on optical fiber sensors. 23rd International Conference on Optical Fibre Sensors, 9157, 915752. https://doi.org/10.1117/12.2059516
  • Pham, T. C. T., Kim, H. S., & Yoon, K. B. (2011). Growth of Uniformly Oriented Silica MFI and BEA Zeolite Films on Substrates. Science, 334, 1533–1538.
  • Pradhan, A. R., Macnaughtan, M. A., & Raftery, D. (2000). Zeolite-coated optical microfibers for intrazeolite photocatalysis studied by in situ solid-state NMR. Journal of the American Chemical Society, 122(2), 404–405. https://doi.org/10.1021/ja992683s
  • Sasaki, I., Tsuchiya, H., Nishioka, M., Sadakata, M., & Okubo, T. (2002). Gas sensing with zeolite-coated quartz crystal microbalances—principal component analysis approach. Sensors and Actuators B: Chemical, 86(1), 26–33. https://doi.org/10.1016/S0925-4005(02)00132-6
  • Shao, J., Zhan, Z., Li, J., Wang, Z., Li, K., & Yan, Y. (2014). Zeolite NaA membranes supported on alumina hollow fibers: Effect of support resistances on pervaporation performance. Journal of Membrane Science, 451, 10–17. https://doi.org/10.1016/j.memsci.2013.09.049
  • Sousa-Aguiar, E. F., Arroyo, P. A., de Barros, M. A. S. D., & de Miranda, J. L. (2019). The Future of Zeolite and MOF Materials. In Zeolites and Metal-Organic Frameworks (pp. 307–342). Amsterdam University Press. https://doi.org/10.2307/j.ctvcmxprm.15
  • Valencia, S., & Rey, F. (2020). New Developments in Adsorption/ Separation of Small Molecules by Zeolites. http://www.springer.com/series/430
  • Vilaseca, M., Coronas, J., Cirera, A., Cornet, A., Morante, J. R., & Santamaria, J. (2007). Gas detection with SnO2 sensors modified by zeolite films. Sensors and Actuators, B: Chemical, 124(1), 99–110. https://doi.org/10.1016/j.snb.2006.12.009
  • Wales, D. J., Grand, J., Ting, V. P., Burke, R. D., Edler, K. J., Bowen, C. R., Mintova, S., & Burrows, A. D. (2015). Gas sensing using porous materials for automotive applications. Chemical Society Reviews, 44(13), 4290–4321. https://doi.org/10.1039/c5cs00040h
  • Wu, B., Zhao, C., Kang, J., & Wang, D. (2017). Characteristic study on volatile organic compounds optical fiber sensor with zeolite thin film-coated spherical end. Optical Fiber Technology, 34, 91–97. https://doi.org/10.1016/j.yofte.2017.01.010
  • Zampieri, A., Dubbe, A., Schwieger, W., Avhale, A., & Moos, R. (2008). ZSM-5 zeolite films on Si substrates grown by in situ seeding and secondary crystal growth and application in an electrochemical hydrocarbon gas sensor. Microporous and Mesoporous Materials, 111, 530–535.
  • Zhang, J., Dong, J., Luo, M., Xiao, H., Murad, S., & Normann, R. A. (2005). Zeolite-fiber integrated optical chemical sensors for detection of dissolved organics in water. Langmuir, 21(19), 8609–8612. https://doi.org/10.1021/la0514967
  • Zhang, J., Tang, X., Dong, J., Wei, T., & Xiao, H. (2008). Zeolite thin film-coated long period fiber grating sensor for measuring trace chemical. Optics Express, 16(11), 8317. https://doi.org/10.1364/OE.16.008317
Year 2024, Volume: 11 Issue: 1, 112 - 122, 28.03.2024
https://doi.org/10.54287/gujsa.1409513

Abstract

Project Number

The current study is supported by TÜBİTAK with the research project numbers of 118F115 and 120F147.

References

  • Antúnez-García, J., Galván, D. H., Petranovskii, V., Murrieta-Rico, F. N., Yocupicio-Gaxiola, R. I., Shelyapina, M. G., & Fuentes-Moyado, S. (2021). The effect of chemical composition on the properties of LTA zeolite: A theoretical study. Computational Materials Science, 196. https://doi.org/10.1016/j.commatsci.2021.110557
  • Babeva, T., Andreev, A., Grand, J., Vasileva, M., Karakoleva, E., Zafirova, B. S., Georgieva, B., Koprinarova, J., & Mintova, S. (2017). Optical fiber–Ta2O5 waveguide coupler covered with hydrophobic zeolite film for vapor sensing. Sensors and Actuators, B: Chemical, 248, 359–366. https://doi.org/10.1016/j.snb.2017.03.157
  • Bennett, T. D., Coudert, F. X., James, S. L., & Cooper, A. I. (2021). The changing state of porous materials. In Nature Materials (Vol. 20, Issue 9, pp. 1179–1187). Nature Research. https://doi.org/10.1038/s41563-021-00957-w
  • Cao, Y., Li, Y. X., Wang, M., Xu, Z. L., Wei, Y. M., Shen, B. J., & Zhu, K. K. (2019). High-flux NaA zeolite pervaporation membranes dynamically synthesized on the alumina hollow fiber inner-surface in a continuous flow system. Journal of Membrane Science, 570–571, 445–454. https://doi.org/10.1016/j.memsci.2018.10.043
  • Deng, Z., & Balkus, K. J. (n.d.). Pulsed laser deposition of zeolite NaX thin films on silica fibers. www.elsevier.com/locate/micromeso
  • Gumidyala, A., Wang, B., & Crossley, S. (2016). Direct carbon-carbon coupling of furanics with acetic acid over Brønsted zeolites. Science Advances, 2(9). https://doi.org/10.1126/sciadv.1601072
  • Hedlund, J., Öhrman, O., Msimang, V., van Steen, E., Böhringer, W., Sibya, S., & Möller, K. (2004). The synthesis and testing of thin film ZSM-5 catalysts. Chemical Engineering Science, 59(13), 2647–2657. https://doi.org/10.1016/j.ces.2004.03.012
  • Structural database of zeolites (2023). International Zeolite Association, IZA. Retrieved 22 November 2023, from https://europe.iza-structure.org/IZA-SC/ftc_table.php
  • Ji, Z., Warzywoda, J., & Sacco, A. (2007). Titanosilicate ETS-10 thin film preparation on fused silica optical fibers. Microporous and Mesoporous Materials, 101(1-2 SPEC. ISS.), 279–287. https://doi.org/10.1016/j.micromeso.2006.10.003
  • Khoramzadeh, E., Mofarahi, M., & Lee, C. H. (2019). Equilibrium Adsorption Study of CO2 and N2 on Synthesized Zeolites 13X, 4A, 5A, and Beta. Journal of Chemical and Engineering Data, 64(12), 5648–5664. https://doi.org/10.1021/acs.jced.9b00690
  • Kong, G., Fan, L., Zhao, L., Feng, Y., Cui, X., Pang, J., Guo, H., Sun, H., Kang, Z., Sun, D., & Mintova, S. (2021). Spray-dispersion of ultra-small EMT zeolite crystals in thin-film composite membrane for high-permeability nanofiltration process. Journal of Membrane Science, 622. https://doi.org/10.1016/j.memsci.2020.119045
  • Kumar, P., Kim, D. W., Rangnekar, N., Xu, H., Fetisov, E. O., Ghosh, S., Zhang, H., Xiao, Q., Shete, M., Siepmann, J. I., Dumitrica, T., McCool, B., Tsapatsis, M., & Mkhoyan, K. A. (2020). One-dimensional intergrowths in two-dimensional zeolite nanosheets and their effect on ultra-selective transport. Nature Materials, 19(4), 443–449. https://doi.org/10.1038/s41563-019-0581-3
  • Li, Y., Li, L., & Yu, J. (2017). Applications of Zeolites in Sustainable Chemistry. In Chem (Vol. 3, Issue 6, pp. 928–949). Elsevier Inc. https://doi.org/10.1016/j.chempr.2017.10.009
  • Mintova, S., Mo, S., & Bein, T. (2001). Humidity sensing with ultrathin LTA-type molecular sieve films grown on piezoelectric devices. Chemistry of Materials, 13(3), 901–905. https://doi.org/10.1021/cm000671w
  • Mintova, S., Olson, N. H., Valtchev, V., & Bein, T. (1999). Mechanism of zeolite a nanocrystal growth from colloids at room temperature. Science, 283(5404), 958–960. https://doi.org/10.1126/science.283.5404.958
  • Nazari, M., Hill, M. R., Duke, M., Sidiroglou, F., & Collins, S. F. (2014). Selective sensing of alcohols in water influenced by chemically Zeolite coatings on optical fiber sensors. 23rd International Conference on Optical Fibre Sensors, 9157, 915752. https://doi.org/10.1117/12.2059516
  • Pham, T. C. T., Kim, H. S., & Yoon, K. B. (2011). Growth of Uniformly Oriented Silica MFI and BEA Zeolite Films on Substrates. Science, 334, 1533–1538.
  • Pradhan, A. R., Macnaughtan, M. A., & Raftery, D. (2000). Zeolite-coated optical microfibers for intrazeolite photocatalysis studied by in situ solid-state NMR. Journal of the American Chemical Society, 122(2), 404–405. https://doi.org/10.1021/ja992683s
  • Sasaki, I., Tsuchiya, H., Nishioka, M., Sadakata, M., & Okubo, T. (2002). Gas sensing with zeolite-coated quartz crystal microbalances—principal component analysis approach. Sensors and Actuators B: Chemical, 86(1), 26–33. https://doi.org/10.1016/S0925-4005(02)00132-6
  • Shao, J., Zhan, Z., Li, J., Wang, Z., Li, K., & Yan, Y. (2014). Zeolite NaA membranes supported on alumina hollow fibers: Effect of support resistances on pervaporation performance. Journal of Membrane Science, 451, 10–17. https://doi.org/10.1016/j.memsci.2013.09.049
  • Sousa-Aguiar, E. F., Arroyo, P. A., de Barros, M. A. S. D., & de Miranda, J. L. (2019). The Future of Zeolite and MOF Materials. In Zeolites and Metal-Organic Frameworks (pp. 307–342). Amsterdam University Press. https://doi.org/10.2307/j.ctvcmxprm.15
  • Valencia, S., & Rey, F. (2020). New Developments in Adsorption/ Separation of Small Molecules by Zeolites. http://www.springer.com/series/430
  • Vilaseca, M., Coronas, J., Cirera, A., Cornet, A., Morante, J. R., & Santamaria, J. (2007). Gas detection with SnO2 sensors modified by zeolite films. Sensors and Actuators, B: Chemical, 124(1), 99–110. https://doi.org/10.1016/j.snb.2006.12.009
  • Wales, D. J., Grand, J., Ting, V. P., Burke, R. D., Edler, K. J., Bowen, C. R., Mintova, S., & Burrows, A. D. (2015). Gas sensing using porous materials for automotive applications. Chemical Society Reviews, 44(13), 4290–4321. https://doi.org/10.1039/c5cs00040h
  • Wu, B., Zhao, C., Kang, J., & Wang, D. (2017). Characteristic study on volatile organic compounds optical fiber sensor with zeolite thin film-coated spherical end. Optical Fiber Technology, 34, 91–97. https://doi.org/10.1016/j.yofte.2017.01.010
  • Zampieri, A., Dubbe, A., Schwieger, W., Avhale, A., & Moos, R. (2008). ZSM-5 zeolite films on Si substrates grown by in situ seeding and secondary crystal growth and application in an electrochemical hydrocarbon gas sensor. Microporous and Mesoporous Materials, 111, 530–535.
  • Zhang, J., Dong, J., Luo, M., Xiao, H., Murad, S., & Normann, R. A. (2005). Zeolite-fiber integrated optical chemical sensors for detection of dissolved organics in water. Langmuir, 21(19), 8609–8612. https://doi.org/10.1021/la0514967
  • Zhang, J., Tang, X., Dong, J., Wei, T., & Xiao, H. (2008). Zeolite thin film-coated long period fiber grating sensor for measuring trace chemical. Optics Express, 16(11), 8317. https://doi.org/10.1364/OE.16.008317
There are 28 citations in total.

Details

Primary Language English
Subjects Inorganic Chemistry (Other), Nanofabrication, Growth and Self Assembly, Nanomaterials, Nanoscale Characterisation
Journal Section Chemistry
Authors

Sezin Galioğlu Özaltuğ 0000-0001-5369-9546

Project Number The current study is supported by TÜBİTAK with the research project numbers of 118F115 and 120F147.
Early Pub Date February 15, 2024
Publication Date March 28, 2024
Submission Date December 25, 2023
Acceptance Date February 5, 2024
Published in Issue Year 2024 Volume: 11 Issue: 1

Cite

APA Galioğlu Özaltuğ, S. (2024). Zeolite A Thin Film Growth on Silica Optical Fibers. Gazi University Journal of Science Part A: Engineering and Innovation, 11(1), 112-122. https://doi.org/10.54287/gujsa.1409513