Research Article
BibTex RIS Cite

Investigation of the Effect of Hexagonal Boron Nitride Addition on the Mechanical Properties of Flax Fiber-Reinforced Composite Materials

Year 2024, Volume: 11 Issue: 3, 577 - 588, 30.09.2024
https://doi.org/10.54287/gujsa.1533769

Abstract

Hexagonal boron nitride (h-BN) has recently been utilized as a reinforcement in composite materials due to its properties such as hardness, thermal conductivity, electrical insulation, and strong chemical stability. The aim of this study is to investigate the effect of nano-sized hexagonal boron nitride (h-BN) on the mechanical properties of flax fiber-reinforced composite material. For this purpose, initially, hexagonal boron nitride was added to epoxy resin in different weight ratios and homogenized without agglomeration using ultrasonic treatment. Then, by employing the hand lay-up method, the mixture was applied to flax fiber fabrics and the flax fiber-epoxy composites were produced using the vacuum bagging method. Mechanical performance of the composites, produced with 0.5%, 1%, and 1.5% by weight of hexagonal boron nitride, was determined through tensile, flexural, shear, and compression tests. Experimental results indicated that the addition of hexagonal boron nitride to flax fiber epoxy composite material increased the flexural strength and modulus compared to the unreinforced flax fiber epoxy composite material. The highest flexural strength and modulus were observed in the samples with 1.5% by weight of hexagonal boron nitride (h-BN). Consequently, it can be considered that flax fiber-epoxy composite material with hexagonal boron nitride (h-BN) addition holds potential, especially for applications subjected to bending moments.

References

  • Chen, M., Pan, L., Xia, X., Zhou, W., & Li, Y. (2022). Boron nitride (BN) and BN based multiple-layer interphase for SiCf/SiC composites: A review. Ceramics International, 48(23), Part A, 34107-34127. https://doi.org/10.1016/j.ceramint.2022.07.021
  • Demircan, O., & Kalaycı, A. (2024). Investigation of mechanical properties of nano hexagonal boron nitride integrated epoxy adhesives in bonded GFRP and CFRP composite joints. International Journal of Adhesion and Adhesives, 133, 103759. https://doi.org/10.1016/j.ijadhadh.2024.103759
  • Duan, W., Yang, H., Yang, Z., Li, B., Jia, D., & Zhou, Y. (2023). The microstructural evolution, mechanical and dielectric properties of BNW/SiO2 ceramics. Ceramics International, 49(8), 11968-11977. https://doi.org/10.1016/j.ceramint.2022.12.046
  • Eichler, J. & Lesniak, C. (2008). Boron nitride (BN) and BN composites for high-temperature applications. Journal of the European Ceramic Society, 28, 1105-1109. https://doi.org/10.1016/j.jeurceramsoc.2007.09.005
  • Eryılmaz, A. (2024). Keten Fiberli-Hekzagonal Bor Nitrür Katkılı Epoksi Reçineli Kompozit Malzemelerin Mekanik Performanslarının Belirlenmesi [BSc Thesis, University of Ege]. Ege University Repository.
  • Haubner, R., Wilhelm, M., Weissenbacher, R., & Lux, B. (2002). Boron nitrides — properties, synthesis and applications. In: M. Jansen (Eds.), High Performance Non-Oxide Ceramics II. Structure and Bonding (pp. 1-45). Springer. https://doi.org/10.1007/3-540-45623-6_1
  • Jeong, H., Lyu, J., Choi, H., Kim, M. W., Kim, J., Yoo, H., Lee, Y., Youk, J. H., & Chae, H. G. (2024). Enhanced thermal conductivity and mechanical property via improvement of hydrogen bonding between hexagonal boron nitride and aramid copolymer. Composites Science and Technology, 253, 110652. https://doi.org/10.1016/j.compscitech.2024.110652
  • Jia, D., Zhou, L., Yang, Z., Duan, X., & Zhou, Y. (2011). Effect of Preforming Process and Starting Fused SiO2 Particle Size on Microstructure and Mechanical Properties of Pressurelessly Sintered BNp/SiO2 Ceramic Composites. Journal of American Ceramic Society, 94(10), 3552-3560. https://doi.org/10.1111/j.1551-2916.2011.04540.x
  • Jiang, H., Cai, Q., Mateti, S., Bhattacharjee, A., Yu, Y., Zeng, X., Sun, R., Huang, S., & Chen, Y. I. (2024). Recent research advances in hexagonal boron nitride/polymer nanocomposites with isotropic thermal conductivity. Advanced Nanocomposites, 1(1), 144-156. https://doi.org/10.1016/j.adna.2024.03.004
  • Karim, M. R. A., Khan, M. A., Zaman, A. U., & Hussain, A. (2023). Hexagonal boron nitride‑based composites: an overview of processing approaches and mechanical properties, Journal of the Korean Ceramic Society, 60, 1-23. https://doi.org/10.1007/s43207-022-00251-8
  • Kartal, İ., & Boztoprak, Y. (2019). Investigation of Mechanical Properties of Vinyl Ester Composites Reinforced With Boron Nitride Particles, El-Cezerî Journal of Science and Engineering, 6(1), 43-50. https://doi.org/10.31202/ecjse.450790
  • Kusunose, T., & Sekino, T. (2016). Thermal conductivity of hot-pressed hexagonal boron nitride. Scripta Materialia, 124, 138-141. https://doi.org/10.1016/j.scriptamat.2016.07.011
  • Li, Y., Qiao, G., & Jin, Z. (2002). Machinable Al2O3/BN composite ceramics with strong mechanical properties. Materials Research Bulletin, 37(8), 1401-1409. https://doi.org/10.1016/S0025-5408(02)00786-9
  • Liu, M., Zhang, H., Wu, Y., Wang, D., & Pan, L. (2024). Effect of functionalization on thermal conductivity of hexagonal boron nitride/epoxy composites. International Journal of Heat and Mass Transfer, 219, 124844. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124844
  • Meng, W., Huang, Y., Fu, Y., Wang, Z., & Zhi, C. (2014). Polymer composites of boron nitride nanotubes and nanosheets. Journal of Materials Chemistry C, 47, 10049-10061. https://doi.org/10.1039/C4TC01998A
  • Srikhar, K., & Omprakash, B. (in press). Evaluation of mechanical behaviour of aluminium 2024 composites with boron nitride. Materials Today: Procedeeings. https://doi.org/10.1016/j.matpr.2024.05.057
  • Yang, X., Zhang, X., Yu, T., Li, Y., & Kirca, M. (2024). Coarse-grained simulation of thermal conductivity of boron nitride/epoxy composites based on DPD and SPH method. Computational Materials Science, 241, 113036. https://doi.org/10.1016/j.commatsci.2024.113036
  • Wang, S. G., Feng, H. F., & Guo, Z.-X. (2023). Stacking and thickness effects on cross-plane thermal conductivity of hexagonal boron nitride. Computational Materials Science, 228, 112345. https://doi.org/10.1016/j.commatsci.2023.112345
  • Wen, G., Wu, G. L, Lei, T. Q., Zhou, Y., & Guo, Z. X. (2000). Co-enhanced SiO2-BN ceramics for high-temperature dielectric applications. Journal of the European Ceramic Society, 20(12), 1923-1928. https://doi.org/10.1016/S0955-2219(00)00107-2
  • Watanabe, K., Taiguchi, T. (2011). Hexagonal Boron Nitride as a New Ultraviolet Luminescent Material and Its Application. International Journal of Applied Ceramic Technology, 5, 977-989. https://doi.org/10.1111/j.1744-7402.2011.02626.x
  • Xu, Z., Bai, L., Zhang, Y., Cao, J., & Zheng, J. (2023). Mechanically strong, reprocessable and thermally stable PDMS/Hexagonal boron nitride composites with desirable thermal conductivities based on dynamic silyl ether linkages. Composites Science and Technology, 240, 110076. https://doi.org/10.1016/j.compscitech.2023.110076
  • Zou, W., Cai, D., Wang, B., Zhu, Q., Yang, Z., Duan, X., Duan, W., Jia, D., & Zhou, Y. (2024). Effect of boron nitride content on mechanical, dielectric and thermal shock resistance properties of Si3N4-BN-MAS composites. Ceramics International, 50(17), Part A, 29866-29876. https://doi.org/10.1016/j.ceramint.2024.05.282
Year 2024, Volume: 11 Issue: 3, 577 - 588, 30.09.2024
https://doi.org/10.54287/gujsa.1533769

Abstract

References

  • Chen, M., Pan, L., Xia, X., Zhou, W., & Li, Y. (2022). Boron nitride (BN) and BN based multiple-layer interphase for SiCf/SiC composites: A review. Ceramics International, 48(23), Part A, 34107-34127. https://doi.org/10.1016/j.ceramint.2022.07.021
  • Demircan, O., & Kalaycı, A. (2024). Investigation of mechanical properties of nano hexagonal boron nitride integrated epoxy adhesives in bonded GFRP and CFRP composite joints. International Journal of Adhesion and Adhesives, 133, 103759. https://doi.org/10.1016/j.ijadhadh.2024.103759
  • Duan, W., Yang, H., Yang, Z., Li, B., Jia, D., & Zhou, Y. (2023). The microstructural evolution, mechanical and dielectric properties of BNW/SiO2 ceramics. Ceramics International, 49(8), 11968-11977. https://doi.org/10.1016/j.ceramint.2022.12.046
  • Eichler, J. & Lesniak, C. (2008). Boron nitride (BN) and BN composites for high-temperature applications. Journal of the European Ceramic Society, 28, 1105-1109. https://doi.org/10.1016/j.jeurceramsoc.2007.09.005
  • Eryılmaz, A. (2024). Keten Fiberli-Hekzagonal Bor Nitrür Katkılı Epoksi Reçineli Kompozit Malzemelerin Mekanik Performanslarının Belirlenmesi [BSc Thesis, University of Ege]. Ege University Repository.
  • Haubner, R., Wilhelm, M., Weissenbacher, R., & Lux, B. (2002). Boron nitrides — properties, synthesis and applications. In: M. Jansen (Eds.), High Performance Non-Oxide Ceramics II. Structure and Bonding (pp. 1-45). Springer. https://doi.org/10.1007/3-540-45623-6_1
  • Jeong, H., Lyu, J., Choi, H., Kim, M. W., Kim, J., Yoo, H., Lee, Y., Youk, J. H., & Chae, H. G. (2024). Enhanced thermal conductivity and mechanical property via improvement of hydrogen bonding between hexagonal boron nitride and aramid copolymer. Composites Science and Technology, 253, 110652. https://doi.org/10.1016/j.compscitech.2024.110652
  • Jia, D., Zhou, L., Yang, Z., Duan, X., & Zhou, Y. (2011). Effect of Preforming Process and Starting Fused SiO2 Particle Size on Microstructure and Mechanical Properties of Pressurelessly Sintered BNp/SiO2 Ceramic Composites. Journal of American Ceramic Society, 94(10), 3552-3560. https://doi.org/10.1111/j.1551-2916.2011.04540.x
  • Jiang, H., Cai, Q., Mateti, S., Bhattacharjee, A., Yu, Y., Zeng, X., Sun, R., Huang, S., & Chen, Y. I. (2024). Recent research advances in hexagonal boron nitride/polymer nanocomposites with isotropic thermal conductivity. Advanced Nanocomposites, 1(1), 144-156. https://doi.org/10.1016/j.adna.2024.03.004
  • Karim, M. R. A., Khan, M. A., Zaman, A. U., & Hussain, A. (2023). Hexagonal boron nitride‑based composites: an overview of processing approaches and mechanical properties, Journal of the Korean Ceramic Society, 60, 1-23. https://doi.org/10.1007/s43207-022-00251-8
  • Kartal, İ., & Boztoprak, Y. (2019). Investigation of Mechanical Properties of Vinyl Ester Composites Reinforced With Boron Nitride Particles, El-Cezerî Journal of Science and Engineering, 6(1), 43-50. https://doi.org/10.31202/ecjse.450790
  • Kusunose, T., & Sekino, T. (2016). Thermal conductivity of hot-pressed hexagonal boron nitride. Scripta Materialia, 124, 138-141. https://doi.org/10.1016/j.scriptamat.2016.07.011
  • Li, Y., Qiao, G., & Jin, Z. (2002). Machinable Al2O3/BN composite ceramics with strong mechanical properties. Materials Research Bulletin, 37(8), 1401-1409. https://doi.org/10.1016/S0025-5408(02)00786-9
  • Liu, M., Zhang, H., Wu, Y., Wang, D., & Pan, L. (2024). Effect of functionalization on thermal conductivity of hexagonal boron nitride/epoxy composites. International Journal of Heat and Mass Transfer, 219, 124844. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124844
  • Meng, W., Huang, Y., Fu, Y., Wang, Z., & Zhi, C. (2014). Polymer composites of boron nitride nanotubes and nanosheets. Journal of Materials Chemistry C, 47, 10049-10061. https://doi.org/10.1039/C4TC01998A
  • Srikhar, K., & Omprakash, B. (in press). Evaluation of mechanical behaviour of aluminium 2024 composites with boron nitride. Materials Today: Procedeeings. https://doi.org/10.1016/j.matpr.2024.05.057
  • Yang, X., Zhang, X., Yu, T., Li, Y., & Kirca, M. (2024). Coarse-grained simulation of thermal conductivity of boron nitride/epoxy composites based on DPD and SPH method. Computational Materials Science, 241, 113036. https://doi.org/10.1016/j.commatsci.2024.113036
  • Wang, S. G., Feng, H. F., & Guo, Z.-X. (2023). Stacking and thickness effects on cross-plane thermal conductivity of hexagonal boron nitride. Computational Materials Science, 228, 112345. https://doi.org/10.1016/j.commatsci.2023.112345
  • Wen, G., Wu, G. L, Lei, T. Q., Zhou, Y., & Guo, Z. X. (2000). Co-enhanced SiO2-BN ceramics for high-temperature dielectric applications. Journal of the European Ceramic Society, 20(12), 1923-1928. https://doi.org/10.1016/S0955-2219(00)00107-2
  • Watanabe, K., Taiguchi, T. (2011). Hexagonal Boron Nitride as a New Ultraviolet Luminescent Material and Its Application. International Journal of Applied Ceramic Technology, 5, 977-989. https://doi.org/10.1111/j.1744-7402.2011.02626.x
  • Xu, Z., Bai, L., Zhang, Y., Cao, J., & Zheng, J. (2023). Mechanically strong, reprocessable and thermally stable PDMS/Hexagonal boron nitride composites with desirable thermal conductivities based on dynamic silyl ether linkages. Composites Science and Technology, 240, 110076. https://doi.org/10.1016/j.compscitech.2023.110076
  • Zou, W., Cai, D., Wang, B., Zhu, Q., Yang, Z., Duan, X., Duan, W., Jia, D., & Zhou, Y. (2024). Effect of boron nitride content on mechanical, dielectric and thermal shock resistance properties of Si3N4-BN-MAS composites. Ceramics International, 50(17), Part A, 29866-29876. https://doi.org/10.1016/j.ceramint.2024.05.282
There are 22 citations in total.

Details

Primary Language English
Subjects Composite and Hybrid Materials
Journal Section Metallurgical and Materials Engineering
Authors

Ahmet Eryilmaz 0009-0008-3917-8363

Hasan Yavuz Ünal 0000-0003-1934-7445

Yeliz Pekbey 0000-0002-1024-8806

Publication Date September 30, 2024
Submission Date August 15, 2024
Acceptance Date September 19, 2024
Published in Issue Year 2024 Volume: 11 Issue: 3

Cite

APA Eryilmaz, A., Ünal, H. Y., & Pekbey, Y. (2024). Investigation of the Effect of Hexagonal Boron Nitride Addition on the Mechanical Properties of Flax Fiber-Reinforced Composite Materials. Gazi University Journal of Science Part A: Engineering and Innovation, 11(3), 577-588. https://doi.org/10.54287/gujsa.1533769