Research Article
BibTex RIS Cite

PET Lif Takviyeli Farklı Puzolanik İkameli Çimento Harçlarının Mekanik Etkisi

Year 2022, Volume: 10 Issue: 3, 408 - 422, 30.09.2022
https://doi.org/10.29109/gujsc.1140612

Abstract

Bu çalışmada, çimento harçlarında, Uçucu kül (UK), Yüksek Fırın Cürufunun (YFC) ve Polietilentereftalat (PET) lif takviyesi kullanarak mekanik ve fiziksel özellikler incelenmiştir. Bu amaçla, çimento harcının eğilme ve basınç dayanım özelliklerini arttırmak amacı ile karışıma bağlayıcı oranın ağırlığını %0.5 %1, %1.5 %2 ve %3 PET lif ilave edilmiş ve optimum lif takviyesi %1 olarak belirlenmiştir. Daha sonra %1 PET lif katkılı UK ve YFC %0, %5, %10, %15, %20, %25 ve %30 ikame edilerek kompozit numuneler üretilmiştir.
Yapılan çalışma sonuncunda; PET lifli karışımlarda, %1 PET lif ilave edildiğinde eğilme dayanımının %25.79 oranında arttığı görülmüştür. Bununla birlikte UK ikameli karışımlarda PET lif ilavesi artıkça eğilme dayanımının arttığı ve en yüksek eğilme dayanımının %1 PET lif takviyeli %10 UK ve YFC ikameli çimento harç karışımları olduğu görülmüştür. Harç numuneleri üzerinde, eğilme, basınç dayanımı ve ultrasonik ses hızı ölçümü deneyleri gerçekleştirilmiştir.

References

  • [1] Yan, H., Sun, W., & Chen, H. (1999). The effect of silica fume and steel fiber on the dynamic mechanical performance of high-strength concrete. Cement and Concrete Research, 29(3), 423–426. https://doi.org/10.1016/S0008-8846(98)00235-X1
  • [2] Kayali, O., Haque, M. N., & Zhu, B. (2003). Some characteristics of high strength fiber reinforced lightweight aggregate concrete. Cement and Concrete Composites, 25(2), 207–213. https://doi.org/10.1016/S0958-9465(02)00016-1
  • [3] Brandt, A. M. (2008). Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Composite Structures, 86(1–3), 3–9. https://doi.org/10.1016/J.COMPSTRUCT.2008.03.006
  • [4] Köksal, F., Altun, F., Yiǧit, I., & Şahin, Y. (2008). Combined effect of silica fume and steel fiber on the mechanical properties of high strength concretes. Construction and Building Materials, 22(8), 1874–1880. https://doi.org/10.1016/J.CONBUILDMAT.2007.04.017
  • [5] Shannag, M. J. (2000). High strength concrete containing natural pozzolan and silica fume. Cement and Concrete Composites, 22(6), 399–406. https://doi.org/10.1016/S0958-9465(00)00037-8
  • [6] Banthia, N., Yan, C., & Sakai, K. (1998). Impact resistance of fiber reinforced concrete at subnorma temperatures. Cement and Concrete Composites, 20(5), 393–404. https://doi.org/10.1016/S0958-9465(98)00015-8
  • [7] Toutanji, H., McNeil, S., & Bayasi, Z. (1998). Chloride permeability and impact resistance of polypropylene-fiber-reinforced silica fume concrete. Cement and Concrete Research, 28(7), 961–968. https://doi.org/10.1016/S0008-8846(98)00073-8
  • [8] Borg, R. P., Baldacchino, O., & Ferrara, L. (2016). Early age performance and mechanical characteristics of recycled PET fibre reinforced concrete. Construction and Building Materials, 108, 29–47. https://doi.org/10.1016/J.CONBUILDMAT.2016.01.029
  • [9] Ochi, T., Okubo, S., & Fukui, K. (2007). Development of recycled PET fiber and its application as concrete-reinforcing fiber. Cement and Concrete Composites, 29(6), 448–455. https://doi.org/10.1016/J.CEMCONCOMP.2007.02.002
  • [10] Fraternali, F., Spadea, S., & Berardi, V. P. (2014). Effects of recycled PET fibres on the mechanical properties and seawater curing of Portland cement-based concretes. Construction and Building Materials, 61, 293–302. https://doi.org/10.1016/J.CONBUILDMAT.2014.03.019
  • [11] Nili, M., & Afroughsabet, V. (2010). The effects of silica fume and polypropylene fibers on the impact resistance and mechanical properties of concrete. Construction and Building Materials, 24(6), 927–933. https://doi.org/10.1016/J.CONBUILDMAT.2009.11.025
  • [12] Alani, A. M., & Beckett, D. (2013). Mechanical properties of a large scale synthetic fibre reinforced concrete ground slab. Construction and Building Materials, 41, 335–344. https://doi.org/10.1016/J.CONBUILDMAT.2012.11.043
  • [13] Hsie, M., Tu, C., & Song, P. S. (2008). Mechanical properties of polypropylene hybrid fiber-reinforced concrete. Materials Science and Engineering: A, 494(1–2), 153–157. https://doi.org/10.1016/J.MSEA.2008.05.037
  • [14] Bošnjak, J., Ožbolt, J., & Hahn, R. (2013). Permeability measurement on high strength concrete without and with polypropylene fibers at elevated temperatures using a new test setup. Cement and Concrete Research, 53, 104–111. https://doi.org/10.1016/J.CEMCONRES.2013.06.005
  • [15] Rostami, M., & Behfarnia, K. (2017). The effect of silica fume on durability of alkali activated slag concrete. Construction and Building Materials, 134, 262–268. https://doi.org/10.1016/j.conbuildmat.2016.12.072
  • [16] Afroughsabet, V., & Ozbakkaloglu, T. (2015). Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Construction and Building Materials, 94, 73–82. https://doi.org/10.1016/J.CONBUILDMAT.2015.06.051
  • [17] Richardson, A.E., Coventry, K., Landless, S. Synthetic and steel fibers in concrete with regard to equal toughness. Structural Survey, (2010), 28: p. 355-369.
  • [18] Sümer, M. Uçucu kül atıklarının beton üretiminde değerlendirilmesi, I. Ulusal İnşaat & Çevre Sempozyumu, Salihli, Bildiriler Kitabı, (1994), p. 179-185.
  • [19] Koca, C. Yüksek performanslı beton üretiminde mikrosilis, curuf, klinker karışımı çimento kullanımı. 4. Ulusal Beton Kongresi Beton Teknolojisinde Mineral ve Kimyasal Katkılar Bildiri Kitabı, TMMOB İnşaat Mühendisleri Odası, İstanbul, (1996), p.381-394.
  • [20] Şengül, Ü. Uçucu kül ve çevresel etkileri. Afyon Kocatepe Üniversitesi Fen Bilimleri Dergisi, (2001), 7(1): p. 89-104.
  • [21] Zhang, P., Li, Q. Effect of polypropylene fiber on durability of concrete composite containing fly ash and silica fume. Composites: Part B, (2013), 45(1): p. 1587–1594.
  • [22] Ramezanianpour, A.A., Esmaeili M., Ghahari S.A., Najafi M.H. Laboratory study on the effect of polypropylene fiber on durability, and physical and mechanical characteristic of concrete for application in sleepers. Construction and Building Materials, (2013), 44: p. 411-418.
  • [23] Yaprak, H., Şimşek, O., Öneş, A. Cam ve çelik liflerin bazı beton özelliklerine etkisi. Politeknik Dergisi, (2004), 7(4): p. 353-358.
  • [24] Kim, S.B., Yi, N.H., Kim, H.Y., Kim, J.H.J., Song, Y.C. Material and structural performance evaluation of recycled PET fiber reinforced concrete. Cement and Concrete Composites, (2010), 32(3): p. 232–240.
  • [25] Foti, D. Preliminary analysis of concrete reinforced with waste bottles PET fibers. Construction and Building Materials, (2011), 25(4): p. 1906–1915.
  • [26] TS EN 197-1: Cement–Part 1: Composition, specification sand conformity criteria for common cements. Turkish Standard Institution, Ankara, (2012).
  • [27] Tayyar A. E. & Üstün S. Geri Kazanılmış Pet'in Kullanımı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 2010; 16(1): 53-62.
  • [28] TS EN 196-1: Methods of testing cement–Part 1: Determination of strength. Turkish Standard Institution, Ankara, (2016).
  • [29] ASTM C 597: Standard Test Method for Pulse Velocity Through Concrete, Annual Book of ASTM Standard, (Febuary 2003).
  • [30] Fanella D.A. and Naaman A.E., "Stress-Strain Properties of Fiber Reinforced Concrete in Compression", Journal of ACI Materials, 82 (4): 475 – 483, (1985)
  • [31] Khaloo A.R. and Afshari M., "Flexural Behavior of Small Steel Fiber Reinforced Concrete Slabs", Cement and Concrete Composites 27: 141–149, (2005).
  • [32] Uygunoğlu, T., "Investigation of microstructure and flexural behavior of steel-fiber reinforced concrete", Materials and Structures, 41(8): 1441-1449, (2008).
  • [33] Erdoğan T.Y., "Beton", ODTÜ Geliştirme Vakfı Yayn. ve İletişim Şti, 130-160, Ankara, Mayıs, (2003).

PET Lif Takviyeli Farklı Puzolanik İkameli Çimento Harçlarının Mekanik Etkisi

Year 2022, Volume: 10 Issue: 3, 408 - 422, 30.09.2022
https://doi.org/10.29109/gujsc.1140612

Abstract

Bu çalışmada, çimento harçlarında, Uçucu kül (UK), Yüksek Fırın Cürufunun (YFC) ve Polietilentereftalat (PET) lif takviyesi kullanarak mekanik ve fiziksel özellikler incelenmiştir. Bu amaçla, çimento harcının eğilme ve basınç dayanım özelliklerini arttırmak amacı ile karışıma bağlayıcı oranın ağırlığını %0.5 %1, %1.5 %2 ve %3 PET lif ilave edilmiş ve optimum lif takviyesi %1 olarak belirlenmiştir. Daha sonra %1 PET lif katkılı UK ve YFC %0, %5, %10, %15, %20, %25 ve %30 ikame edilerek kompozit numuneler üretilmiştir.
Yapılan çalışma sonuncunda; PET lifli karışımlarda, %1 PET lif ilave edildiğinde eğilme dayanımının %25.79 oranında arttığı görülmüştür. Bununla birlikte UK ikameli karışımlarda PET lif ilavesi artıkça eğilme dayanımının arttığı ve en yüksek eğilme dayanımının %1 PET lif takviyeli %10 UK ve YFC ikameli çimento harç karışımları olduğu görülmüştür. Harç numuneleri üzerinde, eğilme, basınç dayanımı ve ultrasonik ses hızı ölçümü deneyleri gerçekleştirilmiştir.

References

  • [1] Yan, H., Sun, W., & Chen, H. (1999). The effect of silica fume and steel fiber on the dynamic mechanical performance of high-strength concrete. Cement and Concrete Research, 29(3), 423–426. https://doi.org/10.1016/S0008-8846(98)00235-X1
  • [2] Kayali, O., Haque, M. N., & Zhu, B. (2003). Some characteristics of high strength fiber reinforced lightweight aggregate concrete. Cement and Concrete Composites, 25(2), 207–213. https://doi.org/10.1016/S0958-9465(02)00016-1
  • [3] Brandt, A. M. (2008). Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Composite Structures, 86(1–3), 3–9. https://doi.org/10.1016/J.COMPSTRUCT.2008.03.006
  • [4] Köksal, F., Altun, F., Yiǧit, I., & Şahin, Y. (2008). Combined effect of silica fume and steel fiber on the mechanical properties of high strength concretes. Construction and Building Materials, 22(8), 1874–1880. https://doi.org/10.1016/J.CONBUILDMAT.2007.04.017
  • [5] Shannag, M. J. (2000). High strength concrete containing natural pozzolan and silica fume. Cement and Concrete Composites, 22(6), 399–406. https://doi.org/10.1016/S0958-9465(00)00037-8
  • [6] Banthia, N., Yan, C., & Sakai, K. (1998). Impact resistance of fiber reinforced concrete at subnorma temperatures. Cement and Concrete Composites, 20(5), 393–404. https://doi.org/10.1016/S0958-9465(98)00015-8
  • [7] Toutanji, H., McNeil, S., & Bayasi, Z. (1998). Chloride permeability and impact resistance of polypropylene-fiber-reinforced silica fume concrete. Cement and Concrete Research, 28(7), 961–968. https://doi.org/10.1016/S0008-8846(98)00073-8
  • [8] Borg, R. P., Baldacchino, O., & Ferrara, L. (2016). Early age performance and mechanical characteristics of recycled PET fibre reinforced concrete. Construction and Building Materials, 108, 29–47. https://doi.org/10.1016/J.CONBUILDMAT.2016.01.029
  • [9] Ochi, T., Okubo, S., & Fukui, K. (2007). Development of recycled PET fiber and its application as concrete-reinforcing fiber. Cement and Concrete Composites, 29(6), 448–455. https://doi.org/10.1016/J.CEMCONCOMP.2007.02.002
  • [10] Fraternali, F., Spadea, S., & Berardi, V. P. (2014). Effects of recycled PET fibres on the mechanical properties and seawater curing of Portland cement-based concretes. Construction and Building Materials, 61, 293–302. https://doi.org/10.1016/J.CONBUILDMAT.2014.03.019
  • [11] Nili, M., & Afroughsabet, V. (2010). The effects of silica fume and polypropylene fibers on the impact resistance and mechanical properties of concrete. Construction and Building Materials, 24(6), 927–933. https://doi.org/10.1016/J.CONBUILDMAT.2009.11.025
  • [12] Alani, A. M., & Beckett, D. (2013). Mechanical properties of a large scale synthetic fibre reinforced concrete ground slab. Construction and Building Materials, 41, 335–344. https://doi.org/10.1016/J.CONBUILDMAT.2012.11.043
  • [13] Hsie, M., Tu, C., & Song, P. S. (2008). Mechanical properties of polypropylene hybrid fiber-reinforced concrete. Materials Science and Engineering: A, 494(1–2), 153–157. https://doi.org/10.1016/J.MSEA.2008.05.037
  • [14] Bošnjak, J., Ožbolt, J., & Hahn, R. (2013). Permeability measurement on high strength concrete without and with polypropylene fibers at elevated temperatures using a new test setup. Cement and Concrete Research, 53, 104–111. https://doi.org/10.1016/J.CEMCONRES.2013.06.005
  • [15] Rostami, M., & Behfarnia, K. (2017). The effect of silica fume on durability of alkali activated slag concrete. Construction and Building Materials, 134, 262–268. https://doi.org/10.1016/j.conbuildmat.2016.12.072
  • [16] Afroughsabet, V., & Ozbakkaloglu, T. (2015). Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Construction and Building Materials, 94, 73–82. https://doi.org/10.1016/J.CONBUILDMAT.2015.06.051
  • [17] Richardson, A.E., Coventry, K., Landless, S. Synthetic and steel fibers in concrete with regard to equal toughness. Structural Survey, (2010), 28: p. 355-369.
  • [18] Sümer, M. Uçucu kül atıklarının beton üretiminde değerlendirilmesi, I. Ulusal İnşaat & Çevre Sempozyumu, Salihli, Bildiriler Kitabı, (1994), p. 179-185.
  • [19] Koca, C. Yüksek performanslı beton üretiminde mikrosilis, curuf, klinker karışımı çimento kullanımı. 4. Ulusal Beton Kongresi Beton Teknolojisinde Mineral ve Kimyasal Katkılar Bildiri Kitabı, TMMOB İnşaat Mühendisleri Odası, İstanbul, (1996), p.381-394.
  • [20] Şengül, Ü. Uçucu kül ve çevresel etkileri. Afyon Kocatepe Üniversitesi Fen Bilimleri Dergisi, (2001), 7(1): p. 89-104.
  • [21] Zhang, P., Li, Q. Effect of polypropylene fiber on durability of concrete composite containing fly ash and silica fume. Composites: Part B, (2013), 45(1): p. 1587–1594.
  • [22] Ramezanianpour, A.A., Esmaeili M., Ghahari S.A., Najafi M.H. Laboratory study on the effect of polypropylene fiber on durability, and physical and mechanical characteristic of concrete for application in sleepers. Construction and Building Materials, (2013), 44: p. 411-418.
  • [23] Yaprak, H., Şimşek, O., Öneş, A. Cam ve çelik liflerin bazı beton özelliklerine etkisi. Politeknik Dergisi, (2004), 7(4): p. 353-358.
  • [24] Kim, S.B., Yi, N.H., Kim, H.Y., Kim, J.H.J., Song, Y.C. Material and structural performance evaluation of recycled PET fiber reinforced concrete. Cement and Concrete Composites, (2010), 32(3): p. 232–240.
  • [25] Foti, D. Preliminary analysis of concrete reinforced with waste bottles PET fibers. Construction and Building Materials, (2011), 25(4): p. 1906–1915.
  • [26] TS EN 197-1: Cement–Part 1: Composition, specification sand conformity criteria for common cements. Turkish Standard Institution, Ankara, (2012).
  • [27] Tayyar A. E. & Üstün S. Geri Kazanılmış Pet'in Kullanımı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 2010; 16(1): 53-62.
  • [28] TS EN 196-1: Methods of testing cement–Part 1: Determination of strength. Turkish Standard Institution, Ankara, (2016).
  • [29] ASTM C 597: Standard Test Method for Pulse Velocity Through Concrete, Annual Book of ASTM Standard, (Febuary 2003).
  • [30] Fanella D.A. and Naaman A.E., "Stress-Strain Properties of Fiber Reinforced Concrete in Compression", Journal of ACI Materials, 82 (4): 475 – 483, (1985)
  • [31] Khaloo A.R. and Afshari M., "Flexural Behavior of Small Steel Fiber Reinforced Concrete Slabs", Cement and Concrete Composites 27: 141–149, (2005).
  • [32] Uygunoğlu, T., "Investigation of microstructure and flexural behavior of steel-fiber reinforced concrete", Materials and Structures, 41(8): 1441-1449, (2008).
  • [33] Erdoğan T.Y., "Beton", ODTÜ Geliştirme Vakfı Yayn. ve İletişim Şti, 130-160, Ankara, Mayıs, (2003).
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Tasarım ve Teknoloji
Authors

Ahmet Filazi 0000-0002-5190-0741

Publication Date September 30, 2022
Submission Date July 4, 2022
Published in Issue Year 2022 Volume: 10 Issue: 3

Cite

APA Filazi, A. (2022). PET Lif Takviyeli Farklı Puzolanik İkameli Çimento Harçlarının Mekanik Etkisi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 10(3), 408-422. https://doi.org/10.29109/gujsc.1140612

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526