Research Article
BibTex RIS Cite

Seramik Takviyeli Al6061 Matrisli MMK’ların Vakum İnfiltrasyon Yöntemi ile Üretimi ve Yaşlandırma Isıl İşlemi

Year 2023, Volume: 11 Issue: 1, 273 - 283, 25.03.2023
https://doi.org/10.29109/gujsc.1210102

Abstract

Bu çalışmada, vakum infiltrasyon yöntemiyle Al6061 matrisli, % ağırlıkça farklı miktarlarda TiC, SiC ve B4C içeren hibrit takviyeli kompozitler üretilmiştir. Üretilen numunelere, 540ºC sıcaklıkta 3 saat çözündürme işlemi sonrasında 130ºC sıcaklıkta, 3’er saat aralıklarla toplam 24 saat yaşlandırma ısıl işlemi uygulanmıştır. Üretim ve ısıl işlemlerden sonra hibrit kompozitlere homojenliğini ve ıslatılabilirliğini değerlendirmek için FESEM, EDS ve XRD analizleri yapılmıştır. Analiz sonuçları değerlendirildiğinde; üretilen kompozitlerdeki takviyeler matris içinde homojen olarak dağılmıştır. Bu takviyeler 900ºC ergitme sıcaklığında, 5 dakika süreyle 520mmHg vakum ortamında üretilen yapılarda iyi ıslatılabilirlik sergilemiştir. Ayrıca ısıl işlemlerden sonra mikro sertlik ölçümleri yapılmıştır. Çözündürme sonrası uygulanan yaşlandırma sıcaklığına bağlı olarak sertliğin 18 saate kadar arttığı, 18 saat süreden sonra ise düştüğü görülmüştür.

Supporting Institution

Pamukkale Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

2021FEBE058

Thanks

2021FEBE058 Kodlu PAÜ BAP Projeleri kapsamında tasarlanmış İnfiltrasyon Sistemi kullanılmıştır. Yazarlar, katkılarından dolayı 2021FEBE058 Kodlu Yüksek Lisans Projesini destekleyen BAP birimine teşekkürlerini sunmaktadır

References

  • [1] Benedyk, J.C. (2010). Aluminum alloys for lightweight automotive structures. Materials, Design and Manufacturing for Lightweight Vehicles. Woodhead Publishing Limited.
  • [2] Florea, R.S., Solanki, K.N., Bammann, D. J., Baird, J. C., Jordon, J. B., & Castanier, M. P. Resistance spot welding of 6061-T6 aluminum: Failure loads and deformation. Materials & Design, 34(624-630), (2012).
  • [3] Siddiqui, R.A., Abdullah, H.A., & Al-Belushi, K. R. Influence of aging parameters on the mechanical properties of 6063 aluminium alloy. Journal of Materials Processing Technology, 102(1-3)(234-240), (2000).
  • [4] Wang, N., Zhou, Z., & Lu, G. Microstructural Evolution of 6061 Alloy during Isothermal Heat Treatment. Journal of Materials Science and Technology, 27(1)(8–14), (2011).
  • [5] Buha, J., Lumley, R. N., & Crosky, A. G. Microstructural development and mechanical properties of interrupted aged Al-Mg-Si-Cu alloy. Metallurgical and Materials Transactions A, 37(10)(3119-3130), (2006).
  • [6] Dietrich, G. A. (1998). Aluminum: technology, applications, and environment. A profile of a modern metal.
  • [7] Gopalakrishnan, S., & Murugan, N. Prediction of tensile strength of friction stir welded aluminium matrix TiCp particulate reinforced composite. Materials & Design, 32(1)(462-467), (2011).
  • [8] Naseri, M., Hassani, A., & Tajally, M. An alternative method for manufacturing Al/B4C/SiC hybrid composite strips by cross accumulative roll bonding (CARB) process. Ceramics International, 41(10)(13461-13469), (2015).
  • [9] Kim, H. H., J. S. S. Babu, and C. G. Kang. "Fabrication of A356 aluminum alloy matrix composite with CNTs/Al2O3 hybrid reinforcements." Materials Science and Engineering: A 573(92-99), (2013).
  • [10] Ashuri, H., & Hassani, A. Characterization of severely deformed new composites fabricated by powder metallurgy including a stage of mechanical alloying. Journal of alloys and compounds, 617(444-454), (2014).
  • [11] Pramod, S. L., Bakshi, S. R., & Murty, B. S. Aluminum-based cast in situ composites: a review. Journal of Materials Engineering and Performance, 24(6)(2185-2207), (2015).
  • [12] Tsaknopoulos, K., Walde, C., Champagne, V. et al. Gas-Atomized Al 6061 Powder: Phase Identification and Evolution During Thermal Treatment. JOM 71(435–443), (2019).
  • [13] Halil, K., İsmail, O., Sibel, D., & Ramazan, Ç. Wear and mechanical properties of Al6061/SiC/B4C hybrid composites produced with powder metallurgy. Journal of Materials Research and Technology, 8(6) (5348-5361), (2019).
  • [14] Maurya, N. K., Maurya, M., Srivastava, A. K., Dwivedi, S. P., & Chauhan, S. Investigation of mechanical properties of Al 6061/SiC composite prepared through stir casting technique. Materials Today: Proceedings, 25(755-758), (2020).
  • [15] Belmares-Perales, S., Castro-Román, M., Herrera-Trejo, M., & Ramírez-Vidaurri, L. E. Effect of cooling rate and Fe/Mn weight ratio on volume fractions of α-AlFeSi and β-AlFeSi phases in Al− 7.3 Si− 3.5 Cu alloy. Metals and Materials International, 14(3), 307-314, (2008).
  • [16] Alvarez-Antolin, F., Asensio-Lozano, J., Cofiño-Villar, A., & Gonzalez-Pociño, A. Analysis of Different Solution Treatments in the Transformation of β-AlFeSi Particles into α-(FeMn) Si and Their Influence on Different Ageing Treatments in Al–Mg–Si Alloys. Metals, 10(5), 620, (2020).
  • [17] Tunçay, T., & Bayoğlu, S. The effect of iron content on microstructure and mechanical properties of A356 cast alloy. Metallurgical and Materials Transactions B, 48(2), 794-804, (2017).
  • [18] Aksöz, S., Özdemir, A. T., Çalın, R., Altınok, Z., & Bostan, B. Sinterleme, Yaşlandırma Ve Kriyojenik Isıl İşlemlerinin AA2014-B4C Kompozit Yapısına ve Mekanik Özelliklerine Etkileri. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 28(4), (2013).
  • [19] Gündoğan, K., & ÖZSARI, A. R. B. Basınçlı İnfiltrasyon Yöntemiyle Üretilen AA2024 ve AA6061 Matrisli, B4C ve SiC Takviyeli Kompozit Malzemelerin Mikroyapı, Mekanik ve Isıl İletkenlik Özelliklerine Basıncın Etkisi. International Journal of Engineering Research and Development, 11(2) (657-669), (2019).
  • [20] Kıymaz, T., & Özçatalbaş, Y. B4C Takviye Oranı ve İkincil Sinterleme İşlemlerinin Al6061 Matrisli MMKp Malzemelerin Özelliklerine Etkisi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 8(3) (601-615), (2020).

Production and Aging Heat Treatment of Ceramic Reinforced Al6061 Matrix MMCs by Vacuum Infiltration Method

Year 2023, Volume: 11 Issue: 1, 273 - 283, 25.03.2023
https://doi.org/10.29109/gujsc.1210102

Abstract

In this study, hybrid reinforced composites with Al6061 matrix and different %wt. amounts TiC, SiC and B4C were produced by vacuum infiltration method. After dissolution at 540ºC for 3 hours, aging heat treatment was applied to the produced samples at 130ºC with 3-hour intervals for a total of 24 hours. FESEM, EDS and XRD analyzes were performed to evaluate the homogeneity and wettability of hybrid composites after production and heat treatment. When the analysis results were evaluated; reinforcements in the produced composites were homogeneously dispersed in the matrix. These reinforcements exhibited good wettability in the structures produced in a 520mmHg vacuum environment for 5 minutes at a melting temperature of 900ºC. In addition, microhardness measurements were made after the heat treatments. Depending on the aging temperature applied after dissolution, it was observed that the hardness increased up to 18 hours and decreased after 18 hours.

Project Number

2021FEBE058

References

  • [1] Benedyk, J.C. (2010). Aluminum alloys for lightweight automotive structures. Materials, Design and Manufacturing for Lightweight Vehicles. Woodhead Publishing Limited.
  • [2] Florea, R.S., Solanki, K.N., Bammann, D. J., Baird, J. C., Jordon, J. B., & Castanier, M. P. Resistance spot welding of 6061-T6 aluminum: Failure loads and deformation. Materials & Design, 34(624-630), (2012).
  • [3] Siddiqui, R.A., Abdullah, H.A., & Al-Belushi, K. R. Influence of aging parameters on the mechanical properties of 6063 aluminium alloy. Journal of Materials Processing Technology, 102(1-3)(234-240), (2000).
  • [4] Wang, N., Zhou, Z., & Lu, G. Microstructural Evolution of 6061 Alloy during Isothermal Heat Treatment. Journal of Materials Science and Technology, 27(1)(8–14), (2011).
  • [5] Buha, J., Lumley, R. N., & Crosky, A. G. Microstructural development and mechanical properties of interrupted aged Al-Mg-Si-Cu alloy. Metallurgical and Materials Transactions A, 37(10)(3119-3130), (2006).
  • [6] Dietrich, G. A. (1998). Aluminum: technology, applications, and environment. A profile of a modern metal.
  • [7] Gopalakrishnan, S., & Murugan, N. Prediction of tensile strength of friction stir welded aluminium matrix TiCp particulate reinforced composite. Materials & Design, 32(1)(462-467), (2011).
  • [8] Naseri, M., Hassani, A., & Tajally, M. An alternative method for manufacturing Al/B4C/SiC hybrid composite strips by cross accumulative roll bonding (CARB) process. Ceramics International, 41(10)(13461-13469), (2015).
  • [9] Kim, H. H., J. S. S. Babu, and C. G. Kang. "Fabrication of A356 aluminum alloy matrix composite with CNTs/Al2O3 hybrid reinforcements." Materials Science and Engineering: A 573(92-99), (2013).
  • [10] Ashuri, H., & Hassani, A. Characterization of severely deformed new composites fabricated by powder metallurgy including a stage of mechanical alloying. Journal of alloys and compounds, 617(444-454), (2014).
  • [11] Pramod, S. L., Bakshi, S. R., & Murty, B. S. Aluminum-based cast in situ composites: a review. Journal of Materials Engineering and Performance, 24(6)(2185-2207), (2015).
  • [12] Tsaknopoulos, K., Walde, C., Champagne, V. et al. Gas-Atomized Al 6061 Powder: Phase Identification and Evolution During Thermal Treatment. JOM 71(435–443), (2019).
  • [13] Halil, K., İsmail, O., Sibel, D., & Ramazan, Ç. Wear and mechanical properties of Al6061/SiC/B4C hybrid composites produced with powder metallurgy. Journal of Materials Research and Technology, 8(6) (5348-5361), (2019).
  • [14] Maurya, N. K., Maurya, M., Srivastava, A. K., Dwivedi, S. P., & Chauhan, S. Investigation of mechanical properties of Al 6061/SiC composite prepared through stir casting technique. Materials Today: Proceedings, 25(755-758), (2020).
  • [15] Belmares-Perales, S., Castro-Román, M., Herrera-Trejo, M., & Ramírez-Vidaurri, L. E. Effect of cooling rate and Fe/Mn weight ratio on volume fractions of α-AlFeSi and β-AlFeSi phases in Al− 7.3 Si− 3.5 Cu alloy. Metals and Materials International, 14(3), 307-314, (2008).
  • [16] Alvarez-Antolin, F., Asensio-Lozano, J., Cofiño-Villar, A., & Gonzalez-Pociño, A. Analysis of Different Solution Treatments in the Transformation of β-AlFeSi Particles into α-(FeMn) Si and Their Influence on Different Ageing Treatments in Al–Mg–Si Alloys. Metals, 10(5), 620, (2020).
  • [17] Tunçay, T., & Bayoğlu, S. The effect of iron content on microstructure and mechanical properties of A356 cast alloy. Metallurgical and Materials Transactions B, 48(2), 794-804, (2017).
  • [18] Aksöz, S., Özdemir, A. T., Çalın, R., Altınok, Z., & Bostan, B. Sinterleme, Yaşlandırma Ve Kriyojenik Isıl İşlemlerinin AA2014-B4C Kompozit Yapısına ve Mekanik Özelliklerine Etkileri. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 28(4), (2013).
  • [19] Gündoğan, K., & ÖZSARI, A. R. B. Basınçlı İnfiltrasyon Yöntemiyle Üretilen AA2024 ve AA6061 Matrisli, B4C ve SiC Takviyeli Kompozit Malzemelerin Mikroyapı, Mekanik ve Isıl İletkenlik Özelliklerine Basıncın Etkisi. International Journal of Engineering Research and Development, 11(2) (657-669), (2019).
  • [20] Kıymaz, T., & Özçatalbaş, Y. B4C Takviye Oranı ve İkincil Sinterleme İşlemlerinin Al6061 Matrisli MMKp Malzemelerin Özelliklerine Etkisi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 8(3) (601-615), (2020).
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Tasarım ve Teknoloji
Authors

Nurcihan Kısaoğlu 0000-0002-0377-2845

Nimet Kardeş Sever 0000-0002-3395-0171

Hasan Duran 0000-0002-0605-8882

Sinan Aksöz 0000-0003-4324-5043

Project Number 2021FEBE058
Early Pub Date March 14, 2023
Publication Date March 25, 2023
Submission Date November 25, 2022
Published in Issue Year 2023 Volume: 11 Issue: 1

Cite

APA Kısaoğlu, N., Kardeş Sever, N., Duran, H., Aksöz, S. (2023). Seramik Takviyeli Al6061 Matrisli MMK’ların Vakum İnfiltrasyon Yöntemi ile Üretimi ve Yaşlandırma Isıl İşlemi. Gazi University Journal of Science Part C: Design and Technology, 11(1), 273-283. https://doi.org/10.29109/gujsc.1210102

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526