Research Article
BibTex RIS Cite

Further Results for Hermite-Based Milne-Thomson Type Fubini Polynomials with Trigonometric Functions

Year 2024, Volume: 11 Issue: 3, 535 - 545, 30.09.2024
https://doi.org/10.54287/gujsa.1546375

Abstract

This paper examines generating functions of r-parametric Hermite-based Milne-Thomson polynomials. Using generating function methods, the relationships among these polynomials, Fubini type polynomials, and trigonometric functions are given. Moreover, new formulas are derived by utilizing not only the generating functions of these polynomials but also associated functional equations. These formulas pertain to r-parametric Hermite-based sine-and cosine-Milne-Thomson Fubini polynomials, as well as Stirling type polynomials and numbers. Additionally, by analyzing special cases of newly obtained results, some known formulas are also derived. Furthermore, some identities involving secant and cosecant numbers are derived through the properties of trigonometric functions. Special polynomials and their generating functions are an important tool for solving some problems in many areas such as combinatorics and number theory. By introducing new formulas, this paper significantly enhances these problems-solving abilities in these areas. Consequently, these results have potential to shed light on important applications in mathematics, engineering, and mathematical physics.

References

  • Agyuz, E. (2024). On convergence properties of Fubini-type polynomials. AIP Conference Proceedings, 3094(090012). https://doi.org/10.1063/5.0210608
  • Ali, M., & Paris, R. B. (2022). Multi-index Fubini-type polynomials. Montes Taurus Journal of Pure and Applied Mathematics, 4(1), 97-106.
  • Bayad, A., & Simsek, Y. (2014). Convolution identities on the Apostol-Hermite base of two variables polynomials. Differential Equations and Dynamical Systems, 22(3), 309-318. https://doi.org/10.1007/s12591-013-0181-7
  • Cesarano, C., Ramírez, W., & Khan, S. (2022). A new class of degenerate Apostol-type Hermite polynomials and applications. Dolomites Research Notes on Approximation, 15(1), 1-10. https://doi.org/10.14658/PUPJ-DRNA-2022-1-1
  • Charalambides, C. A. (2005). Combinatorial methods in discrete distributions. Hoboken: John Wiley & Sons Inc., Publication.
  • Dattoli, G., Chiccoli, C., Lorenzutta, S., Maino, G., & Torre, A. (1994). Theory of generalized Hermite polynomials. Computers & Mathematics with Applications, 28(4), 71-83. https://doi.org/10.1016/0898-1221(94)00128-6
  • Dattoli, G., Lorenzutta, S., Maino, G., Torre, A., & Cesarano, C. (1996). Generalized Hermite polynomials and supergaussian forms. Journal of Mathematical Analysis and Applications, 203, 597-609. https://doi.org/10.1006/jmaa.1996.0399
  • Diagana, T., & Maïga, H. (2017). Some new identities and congruences for Fubini numbers. Journal of Number Theory, 173, 547-569. https://doi.org/10.1016/j.jnt.2016.09.032
  • Fadel, M., Raza, N., & Du, W.-S. (2024). On q-Hermite polynomials with three variables: Recurrence relations, q-differential equations, summation and operational formulas. Symmetry, 16(4), 1-19. https://doi.org/10.3390/sym16040385
  • Kereskényi-Balogh, Z., & Nyul, G. (2021). Fubini numbers and polynomials of graphs. Mediterranean Journal of Mathematics, 18(230), 1-10. https://doi.org/10.1007/s00009-021-01838-x
  • Kilar, N. (2021). Generating Functions of Hermite Type Milne-Thomson Polynomials and Their Applications in Computational Sciences. Antalya: PhD Thesis, University of Akdeniz.
  • Kilar, N. (2023a). On computational formulas for parametric type polynomials and its applications. Journal of Balıkesir University Institute of Science and Technology, 25(1), 13-30. https://doi.org/10.25092/baunfbed.1083754
  • Kilar, N. (2023b). Combinatorial sums and identities associated with functional equations of generating functions for Fubini type polynomials. GUJ Sci, 36(2), 807-817. https://doi.org/10.35378/gujs.989270
  • Kilar, N., & Simsek, Y. (2017). A new family of Fubini numbers and polynomials associated with Apostol-Bernoulli numbers and polynomials. Journal of the Korean Mathematical Society, 54(5), 1605-1621. https://doi.org/10.4134/JKMS.j160597
  • Kilar, N., & Simsek, Y. (2021). Computational formulas and identities for new classes of Hermite-Based Milne-Thomson type polynomials: Analysis of generating functions with Euler’s formula. Mathematical Methods in the Applied Sciences, 44(8), 6731-6762. https://doi.org/10.1002/mma.7220
  • Kim, D. S., & Kim, T. (2018). Some p-adic integrals on Z_p associated with trigonometric functions. Russian Journal of Mathematical Physics, 25(3), 300-308. https://doi.org/10.1134/S1061920818030032
  • Simsek, Y. (2013). Generating functions for generalized Stirling type numbers, Array type polynomials, Eulerian type polynomials and their applications. Fixed Point Theory Applications, 2013(87), 1-28. https://doi.org/10.1186/1687-1812-2013-87
  • Simsek, Y. (2024). Formulas for p-adic q-integrals including falling-rising factorials, combinatorial sums and special numbers. RACSAM, 118(92), 1-52. https://doi.org/10.1007/s13398-024-01592-1
  • Srivastava, H. M. (1976). A note on a generating function for the generalized Hermite polynomials. Indagationes Mathematicae (Proceedings), 79(5), 457-461. https://doi.org/10.1016/S1385-7258(76)80009-1
  • Srivastava, H. M., Srivastava, R., Muhyi, A., Yasmin G., Islahi H., & Araci, S. (2021). Construction of a new family of Fubini-type polynomials and its applications. Advances in Difference Equations, 2021(36), 1-25. https://doi.org/10.1186/s13662-020-03202-x
  • Zayed, M., Wani, S. A., Oros, G. I., & Ramŕez, W. (2024). A study on extended form of multivariable Hermite-Apostol type Frobenius-Euler polynomials via fractional operators. AIMS Mathematics, 9(6), 16297-16312. https://doi.org/10.3934/math.2024789
Year 2024, Volume: 11 Issue: 3, 535 - 545, 30.09.2024
https://doi.org/10.54287/gujsa.1546375

Abstract

References

  • Agyuz, E. (2024). On convergence properties of Fubini-type polynomials. AIP Conference Proceedings, 3094(090012). https://doi.org/10.1063/5.0210608
  • Ali, M., & Paris, R. B. (2022). Multi-index Fubini-type polynomials. Montes Taurus Journal of Pure and Applied Mathematics, 4(1), 97-106.
  • Bayad, A., & Simsek, Y. (2014). Convolution identities on the Apostol-Hermite base of two variables polynomials. Differential Equations and Dynamical Systems, 22(3), 309-318. https://doi.org/10.1007/s12591-013-0181-7
  • Cesarano, C., Ramírez, W., & Khan, S. (2022). A new class of degenerate Apostol-type Hermite polynomials and applications. Dolomites Research Notes on Approximation, 15(1), 1-10. https://doi.org/10.14658/PUPJ-DRNA-2022-1-1
  • Charalambides, C. A. (2005). Combinatorial methods in discrete distributions. Hoboken: John Wiley & Sons Inc., Publication.
  • Dattoli, G., Chiccoli, C., Lorenzutta, S., Maino, G., & Torre, A. (1994). Theory of generalized Hermite polynomials. Computers & Mathematics with Applications, 28(4), 71-83. https://doi.org/10.1016/0898-1221(94)00128-6
  • Dattoli, G., Lorenzutta, S., Maino, G., Torre, A., & Cesarano, C. (1996). Generalized Hermite polynomials and supergaussian forms. Journal of Mathematical Analysis and Applications, 203, 597-609. https://doi.org/10.1006/jmaa.1996.0399
  • Diagana, T., & Maïga, H. (2017). Some new identities and congruences for Fubini numbers. Journal of Number Theory, 173, 547-569. https://doi.org/10.1016/j.jnt.2016.09.032
  • Fadel, M., Raza, N., & Du, W.-S. (2024). On q-Hermite polynomials with three variables: Recurrence relations, q-differential equations, summation and operational formulas. Symmetry, 16(4), 1-19. https://doi.org/10.3390/sym16040385
  • Kereskényi-Balogh, Z., & Nyul, G. (2021). Fubini numbers and polynomials of graphs. Mediterranean Journal of Mathematics, 18(230), 1-10. https://doi.org/10.1007/s00009-021-01838-x
  • Kilar, N. (2021). Generating Functions of Hermite Type Milne-Thomson Polynomials and Their Applications in Computational Sciences. Antalya: PhD Thesis, University of Akdeniz.
  • Kilar, N. (2023a). On computational formulas for parametric type polynomials and its applications. Journal of Balıkesir University Institute of Science and Technology, 25(1), 13-30. https://doi.org/10.25092/baunfbed.1083754
  • Kilar, N. (2023b). Combinatorial sums and identities associated with functional equations of generating functions for Fubini type polynomials. GUJ Sci, 36(2), 807-817. https://doi.org/10.35378/gujs.989270
  • Kilar, N., & Simsek, Y. (2017). A new family of Fubini numbers and polynomials associated with Apostol-Bernoulli numbers and polynomials. Journal of the Korean Mathematical Society, 54(5), 1605-1621. https://doi.org/10.4134/JKMS.j160597
  • Kilar, N., & Simsek, Y. (2021). Computational formulas and identities for new classes of Hermite-Based Milne-Thomson type polynomials: Analysis of generating functions with Euler’s formula. Mathematical Methods in the Applied Sciences, 44(8), 6731-6762. https://doi.org/10.1002/mma.7220
  • Kim, D. S., & Kim, T. (2018). Some p-adic integrals on Z_p associated with trigonometric functions. Russian Journal of Mathematical Physics, 25(3), 300-308. https://doi.org/10.1134/S1061920818030032
  • Simsek, Y. (2013). Generating functions for generalized Stirling type numbers, Array type polynomials, Eulerian type polynomials and their applications. Fixed Point Theory Applications, 2013(87), 1-28. https://doi.org/10.1186/1687-1812-2013-87
  • Simsek, Y. (2024). Formulas for p-adic q-integrals including falling-rising factorials, combinatorial sums and special numbers. RACSAM, 118(92), 1-52. https://doi.org/10.1007/s13398-024-01592-1
  • Srivastava, H. M. (1976). A note on a generating function for the generalized Hermite polynomials. Indagationes Mathematicae (Proceedings), 79(5), 457-461. https://doi.org/10.1016/S1385-7258(76)80009-1
  • Srivastava, H. M., Srivastava, R., Muhyi, A., Yasmin G., Islahi H., & Araci, S. (2021). Construction of a new family of Fubini-type polynomials and its applications. Advances in Difference Equations, 2021(36), 1-25. https://doi.org/10.1186/s13662-020-03202-x
  • Zayed, M., Wani, S. A., Oros, G. I., & Ramŕez, W. (2024). A study on extended form of multivariable Hermite-Apostol type Frobenius-Euler polynomials via fractional operators. AIMS Mathematics, 9(6), 16297-16312. https://doi.org/10.3934/math.2024789
There are 21 citations in total.

Details

Primary Language English
Subjects Mathematical Methods and Special Functions
Journal Section Mathematics
Authors

Neslihan Kılar 0000-0001-5797-6301

Early Pub Date September 30, 2024
Publication Date September 30, 2024
Submission Date September 9, 2024
Acceptance Date September 23, 2024
Published in Issue Year 2024 Volume: 11 Issue: 3

Cite

APA Kılar, N. (2024). Further Results for Hermite-Based Milne-Thomson Type Fubini Polynomials with Trigonometric Functions. Gazi University Journal of Science Part A: Engineering and Innovation, 11(3), 535-545. https://doi.org/10.54287/gujsa.1546375