Research Article
BibTex RIS Cite

İzopropanol ve Heptan Karışım Yakıtları Kullanımının Bir HCCI Motorda Performans Yanma ve Emisyon Karakteristiklerinin Deneysel İncelenmesi

Year 2019, Volume: 7 Issue: 4, 818 - 833, 24.12.2019
https://doi.org/10.29109/gujsc.605057

Abstract

Bu çalışmada tek silindirli, port enjeksiyon sistemine sahip HCCI
motorda, izopropanolün yanma ve egzoz emisyonlarına etkisi deneysel olarak
incelenmiştir. Deneyler 1000 rpm motor hızında ve 60 oC emme havası
giriş sıcaklığında gerçekleştirilmiştir. Çalışmada saf n-heptan ve n-heptan
izopropanol yakıt karışımları (ip25 ve ip50) kullanılmıştır. Silindir içi
basınç, ısı dağılımı, yanma başlangıcı, yanma süresi, basınç artış oranı ve
egzoz emisyonları incelenmiştir. Tüm test yakıtlarında da karışımın
fakirleşmesiyle silindir içi basınç ve ısı dağılımının azaldığı tespit
edilmiştir. N-heptan yakıtına izopropanol ilavesi yanma başlangıcının gecikmeye
alınmasına ve yanma süresinin uzamasına neden olmuştur. En yüksek indike termik
verim ip25 yakıtı kullanımında HFK’nın 2.4 oldu şartlarda % 43.27 olarak tespit
edilmiştir. İp25 ve ip50 yakıtları kullanımında n-heptan yakıtına göre CO
emisyonları sırası ile %22.7 ve %62.1 oranında kötüleşmiştir. Bununla birlikte
HC emisyonları sırası ile %8.8 ve %12 oranında artış göstermiştir. N-heptan
yakıtına izopropanol ilavesi, basınç artış oranının azalmasını sağlamıştır.
Böylece kendiliğinden gerçekleşen HCCI yanması kontrol altına alınmıştır.

References

  • Hellström E, Stefanopoulou A, Vavra J, Babajimopoulos A, Assanis DN, Jiang L, et al. Understanding the Dynamic Evolution of Cyclic Variability at the Operating Limits of HCCI Engines with Negative Valve Overlap. SAE Int J Engines 2012;5:2012-01–1106. doi:10.4271/2012-01-1106.
  • He BQ, Liu M Bin, Zhao H. Comparison of combustion characteristics of n-butanol/ethanol-gasoline blends in a HCCI engine. Energy Convers Manag 2015;95:101–9. doi:10.1016/j.enconman.2015.02.019.
  • Calam A, İçingür Y. Hava Fazlalık Katsayısı ve Oktan Sayısı Değişiminin HCCI Yanma Karakteristiklerine ve Motor Performansına Etkileri. J Polytech 2018;0900:607–18. doi:10.2339/politeknik.444377.
  • Asad U, Kumar R, Zheng M, Tjong J. Ethanol-fueled low temperature combustion: A pathway to clean and efficient diesel engine cycles. Appl Energy 2015;157:838–50. doi:10.1016/j.apenergy.2015.01.057.
  • Agarwal AK. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust Sci 2007;33:233–71. doi:10.1016/j.pecs.2006.08.003.
  • Aksoy F, Yılmaz E. %10 Balık Yağı Biyodizeli-%90 Dizel Yakıt Karışımı İle Çalışan Direkt Enjeksiyonlu Bir Dizel Motorunda Yanma ve Performans Karakteristiklerinin İncelenmesi 2019;7(1):12–24. doi:10.29109/gujsc.466544.
  • Epping K, Aceves S, Bechtold R, Dec JE. The Potential of HCCI Combustion for High Efficiency and Low Emissions 2002. doi:10.4271/2002-01-1923.
  • Bendu H, Sivalingam M. Experimental investigation on the effect of charge temperature on ethanol fueled HCCI combustion engine. J Mech Sci Technol 2016;30:4791–9. doi:10.1007/s12206-016-0951-6.
  • Babajimopoulos A, Lavoie GA, Assanis DN. Modeling HCCI Combustion With High Levels of Residual Gas Fraction – A Comparison of Two VVA Strategies 2011;2003.
  • Demirci OK, Çinar C. The Investigation of the Effects of Using Natural Gas on the Performance and Exhaust Emissions in an HCCI-DI Engine HCCI- DI Bir Motorda Doğal Gaz Kullanımının Performans ve Egzoz Emisyonlarına Etkisinin İncelenmesi 2019;7(2):317–30. doi:10.29109/gujsc.521668.
  • Zhao H. HCCI and CAI Engines for the Automotive Industry. Cambridge: Elsevier; 2007. doi:10.1533/9781845693541.3.342.
  • Heywood JB. Internal Combustion Engine Fundamentals. New York: McGrawHill Press; 1988.
  • Maurya RK, Agarwal AK. Experimental study of combustion and emission characteristics of ethanol fuelled port injected homogeneous charge compression ignition (HCCI) combustion engine. Appl Energy 2011;88:1169–80. doi:10.1016/j.apenergy.2010.09.015.
  • Dubreuil A, Foucher F, Mounaïm-Rousselle C, Dayma G, Dagaut P. HCCI combustion: Effect of NO in EGR. Proc Combust Inst 2007;31 II:2879–86. doi:10.1016/j.proci.2006.07.168.
  • Lü XC, Chen W, Huang Z. A fundamental study on the control of the HCCI combustion and emissions by fuel design concept combined with controllable EGR. Part 2. Effect of operating conditions and EGR on HCCI combustion. Fuel 2005;84:1084–92. doi:10.1016/j.fuel.2004.12.015.
  • Iida M, Hayashi M, Foster DE, Martin JK. Characteristics of Homogeneous Charge Compression Ignition (HCCI) Engine Operation for Variations in Compression Ratio, Speed, and Intake Temperature While Using n-Butane as a Fuel. J Eng Gas Turbines Power 2003;125:472. doi:10.1115/1.1501914.
  • Aceves SM, Smith JR, Westbrook CK, Pitz WJ. Compression Ratio Effect on Methane HCCI Combustion. J Eng Gas Turbines Power 1999;121:569. doi:10.1115/1.2818510.
  • Cinar C, Uyumaz A, Solmaz H, Sahin F, Polat S, Yilmaz E. Effects of intake air temperature on combustion, performance and emission characteristics of a HCCI engine fueled with the blends of 20% n-heptane and 80% isooctane fuels. Fuel Process Technol 2015;130:275–81. doi:10.1016/j.fuproc.2014.10.026.
  • Swami Nathan S, Mallikarjuna JM, Ramesh A. Effects of charge temperature and exhaust gas re-circulation on combustion and emission characteristics of an acetylene fuelled HCCI engine. Fuel 2010;89:515–21. doi:10.1016/j.fuel.2009.08.032.
  • Maurya RK, Agarwal AK. Experimental investigation on the effect of intake air temperature and air-fuel ratio on cycle-to-cycle variations of HCCI combustion and performance parameters. Appl Energy 2011;88:1153–63. doi:10.1016/j.apenergy.2010.09.027.
  • Tanaka S, Ayala F, Keck JC, Heywood JB. Two-stage ignition in HCCI combustion and HCCI control by fuels and additives. Combust Flame 2003;132:219–39. doi:10.1016/S0010-2180(02)00457-1.
  • Tanaka S, Ayala F, Keck JC. A reduced chemical kinetic model for HCCI combustion of primary reference fuels in a rapid compression machine. Combust Flame 2003;133:467–81. doi:10.1016/S0010-2180(03)00057-9.
  • Ma J, Lü X, Ji L, Huang Z. An experimental study of HCCI-DI combustion and emissions in a diesel engine with dual fuel. Int J Therm Sci 2008;47:1235–42. doi:10.1016/j.ijthermalsci.2007.10.007.
  • Gan S, Ng HK, Pang KM. Homogeneous Charge Compression Ignition (HCCI) combustion: Implementation and effects on pollutants in direct injection diesel engines. Appl Energy 2011;88:559–67. doi:10.1016/j.apenergy.2010.09.005.
  • Kong S, Reitz RD. Application of Detailed Chemistry and CFD for Predicting. Proc Combust Inst 2002;29:663–9. doi:10.1016/S1540-7489(02)80085-2.
  • Wang Z, Liu H, Ma X, Wang J, Shuai S, Reitz RD. Homogeneous charge compression ignition (HCCI) combustion of polyoxymethylene dimethyl ethers (PODE). Fuel 2016;183:206–13. doi:10.1016/j.fuel.2016.06.033.
  • Polat S. An experimental study on combustion, engine performance and exhaust emissions in a HCCI engine fuelled with diethyl ether-ethanol fuel blends. Fuel Process Technol 2016;143:140–50. doi:10.1016/j.fuproc.2015.11.021.
  • Lawler B, Lacey J, Güralp O, Najt P, Filipi Z. HCCI combustion with an actively controlled glow plug: The effects on heat release, thermal stratification, efficiency, and emissions. Appl Energy 2018;211:809–19. doi:10.1016/j.apenergy.2017.11.089.
  • Calam A, Solmaz H, Yılmaz E, İçingür Y. Investigation of effect of compression ratio on combustion and exhaust emissions in A HCCI engine. Energy 2019;168:1208–16. doi:10.1016/j.energy.2018.12.023.
  • Uyumaz A. Combustion, performance and emission characteristics of a DI diesel engine fueled with mustard oil biodiesel fuel blends at different engine loads. Fuel 2018;212:256–67. doi:10.1016/j.fuel.2017.09.005.
  • Lü XC, Chen W, Huang Z. A fundamental study on the control of the HCCI combustion and emissions by fuel design concept combined with controllable EGR. Part 1. the basic characteristics of HCCI combustion. Fuel 2005;84:1074–83. doi:10.1016/j.fuel.2004.12.014.
  • Maurya RK, Agarwal AK. Experimental study of combustion and emission characteristics of ethanol fuelled port injected homogeneous charge compression ignition ( HCCI ) combustion engine. Appl Energy 2011;88:1169–80. doi:10.1016/j.apenergy.2010.09.015.
  • Iida M, Aroonsrisopon T, Hayashi M, Foster D, Martin J. The Effect of Intake Air Temperature, Compression Ratio and Coolant Temperature on the Start of Heat Release in An Hcci(Homogeneous Charge Compression Ignition) Engine. Sae 2001;111:220–6. doi:10.4271/2001-01-1880.
  • Andreae MM, Cheng WK, Kenney T, Yang J. On HCCI Engine Knock 2007. doi:10.4271/2007-01-1858.
  • Dec JE, Yang Y, Dronniou N. Boosted HCCI - Controlling Pressure-Rise Rates for Performance Improvements using Partial Fuel Stratification with Conventional Gasoline. SAE Int J Engines 2011;4:2011-01–0897. doi:10.4271/2011-01-0897.
  • Nishi M, Kanehara M, Iida N. Assessment for innovative combustion on HCCI engine by controlling EGR ratio and engine speed. Appl Therm Eng 2016;99:42–60. doi:10.1016/j.applthermaleng.2015.11.126.
  • Jung D, Iida N. Closed-loop control of HCCI combustion for DME using external EGR and rebreathed EGR to reduce pressure-rise rate with combustion-phasing retard. Appl Energy 2015;138:315–30. doi:10.1016/j.apenergy.2014.10.085.
  • Das P, Subbarao PMV, Subrahmanyam JP. Control of combustion process in an HCCI-DI combustion engine using dual injection strategy with EGR. Fuel 2015;159:580–9. doi:10.1016/j.fuel.2015.07.009.
  • Lü X, Hou Y, Zu L, Huang Z. Experimental study on the auto-ignition and combustion characteristics in the homogeneous charge compression ignition (HCCI) combustion operation with ethanol/n-heptane blend fuels by port injection. Fuel 2006;85:2622–31. doi:10.1016/j.fuel.2006.05.003.
  • Zhang C, Wu H. Combustion characteristics and performance of a methanol fueled homogenous charge compression ignition (HCCI) engine. J Energy Inst 2016;89:346–53. doi:10.1016/j.joei.2015.03.005.
  • Uyumaz A. An experimental investigation into combustion and performance characteristics of an HCCI gasoline engine fueled with n -heptane , isopropanol and n -butanol fuel blends at different inlet air temperatures. Energy Convers Manag 2015;98:199–207. doi:10.1016/j.enconman.2015.03.043.
  • Yusri IM, Mamat R, Azmi WH, Najafi G, Sidik NAC, Awad OI. Experimental investigation of combustion, emissions and thermal balance of secondary butyl alcohol-gasoline blends in a spark ignition engine. Energy Convers Manag 2016;123:1–14. doi:10.1016/j.enconman.2016.05.082.
  • Masurier JB, Foucher F, Dayma G, Dagaut P. Ozone applied to the homogeneous charge compression ignition engine to control alcohol fuels combustion. Appl Energy 2015;160:566–80. doi:10.1016/j.apenergy.2015.08.004.
  • Lü X, Ji L, Zu L, Hou Y, Huang C, Huang Z. Experimental study and chemical analysis of n -heptane homogeneous charge compression ignition combustion with port injection of reaction inhibitors. Combust Flame 2007;149:261–70. doi:10.1016/j.combustflame.2007.01.002.
  • Lü X, Yuchun H, Libin J, Linlin Z, Zhen H. Heat Release Analysis on Combustion and Parametric Study on Emissions of HCCI Engines Fueled with 2-Propanol / n -Heptane Blend Fuels. Energy Fuels 2006;20:1870–8. doi:10.1021/ef0601263.
  • Yao M, Chen Z, Zheng Z, Zhang B, Xing Y. Study on the controlling strategies of homogeneous charge compression ignition combustion with fuel of dimethyl ether and methanol. Fuel 2006;85:2046–56. doi:10.1016/j.fuel.2006.03.016.
  • Maurya RK, Agarwal AK. Experimental investigations of performance, combustion and emission characteristics of ethanol and methanol fueled HCCI engine. Fuel Process Technol 2014;126:30–48. doi:10.1016/j.fuproc.2014.03.031.
Year 2019, Volume: 7 Issue: 4, 818 - 833, 24.12.2019
https://doi.org/10.29109/gujsc.605057

Abstract

References

  • Hellström E, Stefanopoulou A, Vavra J, Babajimopoulos A, Assanis DN, Jiang L, et al. Understanding the Dynamic Evolution of Cyclic Variability at the Operating Limits of HCCI Engines with Negative Valve Overlap. SAE Int J Engines 2012;5:2012-01–1106. doi:10.4271/2012-01-1106.
  • He BQ, Liu M Bin, Zhao H. Comparison of combustion characteristics of n-butanol/ethanol-gasoline blends in a HCCI engine. Energy Convers Manag 2015;95:101–9. doi:10.1016/j.enconman.2015.02.019.
  • Calam A, İçingür Y. Hava Fazlalık Katsayısı ve Oktan Sayısı Değişiminin HCCI Yanma Karakteristiklerine ve Motor Performansına Etkileri. J Polytech 2018;0900:607–18. doi:10.2339/politeknik.444377.
  • Asad U, Kumar R, Zheng M, Tjong J. Ethanol-fueled low temperature combustion: A pathway to clean and efficient diesel engine cycles. Appl Energy 2015;157:838–50. doi:10.1016/j.apenergy.2015.01.057.
  • Agarwal AK. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust Sci 2007;33:233–71. doi:10.1016/j.pecs.2006.08.003.
  • Aksoy F, Yılmaz E. %10 Balık Yağı Biyodizeli-%90 Dizel Yakıt Karışımı İle Çalışan Direkt Enjeksiyonlu Bir Dizel Motorunda Yanma ve Performans Karakteristiklerinin İncelenmesi 2019;7(1):12–24. doi:10.29109/gujsc.466544.
  • Epping K, Aceves S, Bechtold R, Dec JE. The Potential of HCCI Combustion for High Efficiency and Low Emissions 2002. doi:10.4271/2002-01-1923.
  • Bendu H, Sivalingam M. Experimental investigation on the effect of charge temperature on ethanol fueled HCCI combustion engine. J Mech Sci Technol 2016;30:4791–9. doi:10.1007/s12206-016-0951-6.
  • Babajimopoulos A, Lavoie GA, Assanis DN. Modeling HCCI Combustion With High Levels of Residual Gas Fraction – A Comparison of Two VVA Strategies 2011;2003.
  • Demirci OK, Çinar C. The Investigation of the Effects of Using Natural Gas on the Performance and Exhaust Emissions in an HCCI-DI Engine HCCI- DI Bir Motorda Doğal Gaz Kullanımının Performans ve Egzoz Emisyonlarına Etkisinin İncelenmesi 2019;7(2):317–30. doi:10.29109/gujsc.521668.
  • Zhao H. HCCI and CAI Engines for the Automotive Industry. Cambridge: Elsevier; 2007. doi:10.1533/9781845693541.3.342.
  • Heywood JB. Internal Combustion Engine Fundamentals. New York: McGrawHill Press; 1988.
  • Maurya RK, Agarwal AK. Experimental study of combustion and emission characteristics of ethanol fuelled port injected homogeneous charge compression ignition (HCCI) combustion engine. Appl Energy 2011;88:1169–80. doi:10.1016/j.apenergy.2010.09.015.
  • Dubreuil A, Foucher F, Mounaïm-Rousselle C, Dayma G, Dagaut P. HCCI combustion: Effect of NO in EGR. Proc Combust Inst 2007;31 II:2879–86. doi:10.1016/j.proci.2006.07.168.
  • Lü XC, Chen W, Huang Z. A fundamental study on the control of the HCCI combustion and emissions by fuel design concept combined with controllable EGR. Part 2. Effect of operating conditions and EGR on HCCI combustion. Fuel 2005;84:1084–92. doi:10.1016/j.fuel.2004.12.015.
  • Iida M, Hayashi M, Foster DE, Martin JK. Characteristics of Homogeneous Charge Compression Ignition (HCCI) Engine Operation for Variations in Compression Ratio, Speed, and Intake Temperature While Using n-Butane as a Fuel. J Eng Gas Turbines Power 2003;125:472. doi:10.1115/1.1501914.
  • Aceves SM, Smith JR, Westbrook CK, Pitz WJ. Compression Ratio Effect on Methane HCCI Combustion. J Eng Gas Turbines Power 1999;121:569. doi:10.1115/1.2818510.
  • Cinar C, Uyumaz A, Solmaz H, Sahin F, Polat S, Yilmaz E. Effects of intake air temperature on combustion, performance and emission characteristics of a HCCI engine fueled with the blends of 20% n-heptane and 80% isooctane fuels. Fuel Process Technol 2015;130:275–81. doi:10.1016/j.fuproc.2014.10.026.
  • Swami Nathan S, Mallikarjuna JM, Ramesh A. Effects of charge temperature and exhaust gas re-circulation on combustion and emission characteristics of an acetylene fuelled HCCI engine. Fuel 2010;89:515–21. doi:10.1016/j.fuel.2009.08.032.
  • Maurya RK, Agarwal AK. Experimental investigation on the effect of intake air temperature and air-fuel ratio on cycle-to-cycle variations of HCCI combustion and performance parameters. Appl Energy 2011;88:1153–63. doi:10.1016/j.apenergy.2010.09.027.
  • Tanaka S, Ayala F, Keck JC, Heywood JB. Two-stage ignition in HCCI combustion and HCCI control by fuels and additives. Combust Flame 2003;132:219–39. doi:10.1016/S0010-2180(02)00457-1.
  • Tanaka S, Ayala F, Keck JC. A reduced chemical kinetic model for HCCI combustion of primary reference fuels in a rapid compression machine. Combust Flame 2003;133:467–81. doi:10.1016/S0010-2180(03)00057-9.
  • Ma J, Lü X, Ji L, Huang Z. An experimental study of HCCI-DI combustion and emissions in a diesel engine with dual fuel. Int J Therm Sci 2008;47:1235–42. doi:10.1016/j.ijthermalsci.2007.10.007.
  • Gan S, Ng HK, Pang KM. Homogeneous Charge Compression Ignition (HCCI) combustion: Implementation and effects on pollutants in direct injection diesel engines. Appl Energy 2011;88:559–67. doi:10.1016/j.apenergy.2010.09.005.
  • Kong S, Reitz RD. Application of Detailed Chemistry and CFD for Predicting. Proc Combust Inst 2002;29:663–9. doi:10.1016/S1540-7489(02)80085-2.
  • Wang Z, Liu H, Ma X, Wang J, Shuai S, Reitz RD. Homogeneous charge compression ignition (HCCI) combustion of polyoxymethylene dimethyl ethers (PODE). Fuel 2016;183:206–13. doi:10.1016/j.fuel.2016.06.033.
  • Polat S. An experimental study on combustion, engine performance and exhaust emissions in a HCCI engine fuelled with diethyl ether-ethanol fuel blends. Fuel Process Technol 2016;143:140–50. doi:10.1016/j.fuproc.2015.11.021.
  • Lawler B, Lacey J, Güralp O, Najt P, Filipi Z. HCCI combustion with an actively controlled glow plug: The effects on heat release, thermal stratification, efficiency, and emissions. Appl Energy 2018;211:809–19. doi:10.1016/j.apenergy.2017.11.089.
  • Calam A, Solmaz H, Yılmaz E, İçingür Y. Investigation of effect of compression ratio on combustion and exhaust emissions in A HCCI engine. Energy 2019;168:1208–16. doi:10.1016/j.energy.2018.12.023.
  • Uyumaz A. Combustion, performance and emission characteristics of a DI diesel engine fueled with mustard oil biodiesel fuel blends at different engine loads. Fuel 2018;212:256–67. doi:10.1016/j.fuel.2017.09.005.
  • Lü XC, Chen W, Huang Z. A fundamental study on the control of the HCCI combustion and emissions by fuel design concept combined with controllable EGR. Part 1. the basic characteristics of HCCI combustion. Fuel 2005;84:1074–83. doi:10.1016/j.fuel.2004.12.014.
  • Maurya RK, Agarwal AK. Experimental study of combustion and emission characteristics of ethanol fuelled port injected homogeneous charge compression ignition ( HCCI ) combustion engine. Appl Energy 2011;88:1169–80. doi:10.1016/j.apenergy.2010.09.015.
  • Iida M, Aroonsrisopon T, Hayashi M, Foster D, Martin J. The Effect of Intake Air Temperature, Compression Ratio and Coolant Temperature on the Start of Heat Release in An Hcci(Homogeneous Charge Compression Ignition) Engine. Sae 2001;111:220–6. doi:10.4271/2001-01-1880.
  • Andreae MM, Cheng WK, Kenney T, Yang J. On HCCI Engine Knock 2007. doi:10.4271/2007-01-1858.
  • Dec JE, Yang Y, Dronniou N. Boosted HCCI - Controlling Pressure-Rise Rates for Performance Improvements using Partial Fuel Stratification with Conventional Gasoline. SAE Int J Engines 2011;4:2011-01–0897. doi:10.4271/2011-01-0897.
  • Nishi M, Kanehara M, Iida N. Assessment for innovative combustion on HCCI engine by controlling EGR ratio and engine speed. Appl Therm Eng 2016;99:42–60. doi:10.1016/j.applthermaleng.2015.11.126.
  • Jung D, Iida N. Closed-loop control of HCCI combustion for DME using external EGR and rebreathed EGR to reduce pressure-rise rate with combustion-phasing retard. Appl Energy 2015;138:315–30. doi:10.1016/j.apenergy.2014.10.085.
  • Das P, Subbarao PMV, Subrahmanyam JP. Control of combustion process in an HCCI-DI combustion engine using dual injection strategy with EGR. Fuel 2015;159:580–9. doi:10.1016/j.fuel.2015.07.009.
  • Lü X, Hou Y, Zu L, Huang Z. Experimental study on the auto-ignition and combustion characteristics in the homogeneous charge compression ignition (HCCI) combustion operation with ethanol/n-heptane blend fuels by port injection. Fuel 2006;85:2622–31. doi:10.1016/j.fuel.2006.05.003.
  • Zhang C, Wu H. Combustion characteristics and performance of a methanol fueled homogenous charge compression ignition (HCCI) engine. J Energy Inst 2016;89:346–53. doi:10.1016/j.joei.2015.03.005.
  • Uyumaz A. An experimental investigation into combustion and performance characteristics of an HCCI gasoline engine fueled with n -heptane , isopropanol and n -butanol fuel blends at different inlet air temperatures. Energy Convers Manag 2015;98:199–207. doi:10.1016/j.enconman.2015.03.043.
  • Yusri IM, Mamat R, Azmi WH, Najafi G, Sidik NAC, Awad OI. Experimental investigation of combustion, emissions and thermal balance of secondary butyl alcohol-gasoline blends in a spark ignition engine. Energy Convers Manag 2016;123:1–14. doi:10.1016/j.enconman.2016.05.082.
  • Masurier JB, Foucher F, Dayma G, Dagaut P. Ozone applied to the homogeneous charge compression ignition engine to control alcohol fuels combustion. Appl Energy 2015;160:566–80. doi:10.1016/j.apenergy.2015.08.004.
  • Lü X, Ji L, Zu L, Hou Y, Huang C, Huang Z. Experimental study and chemical analysis of n -heptane homogeneous charge compression ignition combustion with port injection of reaction inhibitors. Combust Flame 2007;149:261–70. doi:10.1016/j.combustflame.2007.01.002.
  • Lü X, Yuchun H, Libin J, Linlin Z, Zhen H. Heat Release Analysis on Combustion and Parametric Study on Emissions of HCCI Engines Fueled with 2-Propanol / n -Heptane Blend Fuels. Energy Fuels 2006;20:1870–8. doi:10.1021/ef0601263.
  • Yao M, Chen Z, Zheng Z, Zhang B, Xing Y. Study on the controlling strategies of homogeneous charge compression ignition combustion with fuel of dimethyl ether and methanol. Fuel 2006;85:2046–56. doi:10.1016/j.fuel.2006.03.016.
  • Maurya RK, Agarwal AK. Experimental investigations of performance, combustion and emission characteristics of ethanol and methanol fueled HCCI engine. Fuel Process Technol 2014;126:30–48. doi:10.1016/j.fuproc.2014.03.031.
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Tasarım ve Teknoloji
Authors

Alper Calam 0000-0003-4125-2127

Bilal Aydoğan 0000-0002-7928-5867

Publication Date December 24, 2019
Submission Date August 11, 2019
Published in Issue Year 2019 Volume: 7 Issue: 4

Cite

APA Calam, A., & Aydoğan, B. (2019). İzopropanol ve Heptan Karışım Yakıtları Kullanımının Bir HCCI Motorda Performans Yanma ve Emisyon Karakteristiklerinin Deneysel İncelenmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 7(4), 818-833. https://doi.org/10.29109/gujsc.605057

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526