Research Article
BibTex RIS Cite

Effective Maintenance of Industrial 5-Stage Compressor: A Machine Learning Approach

Year 2025, Volume: 12 Issue: 1, 96 - 118, 26.03.2025
https://doi.org/10.54287/gujsa.1646993

Abstract

Effective maintenance is crucial in the manufacturing industry to ensure equipment reliability, product quality, and worker safety. This study focuses on using machine learning, specifically the Random Forest algorithm, to predict maintenance needs for a 5-stage compressor. Utilizing the Scikit-learn Python toolkit, the model underwent rigorous evaluation through validation, sampling, and confusion matrix inspection. The model achieved an outstanding ROC AUC score of 0.94 and consistently high accuracy, precision, recall, and F1-score metrics above 0.90, showcasing its strong predictive capabilities. By accurately predicting machine failures, the approach aims to improve production schedules, boost productivity, ensure high-quality outputs, save costs, and extend equipment lifespan, demonstrating significant promise for practical use in the manufacturing sector.

References

  • Adetunji, O., Sokunbi, I., Kuye, S., Adesusi, O., and Okediran, I. (2023). Condition-based monitoring of kiln induced draft fan in a dry process cement plant for efficient utilization. Journal of Advanced Industrial Technology and Application, 4(1). https://doi.org/10.30880/jaita.2023.04.01.007
  • Bacak, A., Çolak, A., and Dalkılıç, A. (2023). Investigating hermetic reciprocating compressor performance by using various machine learning methods. Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science, 238(11), 5369-5384. https://doi.org/10.1177/09544062231213276
  • Bahtiar, E., Denih, A., Priadi, T., Putra, G., Koswara, A., Nugroho, N., … and Hermawan, D. (2022). Comparing the building code sawn lumber’s wet service factors (cm) with four commercial wood species laboratory tests. Forests, 13(12), 2094. https://doi.org/10.3390/f13122094
  • Cao, X., Jing, Z., Zhao, X., and Xu, X. (2024). A security‐enhanced equipment predictive maintenance solution for the eto manufacturing. International Journal of Network Management, 34(6). https://doi.org/10.1002/nem.2263
  • Carvalho, T., Soares, F., Vita, R., Francisco, R., Basto, J., and Alcalá, S. (2019). A systematic literature review of machine learning methods applied to predictive maintenance. Computers and Industrial Engineering, 137, 106024. https://doi.org/10.1016/j.cie.2019.106024
  • Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research. https://doi.org/10.48550/arXiv.1106.1813
  • Chicco, D., Warrens, M. J., and Jurman, G. (2021). The Matthews correlation coefficient (MCC) is more informative than Cohen’s Kappa and Brier Score in binary classification assessment. IEEE. https://doi.org/10.1109/ACCESS.2021.3084050
  • García, F., and Salgado, D. (2021). Maintenance strategies for industrial multi-stage machines: The study of a thermoforming machine. Sensors, 21(20), 6809. https://doi.org/10.3390/s21206809
  • Hanif, W., and Gunawan, F. (2022). Random forest regression to predict catalyst deactivation in industrial catalytic process. TEM Journal, 104-110. https://doi.org/10.18421/tem111-12
  • Joshi, A. V. (2023). Machine learning and artificial intelligence (2nd ed.). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-031-12282-8
  • Kagiri, C., Wanjiru, E., Zhang, L., and Xia, X. (2018). Optimized response to electricity time-of-use tariff of a compressed natural gas fuelling station. Applied Energy, 222, 244-256. https://doi.org/10.1016/j.apenergy.2018.04.017
  • Kiangala, K. and Wang, Z. (2020). An effective predictive maintenance framework for conveyor motors using dual time-series imaging and convolutional neural network in an industry 4.0 environment. Ieee Access, 8, 121033-121049. https://doi.org/10.1109/access.2020.3006788
  • Kolar, D., Lisjak, D., Curman, M., and Pająk, M. (2022). Condition monitoring of rotary machinery using industrial iot framework. Tehnički Glasnik, 16(3), 343-352. https://doi.org/10.31803/tg-20220517173151
  • Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., and Liu, H. (2017). Feature selection: A data perspective. ACM Computing Surveys (CSUR), 50(6), 1-45.
  • Loukopoulos, P., Zolkiewski, G., Bennett, I., Sampath, S., Pilidis, P., Duan, F., … and David, É. (2019). Reciprocating compressor prognostics of an instantaneous failure mode utilising temperature only measurements. Applied Acoustics, 147, 77-86. https://doi.org/10.1016/j.apacoust.2017.12.003
  • Luo, Y. (2024). Optimizing maintenance strategies for reciprocating compressors using reliability-centered maintenance and on-line fault diagnosis system. https://doi.org/10.1117/12.3026849
  • Monye, S., Afolalu, S., Lawal, S., Oluwatoyin, O., and Adeyemi, A. (2023). Overview and impact of maintenance process in 4th industrial revolution. E3s Web of Conferences, 430, 01220. https://doi.org/10.1051/e3sconf/202343001220
  • Nordal, H. and El‐Thalji, I. (2021). Assessing the technical specifications of predictive maintenance: a case study of centrifugal compressor. Applied Sciences, 11(4), 1527. https://doi.org/10.3390/app11041527
  • Nwamekwe, C. O., & Okpala, C. C. (2025). Machine learning-augmented digital twin systems for predictive maintenance in highspeed rail networks. International Journal of Multidisciplinary Research and Growth Evaluation, 6(1), 1783-1795. https://www.allmultidisciplinaryjournal.com/uploads/archives/20250212104201_MGE-2025-1-306.1.pdf
  • Nwamekwe, C. O., Ewuzie, N. V., Igbokwe, N. C., Okpala, C. C., and U-Dominic, C. M. (2024). Sustainable Manufacturing Practices in Nigeria: Optimization and Implementation Appraisal. Journal of Research in Engineering and Applied Sciences, 9(3). https://qtanalytics.in/journals/index.php/JREAS/article/view/3967
  • Nwamekwe, C. O., Okpala, C. C., and Okpala, S. C., (2024). Machine Learning-Based Prediction Algorithms for the Mitigation of Maternal and Fetal Mortality in the Nigerian Tertiary Hospitals. International Journal of Engineering Inventions, 13(7), PP: 132-138. https://www.ijeijournal.com/papers/Vol13-Issue7/1307132138.pdf
  • Rahman, A., Hoque, M., Rashid, F., Alam, F., and Ahmed, M. (2022). Health condition monitoring and control of vibrations of a rotating system through vibration analysis. Journal of Sensors, 2022, 1-12. https://doi.org/10.1155/2022/4281596
  • Septano, G., Ikbal, I., Fathoni, F., Sriwijaya, S., and Putri, S. (2024). Detection of damage motor and coal crusher in power plant tanjung enim 3 x 10 mw using vibration analysis. Journal of Ocean Mechanical and Aerospace -Science and Engineering- (Jomase), 68(3), 155-160. https://doi.org/10.36842/jomase.v68i3.378
  • Souza, D. V., Santos, J. X., Vieira, H. C., Naide, T. L., Nisgoski, S., and Oliveira, L. E. S. (2020). An automatic recognition system of Brazilian flora species based on textural features of macroscopic images of wood. Wood Science and Technology. https://doi.org/10.1007/s00226-020-01196-z
  • Tounsi, Y., Anoun, H., and Hassouni, L. (2020). CSMAS: Improving multi-agent credit scoring system by integrating big data and the new generation of gradient boosting algorithms. Proceedings of the 2020 International Conference on Advanced Information Networking and Applications Workshops (WAINA), 1-7. https://doi.org/10.1145/3386723.3387851
  • Van Der Maaten, L., Postma, E. O., and van den Herik, H. J. (2009). Dimensionality reduction: A comparative review. Journal of Machine Learning Research, 10, 66-71, 13.
  • Wang, W., Li, L., Gu, H., Chen, Y., Zhen, Y., and Dong, Z. (2022). Random forest-based prediction of acute respiratory distress syndrome in patients undergoing cardiac surgery. The Heart Surgery Forum, 25(6), E854-E859. https://doi.org/10.1532/hsf.5113
  • Yamada, T., Asanuma, H., Hara, Y., and Ertürk, A. (2023). Acceleration-waveform-sending wireless sensor node powered by piezoelectric vibration energy harvester. https://doi.org/10.1117/12.2657742
Year 2025, Volume: 12 Issue: 1, 96 - 118, 26.03.2025
https://doi.org/10.54287/gujsa.1646993

Abstract

References

  • Adetunji, O., Sokunbi, I., Kuye, S., Adesusi, O., and Okediran, I. (2023). Condition-based monitoring of kiln induced draft fan in a dry process cement plant for efficient utilization. Journal of Advanced Industrial Technology and Application, 4(1). https://doi.org/10.30880/jaita.2023.04.01.007
  • Bacak, A., Çolak, A., and Dalkılıç, A. (2023). Investigating hermetic reciprocating compressor performance by using various machine learning methods. Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science, 238(11), 5369-5384. https://doi.org/10.1177/09544062231213276
  • Bahtiar, E., Denih, A., Priadi, T., Putra, G., Koswara, A., Nugroho, N., … and Hermawan, D. (2022). Comparing the building code sawn lumber’s wet service factors (cm) with four commercial wood species laboratory tests. Forests, 13(12), 2094. https://doi.org/10.3390/f13122094
  • Cao, X., Jing, Z., Zhao, X., and Xu, X. (2024). A security‐enhanced equipment predictive maintenance solution for the eto manufacturing. International Journal of Network Management, 34(6). https://doi.org/10.1002/nem.2263
  • Carvalho, T., Soares, F., Vita, R., Francisco, R., Basto, J., and Alcalá, S. (2019). A systematic literature review of machine learning methods applied to predictive maintenance. Computers and Industrial Engineering, 137, 106024. https://doi.org/10.1016/j.cie.2019.106024
  • Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research. https://doi.org/10.48550/arXiv.1106.1813
  • Chicco, D., Warrens, M. J., and Jurman, G. (2021). The Matthews correlation coefficient (MCC) is more informative than Cohen’s Kappa and Brier Score in binary classification assessment. IEEE. https://doi.org/10.1109/ACCESS.2021.3084050
  • García, F., and Salgado, D. (2021). Maintenance strategies for industrial multi-stage machines: The study of a thermoforming machine. Sensors, 21(20), 6809. https://doi.org/10.3390/s21206809
  • Hanif, W., and Gunawan, F. (2022). Random forest regression to predict catalyst deactivation in industrial catalytic process. TEM Journal, 104-110. https://doi.org/10.18421/tem111-12
  • Joshi, A. V. (2023). Machine learning and artificial intelligence (2nd ed.). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-031-12282-8
  • Kagiri, C., Wanjiru, E., Zhang, L., and Xia, X. (2018). Optimized response to electricity time-of-use tariff of a compressed natural gas fuelling station. Applied Energy, 222, 244-256. https://doi.org/10.1016/j.apenergy.2018.04.017
  • Kiangala, K. and Wang, Z. (2020). An effective predictive maintenance framework for conveyor motors using dual time-series imaging and convolutional neural network in an industry 4.0 environment. Ieee Access, 8, 121033-121049. https://doi.org/10.1109/access.2020.3006788
  • Kolar, D., Lisjak, D., Curman, M., and Pająk, M. (2022). Condition monitoring of rotary machinery using industrial iot framework. Tehnički Glasnik, 16(3), 343-352. https://doi.org/10.31803/tg-20220517173151
  • Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., and Liu, H. (2017). Feature selection: A data perspective. ACM Computing Surveys (CSUR), 50(6), 1-45.
  • Loukopoulos, P., Zolkiewski, G., Bennett, I., Sampath, S., Pilidis, P., Duan, F., … and David, É. (2019). Reciprocating compressor prognostics of an instantaneous failure mode utilising temperature only measurements. Applied Acoustics, 147, 77-86. https://doi.org/10.1016/j.apacoust.2017.12.003
  • Luo, Y. (2024). Optimizing maintenance strategies for reciprocating compressors using reliability-centered maintenance and on-line fault diagnosis system. https://doi.org/10.1117/12.3026849
  • Monye, S., Afolalu, S., Lawal, S., Oluwatoyin, O., and Adeyemi, A. (2023). Overview and impact of maintenance process in 4th industrial revolution. E3s Web of Conferences, 430, 01220. https://doi.org/10.1051/e3sconf/202343001220
  • Nordal, H. and El‐Thalji, I. (2021). Assessing the technical specifications of predictive maintenance: a case study of centrifugal compressor. Applied Sciences, 11(4), 1527. https://doi.org/10.3390/app11041527
  • Nwamekwe, C. O., & Okpala, C. C. (2025). Machine learning-augmented digital twin systems for predictive maintenance in highspeed rail networks. International Journal of Multidisciplinary Research and Growth Evaluation, 6(1), 1783-1795. https://www.allmultidisciplinaryjournal.com/uploads/archives/20250212104201_MGE-2025-1-306.1.pdf
  • Nwamekwe, C. O., Ewuzie, N. V., Igbokwe, N. C., Okpala, C. C., and U-Dominic, C. M. (2024). Sustainable Manufacturing Practices in Nigeria: Optimization and Implementation Appraisal. Journal of Research in Engineering and Applied Sciences, 9(3). https://qtanalytics.in/journals/index.php/JREAS/article/view/3967
  • Nwamekwe, C. O., Okpala, C. C., and Okpala, S. C., (2024). Machine Learning-Based Prediction Algorithms for the Mitigation of Maternal and Fetal Mortality in the Nigerian Tertiary Hospitals. International Journal of Engineering Inventions, 13(7), PP: 132-138. https://www.ijeijournal.com/papers/Vol13-Issue7/1307132138.pdf
  • Rahman, A., Hoque, M., Rashid, F., Alam, F., and Ahmed, M. (2022). Health condition monitoring and control of vibrations of a rotating system through vibration analysis. Journal of Sensors, 2022, 1-12. https://doi.org/10.1155/2022/4281596
  • Septano, G., Ikbal, I., Fathoni, F., Sriwijaya, S., and Putri, S. (2024). Detection of damage motor and coal crusher in power plant tanjung enim 3 x 10 mw using vibration analysis. Journal of Ocean Mechanical and Aerospace -Science and Engineering- (Jomase), 68(3), 155-160. https://doi.org/10.36842/jomase.v68i3.378
  • Souza, D. V., Santos, J. X., Vieira, H. C., Naide, T. L., Nisgoski, S., and Oliveira, L. E. S. (2020). An automatic recognition system of Brazilian flora species based on textural features of macroscopic images of wood. Wood Science and Technology. https://doi.org/10.1007/s00226-020-01196-z
  • Tounsi, Y., Anoun, H., and Hassouni, L. (2020). CSMAS: Improving multi-agent credit scoring system by integrating big data and the new generation of gradient boosting algorithms. Proceedings of the 2020 International Conference on Advanced Information Networking and Applications Workshops (WAINA), 1-7. https://doi.org/10.1145/3386723.3387851
  • Van Der Maaten, L., Postma, E. O., and van den Herik, H. J. (2009). Dimensionality reduction: A comparative review. Journal of Machine Learning Research, 10, 66-71, 13.
  • Wang, W., Li, L., Gu, H., Chen, Y., Zhen, Y., and Dong, Z. (2022). Random forest-based prediction of acute respiratory distress syndrome in patients undergoing cardiac surgery. The Heart Surgery Forum, 25(6), E854-E859. https://doi.org/10.1532/hsf.5113
  • Yamada, T., Asanuma, H., Hara, Y., and Ertürk, A. (2023). Acceleration-waveform-sending wireless sensor node powered by piezoelectric vibration energy harvester. https://doi.org/10.1117/12.2657742
There are 28 citations in total.

Details

Primary Language English
Subjects Optimization in Manufacturing
Journal Section Manufacturing and Industrial Engineering
Authors

Okechukwu Ezeanyim 0000-0001-6469-7044

Nnamdi Ewuzie 0009-0006-2903-2884

Patrick Sunday Aguh 0009-0000-1864-9041

Chibuzo Nwabueze 0009-0004-5508-3541

Charles Onyeka Nwamekwe 0009-0002-1918-1350

Publication Date March 26, 2025
Submission Date February 26, 2025
Acceptance Date March 12, 2025
Published in Issue Year 2025 Volume: 12 Issue: 1

Cite

APA Ezeanyim, O., Ewuzie, N., Aguh, P. S., Nwabueze, C., et al. (2025). Effective Maintenance of Industrial 5-Stage Compressor: A Machine Learning Approach. Gazi University Journal of Science Part A: Engineering and Innovation, 12(1), 96-118. https://doi.org/10.54287/gujsa.1646993