Review
BibTex RIS Cite

KARRIKIN: LIFE FROM SMOKE

Year 2023, Volume: 11 Issue: 1, 184 - 196, 25.03.2023
https://doi.org/10.29109/gujsc.1217335

Abstract

Karrikins (KARs) are unique butenolites found in the smoke of burning plant material during forest fires that act as a plant growth regulator. KARs in the smoke accelerate the abundance of plant communities, promoting seed germination, seedling formation and ecological diversity. KARs also mediate tolerance to different deficient conditions such as oxidative stress, drought, low light intensity (shade stress) and salinity. The signaling pathway is closely related to strigolactones but unique from strigolactones. Due to structural affinity with strigolactones, KARs have potential roles in mediating abiotic stress tolerance in plants. In addition, KAR interacts directly or indirectly with important phytohormones such as abscisic acid, gibberellic acid, auxins and ethylene. With this article, you will have access to many up-to-date studies and information on karrikin and smoke water.

References

  • [1] Scott, A. C., & Glasspool, I. J. (2006). The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proceedings of the National Academy of Sciences of the United States of America, 103(29), 10861-10865. https://doi.org/10.1073/pnas.0604090103
  • [2] Pausas, J. G., & Keeley, J. E. (2009). A burning story: The role of fire in the history of life. BioScience, 59(7), 593-601. https://doi.org/10.1525/bio.2009.59.7.10
  • [3] Bradshaw, S. D., Dixon, K. W., Hopper, S. D., Lambers, H., & Turner, S. R. (2011). Little evidence for fire-adapted plant traits in Mediterranean climate regions. Trends in Plant Science, 16(2), 69-76. https://doi.org/10.1016/j.tplants.2010.10.007
  • [4] Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J., & Bradstock, R. A. (2011). Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science, 16(8), 406-411. https://doi.org/10.1016/j.tplants.2011.04.002
  • [5] Dixon, K. W., Merritt, D. J., Flematti, G. R., & Ghisalberti, E. L. (2009). Karrikinolide-A phytoreactive compound derived from smoke with applications in horticulture, ecological restoration and agriculture. Acta Horticulturae, 813(October 2015), 155-170. https://doi.org/10.17660/actahortic.2009.813.20
  • [6] Light, M. E., Daws, M. I., & Van Staden, J. (2009). Smoke-derived butenolide: Towards understanding its biological effects. South African Journal of Botany, 75(1), 1-7. https://doi.org/10.1016/j.sajb.2008.10.004
  • [7] Baldwin, I. T., Staszak-Kozinski, L., & Davidson, R. (1994). Up in smoke: I. Smoke-derived germination cues for postfire annual, Nicotiana attenuata torr. Ex. Watson. Journal of Chemical Ecology, 20(9), 2345-2371. https://doi.org/10.1007/BF02033207
  • [8] Baxter, B. J. M., Van Staden, J., Granger, J. E., & Brown, N. A. C. (1994). Plant-derived smoke and smoke extracts stimulate seed germination of the fire-climax grass Themeda triandra. Environmental and Experimental Botany, 34(2), 217-223. https://doi.org/10.1016/0098-8472(94)90042-6
  • [9] Van Staden, J., Jager, A., & Strydom, A. (1995). Interaction between a plant-derived smoke extract, light and phytohormones on the germination of light-sensitive lettuce seeds. Plant Growth Regulation, 17, 213-218.
  • [10] Wicklow, D. T. (1977). Germination Response in Emmenanthe Penduliflora (Hydrophyllaceae). Ecology, 58(1), 201-205.
  • [11] Keeley, J.E., Morton, B. A., Pedrosa, A., & Trotter, P. (1985). Role of Allelopathy, Heat and Charred Wood in the Germination of Chaparral Herbs and Suffrutescents. Journal of Ecology, 73(2), 445-458.
  • [12] Keeley, S. C., & Pizzorno, M. (1986). Charred Wood Stimulated Germination of Two Fire-Following Herbs of the California Chaparral and the Role of Hemicellulose. American Journal of Botany, 73(9), 1289-1297. https://doi.org/10.1002/j.1537-2197.1986.tb10870.x
  • [13] Chiwocha, S. D. S., Dixon, K. W., Flematti, G. R., Ghisalberti, E. L., Merritt, D. J., Nelson, D. C., Riseborough, J. A. M., Smith, S. M., Stevens, J. C. (2009). Karrikins: A new family of plant growth regulators in smoke. Plant Science, 177(4), 252-256. https://doi.org/10.1016/j.plantsci.2009.06.007
  • [14] De Lange, J. H., & Boucher, C. (1990). Autecological studies on Audouinia capitata (Bruniaceae). I. Plant-derived smoke as a seed germination cue. South African Journal of Botany, 56(6), 700–703. https://doi.org/10.1016/s0254-6299(16)31009-2
  • [15] Jäger, A. K., Light, M. E., & Van Staden, J. (1996). Effects of source of plant material and temperature on the production of smoke extracts that promote germination of light-sensitive lettuce seeds. Environmental and Experimental Botany, 36(4), 421–429. https://doi.org/10.1016/S0098-8472(96)01024-6
  • [16] Flematti, G. R., Ghisalberti, E. L., Dixon, K. W., & Trengove, R. D. (2004). A compound from smoke that promotes seed germination. Science, 305, 977. https://doi.org/10.1126/science.1099944
  • [17] Nelson, D. C., Flematti, G. R., Ghisalberti, E. L., Dixon, K. W., & Smith, S. M. (2012). Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annual Review of Plant Biology, 63, 107–130. https://doi.org/10.1146/annurev-arplant-042811-105545
  • [18] Van Staden, J., Brown, N. A. C., Jäger, A. K., & Johnson, T. A. (2000). Smoke as a germination cue. Plant Species Biology, 15(2), 167–178. https://doi.org/10.1046/j.1442-1984.2000.00037.x
  • [19] Flematti, G. R., Scaffidi, A., Dixon, K. W., Smith, S. M., & Ghisalberti, E. L. (2011). Production of the seed germination stimulant karrikinolide from combustion of simple carbohydrates. Journal of Agricultural and Food Chemistry, 59(4), 1195–1198. https://doi.org/10.1021/jf1041728
  • [20] Flematti, G. R., Ghisalberti, E. L., Dixon, K. W., & Trengove, R. D. (2009). Identification of alkyl substituted 2H-furo[2,3-c]pyran-2-ones as germination stimulants present in smoke. Journal of Agricultural and Food Chemistry, 57(20), 9475–9480. https://doi.org/10.1021/jf9028128
  • [21] Flematti, G. R., Goddard-Borger, E. D., Merritt, D. J., Ghisalberti, E. L., Dixon, K. W., & Trengove, R. D. (2007). Preparation of 2H-furo[2,3-c]pyran-2-one derivatives and evaluation of their germination-promoting activity. Journal of Agricultural and Food Chemistry, 55(6), 2189–2194. https://doi.org/10.1021/jf0633241
  • [22] Sun, K., Chen, Y., Wagerle, T., Linnstaedt, D., Currie, M., Chmura, P., & Xu, M. (2008). Synthesis of butenolides as seed germination stimulants. Tetrahedron Letters, 49(18), 2922–2925. https://doi.org/10.1016/j.tetlet.2008.03.024
  • [23] Nelson, D. C., Flematti, G. R., Riseborough, J. A., Ghisalberti, E. L., Dixon, K. W., & Smitha, S. M. (2010). Karrikins enhance light responses during germination and seedling development in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 107(15), 7095–7100. https://doi.org/10.1073/pnas.0911635107
  • [24] Nelson, D. C., Riseborough, J. A., Flematti, G. R., Stevens, J., Ghisalberti, E. L., Dixon, K. W., & Smith, S. M. (2009). Karrikins discovered in smoke trigger arabidopsis seed germination by a mechanism requiring gibberellic acid synthesis and light. Plant Physiology, 149(2), 863–873. https://doi.org/10.1104/pp.108.131516
  • [25] Flematti, G. R., Ghisalberti, E. L., Dixon, K. W., & Trengove, R. D. (2005). Synthesis of the seed germination stimulant 3-methyl-2H-furo[2,3-c]pyran-2- one. Tetrahedron Letters, 46(34), 5719–5721. https://doi.org/10.1016/j.tetlet.2005.06.077
  • [26] De Cuyper, C., Struk, S., Braem, L., Gevaert, K., De Jaeger, G., & Goormachtig, S. (2017). Strigolactones, karrikins and beyond. Plant Cell and Environment, 40(9), 1691–1703. https://doi.org/10.1111/pce.12996
  • [27] Light, M. E., Gardner, M. J., Jäger, A. K., & Van Staden, J. (2002). Dual regulation of seed germination by smoke solutions. Plant Growth Regulation, 37(2), 135–141. https://doi.org/10.1023/A:1020536711989
  • [28] Light, M. E., Burger, B. V., Staerk, D., Kohout, L., & Van Staden, J. (2010). Butenolides from plant-derived smoke: natural plant-growth regulators with antagonistic actions on seed germination. Journal of Natural Products, 73(2), 267–269. https://doi.org/10.1021/np900630w
  • [29] Van Staden, J., Jäger, A. K., Light, M. E., & Burger, B. V. (2004). Isolation of the major germination cue from plant-derived smoke. South African Journal of Botany, 70(4), 654–659. https://doi.org/10.1016/S0254-6299(15)30206-4
  • [30] Schwachtje, J., & Baldwin, I. T. (2004). Smoke exposure alters endogenous gibberellin and abscisic acid pools and gibberellin sensitivity while eliciting germination in the post-fire annual, Nicotiana attenuata. Seed Science Research, 14(1), 51–60. https://doi.org/10.1079/ssr2003154
  • [31] Merritt, D. J., Kristiansen, M., Flematti, G. R., Turner, S. R., Ghisalberti, E. L., Trengove, R. D., & Dixon, K. W. (2006). Effects of a butenolide present in smoke on light-mediated germination of Australian Asteraceae. Seed Science Research, 16(1), 29–35. https://doi.org/10.1079/ssr2005232
  • [32] Daws, M., Davies, J., Pritchard, H., N.A.C, B., & Van Staden, J. (2007). Butenolide from plant-derived smoke enhances germination and seedling growth of arable weeds species. Plant Growth Regulation, 51, 73–82.
  • [33] Stevens, J., Merritt, D., Flematti, G., Ghisalberti, E., & Dixon, K. (2007). Seed germination of agricultural weeds is promoted by the butenolide 3-methyl-2H-furo[2,3-c]pyran-2-one under laboratory and field conditions. Plant Soil, 298, 113–24.
  • [34] Bewley, J. (1997). Seed germination and dormancy. Plant Cell, 9, 1055–1066.
  • [35] Grossmann, K. (1990). Plant growth retardants as tools in physiological research. Physiologia Plantarum, 78, 640–648.
  • [36] Kumlay, A. M., & Eryiğit, T. (2011). Bitkilerde Büyüme ve Gelişmeyi Düzenleyici Maddeler: Bitki Hormonları. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi Iğdır, 1(2), 47–56.
  • [37] Flematti, G. R., Dixon, K. W., & Smith, S. M. (2015). What are karrikins and how were they “discovered” by plants? BMC Biology, 13(1), 1–7. https://doi.org/10.1186/s12915-015-0219-0
  • [38] Nelson, D. C., Scaffidi, A., Dun, E. A., Waters, M. T., Flematti, G. R., Dixon, K. W., Christine, A., B., Emilio L. G., & Smith, S. M. (2011). F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 108(21), 8897–8902. https://doi.org/10.1073/pnas.1100987108
  • [39] Waters, M. T., Smith, S. M., & Nelson, D. C. (2011). Smoke signals and seed dormancy: Where next for MAX2? Plant Signaling and Behavior, 6(9), 1418–1422. https://doi.org/10.4161/psb.6.9.17303
  • [40] Shen, H., Luong, P., & Huq, E. (2007). The F-box protein MAX2 functions as a positive regulator of photomorphogenesis in Arabidopsis. Plant Physiology, 145(4), 1471–1483. https://doi.org/10.1104/pp.107.107227
  • [41] Bythell-Douglas, R., Rothfels, C. J., Stevenson, D. W. D., Graham, S. W., Wong, G. K. S., Nelson, D. C., & Bennett, T. (2017). Evolution of strigolactone receptors by gradual neo-functionalization of KAI2 paralogues. BMC Biology, 15(1), 1–21. https://doi.org/10.1186/s12915-017-0397-z
  • [42] Waters, M. T., Scaffidi, A., Sun, Y. K., Flematti, G. R., & Smith, S. M. (2014). The karrikin response system of Arabidopsis. Plant Journal, 79(4), 623–631. https://doi.org/10.1111/tpj.12430
  • [43] Stanga, J. P., Smith, S. M., Briggs, W. R., & Nelson, D. C. (2013). Suppressor of more axillary growth2 1 controls seed germination and seedling development in Arabidopsis. Plant Physiology, 163(1), 318–330. https://doi.org/10.1104/pp.113.221259
  • [44] Khosla, A., Morffy, N., Li, Q., Faure, L., Chang, S. H., Yao, J., & Nelson, D. C. (2020). Structure–Function analysis of SMAX1 reveals domains that mediate its karrikin-induced proteolysis and interaction with the receptor KAI2. Plant Cell, 32(8), 2639–2659. https://doi.org/10.1105/tpc.19.00752
  • [45] Kochanek, J., Long, R. L., Lisle, A. T., & Flematti, G. R. (2016). Karrikins identified in biochars indicate post-fire chemical cues can influence community diversity and plant development. PLoS ONE, 11(8), 1–19. https://doi.org/10.1371/journal.pone.0161234
  • [46] Van Staden, J., Sparg, S. G., Kulkarni, M. G., & Light, M. E. (2006). Post-germination effects of the smoke-derived compound 3-methyl-2H-furo[2,3-c]pyran-2-one, and its potential as a preconditioning agent. Field Crops Research, 98(2–3), 98–105. https://doi.org/10.1016/j.fcr.2005.12.007
  • [47] Tavsanoǧlu, C., Ergan, G., Catav, S. S., Zare, G., Küçükakyüz, K., & Özüdoǧru, B. (2017). Multiple fire-related cues stimulate germination in Chaenorhinum rubrifolium (Plantaginaceae), a rare annual in the Mediterranean Basin. Seed Science Research, 27(1), 26–38. https://doi.org/10.1017/S0960258516000283
  • [48] Çatav, Ş. S., Bekar, I., Ateş, B. S., Ergan, G., Oymak, F., Ülker, E. D., & Tavşanoǧlu, Ç. (2012). Germination response of five eastern Mediterranean woody species to smoke solutions derived from various plants. Turkish Journal of Botany, 36(5), 480–487. https://doi.org/10.3906/bot-1111-12
  • [49] Çatav, Ş. S., Küçükakyüz, K., Akbaş, K., & Tavşanoǧlu, Ç. (2014). Smoke-enhanced seed germination in Mediterranean Lamiaceae. Seed Science Research, 24(3), 257–264. https://doi.org/10.1017/S0960258514000142
  • [49] Kazancı, D. D. (2014). Akdeniz Bitkilerinin Yangın Sonrası Çimlenme Özelliklerinin Belirlenmesi, Yüksek Lisans Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • [50] Kępczyński, J. (2018). Induction of agricultural weed seed germination by smoke and smoke-derived karrikin (KAR1), with a particular reference to Avena fatua L. Acta Physiologiae Plantarum, 40(5). https://doi.org/10.1007/s11738-018-2663-2
  • [51] Cembrowska-Lech, D., & Kępczyński, J. (2016). Gibberellin-like effects of KAR1 on dormancy release of Avena fatua caryopses include participation of non-enzymatic antioxidants and cell cycle activation in embryos. Planta, 243(2), 531–548. https://doi.org/10.1007/s00425-015-2422-1
  • [52] Banerjee, A., & Roychoudhury, A. (2015). WRKY proteins: Signaling and regulation of expression during abiotic stress responses. Scientific World Journal, 2015, 17. https://doi.org/10.1155/2015/807560 [53] MousaviNik, M., Jowkar, A., & RahimianBoogar, A. (2016). Positive effects of karrikin on seed germination of three medicinal herbs under drought stress. Iran Agricultural Research, 35(2), 57–64. https://doi.org/10.22099/iar.2016.3780
  • [54] Li, W., Nguyen, K. H., Chu, H. D., Ha, C. Van, Watanabe, Y., Osakabe, Y., & Tran, L. S. P. (2017). The karrikin receptor KAI2 promotes drought resistance in Arabidopsis thaliana. PLoS Genetics, 13(11), 1–14. https://doi.org/10.1371/journal.pgen.1007076
  • [55] Casal, J. J. (2013). Photoreceptor signaling networks in plant responses to shade. Annual Review of Plant Biology, 64, 403–427. https://doi.org/10.1146/annurev-arplant-050312-120221
  • [56] Chen, J., Xu, W., Velten, J., Xin, Z., & Stout, J. (2012). Characterization of maize inbred lines for drought and heat tolerance. Journal of Soil and Water Conservation, 67(5), 354–364. https://doi.org/10.2489/jswc.67.5.354
  • [57] Bayuelo-Jiménez, J. S., Craig, R., & Lynch, J. P. (2002). Salinity tolerance of Phaseolus species during germination and early seedling growth. Crop Science, 42(5), 1584–1594. https://doi.org/10.2135/cropsci2002.1584
  • [58] Jain, N., & Van Staden, J. (2007). The potential of the smoke-derived compound 3-methyl-2H-furo[2,3-c]pyran-2- one as a priming agent for tomato seeds. Seed Science Research, 17(3), 175–181. https://doi.org/10.1017/S0960258507785896
  • [59] Aremu, A. O., Bairu, M. W., Finnie, J. F., & van Staden, J. (2012). Stimulatory role of smoke-water and karrikinolide on the photosynthetic pigment and phenolic contents of micropropagated “Williams” bananas. Plant Growth Regulation, 67(3), 271–279. https://doi.org/10.1007/s10725-012-9685-3
  • [60] Sharifi, P., & Shirani Bidabadi, S. (2020). Protection against salinity stress in black cumin involves karrikin and calcium by improving gas exchange attributes, ascorbate–glutathione cycle and fatty acid compositions. SN Applied Sciences, 2(12), 1–14. https://doi.org/10.1007/s42452-020-03843-3
  • [61] Çatav, Ş. S., Surgun-Acar, Y., & Zemheri-Navruz, F. (2021). Physiological, biochemical, and molecular responses of wheat seedlings to salinity and plant-derived smoke. South African Journal of Botany, 139, 148–157. https://doi.org/10.1016/j.sajb.2021.02.011
  • [63] Hayat, N., Afroz, N., Rehman, S., Bukhari, S. H., Iqbal, K., Khatoon, A., & Nawaz, G. (2022). Plant-derived smoke ameliorates salt stress in wheat by enhancing expressions of stress-responsive genes and antioxidant enzymatic activity. Agronomy, 12(1). https://doi.org/10.3390/agronomy12010028
  • [64] Khatoon, A., Ur R. S., Aslam, M. M., Jamil, M., & Komatsu, S. (2020). Plant-derived smoke affects biochemical mechanism on plant growth and seed germination. International Journal of Molecular Sciences, 21(20), 1–23. https://doi.org/10.3390/ijms21207760
  • [65] Jamil, M., Kanwal, M., Aslam, M. M., Khan, S. U., Malook, I., Tu, J., & Rehman, S. (2014). Effect of plant-derived smoke priming on physiological and biochemical characteristics of rice under salt stress condition. Australian Journal of Crop Science, 8(2), 159–170.
  • [66] Shah, F. A., Wei, X., Wang, Q., Liu, W., Wang, D., Yao, Y., & Wu, L. (2020). Karrikin Improves Osmotic and Salt Stress Tolerance via the Regulation of the Redox Homeostasis in the Oil Plant Sapium sebiferum. Frontiers in Plant Science, 11(March), 1–14. https://doi.org/10.3389/fpls.2020.00216

KARRİKİN: DUMANDAN GELEN YAŞAM

Year 2023, Volume: 11 Issue: 1, 184 - 196, 25.03.2023
https://doi.org/10.29109/gujsc.1217335

Abstract

Karrikinler (KAR) orman yangınları sırasında yanan bitkisel materyalin dumanında bulunan bir bitki büyüme düzenleyicisi gibi görev alan benzersiz bütenolitlerdir. Dumanın içeriğinde yer alan KAR’lar, bitki topluluklarının bolluğunu hızlandırarak tohum çimlenmesini, fide oluşumunu ve ekolojik çeşitliliği teşvik ederler. KAR’ler ayrıca oksidatif stres, kuraklık, düşük ışık yoğunluğu (gölge stresi) ve tuzluluk gibi farklı yetersiz koşullara karşı toleransa aracılık ederler. Sinyal yolu strigolaktonlar ile yakından ilişkilidir, ancak strigolaktonlardan farklıdır. Strigolaktonlar ile yapısal akrabalık nedeniyle, KAR'lar bitkilerde abiyotik stres toleransına aracılık etmede potansiyel rollere sahiptir. Ek olarak KAR, absisik asit, giberellik asit, oksinler ve etilen gibi önemli fitohormonlarla doğrudan ya da dolaylı olarak etkileşime girerler. Bu makale ile karrikin ve duman suyuna dair pek çok güncel çalışmaya değinilmiştir.

References

  • [1] Scott, A. C., & Glasspool, I. J. (2006). The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proceedings of the National Academy of Sciences of the United States of America, 103(29), 10861-10865. https://doi.org/10.1073/pnas.0604090103
  • [2] Pausas, J. G., & Keeley, J. E. (2009). A burning story: The role of fire in the history of life. BioScience, 59(7), 593-601. https://doi.org/10.1525/bio.2009.59.7.10
  • [3] Bradshaw, S. D., Dixon, K. W., Hopper, S. D., Lambers, H., & Turner, S. R. (2011). Little evidence for fire-adapted plant traits in Mediterranean climate regions. Trends in Plant Science, 16(2), 69-76. https://doi.org/10.1016/j.tplants.2010.10.007
  • [4] Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J., & Bradstock, R. A. (2011). Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science, 16(8), 406-411. https://doi.org/10.1016/j.tplants.2011.04.002
  • [5] Dixon, K. W., Merritt, D. J., Flematti, G. R., & Ghisalberti, E. L. (2009). Karrikinolide-A phytoreactive compound derived from smoke with applications in horticulture, ecological restoration and agriculture. Acta Horticulturae, 813(October 2015), 155-170. https://doi.org/10.17660/actahortic.2009.813.20
  • [6] Light, M. E., Daws, M. I., & Van Staden, J. (2009). Smoke-derived butenolide: Towards understanding its biological effects. South African Journal of Botany, 75(1), 1-7. https://doi.org/10.1016/j.sajb.2008.10.004
  • [7] Baldwin, I. T., Staszak-Kozinski, L., & Davidson, R. (1994). Up in smoke: I. Smoke-derived germination cues for postfire annual, Nicotiana attenuata torr. Ex. Watson. Journal of Chemical Ecology, 20(9), 2345-2371. https://doi.org/10.1007/BF02033207
  • [8] Baxter, B. J. M., Van Staden, J., Granger, J. E., & Brown, N. A. C. (1994). Plant-derived smoke and smoke extracts stimulate seed germination of the fire-climax grass Themeda triandra. Environmental and Experimental Botany, 34(2), 217-223. https://doi.org/10.1016/0098-8472(94)90042-6
  • [9] Van Staden, J., Jager, A., & Strydom, A. (1995). Interaction between a plant-derived smoke extract, light and phytohormones on the germination of light-sensitive lettuce seeds. Plant Growth Regulation, 17, 213-218.
  • [10] Wicklow, D. T. (1977). Germination Response in Emmenanthe Penduliflora (Hydrophyllaceae). Ecology, 58(1), 201-205.
  • [11] Keeley, J.E., Morton, B. A., Pedrosa, A., & Trotter, P. (1985). Role of Allelopathy, Heat and Charred Wood in the Germination of Chaparral Herbs and Suffrutescents. Journal of Ecology, 73(2), 445-458.
  • [12] Keeley, S. C., & Pizzorno, M. (1986). Charred Wood Stimulated Germination of Two Fire-Following Herbs of the California Chaparral and the Role of Hemicellulose. American Journal of Botany, 73(9), 1289-1297. https://doi.org/10.1002/j.1537-2197.1986.tb10870.x
  • [13] Chiwocha, S. D. S., Dixon, K. W., Flematti, G. R., Ghisalberti, E. L., Merritt, D. J., Nelson, D. C., Riseborough, J. A. M., Smith, S. M., Stevens, J. C. (2009). Karrikins: A new family of plant growth regulators in smoke. Plant Science, 177(4), 252-256. https://doi.org/10.1016/j.plantsci.2009.06.007
  • [14] De Lange, J. H., & Boucher, C. (1990). Autecological studies on Audouinia capitata (Bruniaceae). I. Plant-derived smoke as a seed germination cue. South African Journal of Botany, 56(6), 700–703. https://doi.org/10.1016/s0254-6299(16)31009-2
  • [15] Jäger, A. K., Light, M. E., & Van Staden, J. (1996). Effects of source of plant material and temperature on the production of smoke extracts that promote germination of light-sensitive lettuce seeds. Environmental and Experimental Botany, 36(4), 421–429. https://doi.org/10.1016/S0098-8472(96)01024-6
  • [16] Flematti, G. R., Ghisalberti, E. L., Dixon, K. W., & Trengove, R. D. (2004). A compound from smoke that promotes seed germination. Science, 305, 977. https://doi.org/10.1126/science.1099944
  • [17] Nelson, D. C., Flematti, G. R., Ghisalberti, E. L., Dixon, K. W., & Smith, S. M. (2012). Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annual Review of Plant Biology, 63, 107–130. https://doi.org/10.1146/annurev-arplant-042811-105545
  • [18] Van Staden, J., Brown, N. A. C., Jäger, A. K., & Johnson, T. A. (2000). Smoke as a germination cue. Plant Species Biology, 15(2), 167–178. https://doi.org/10.1046/j.1442-1984.2000.00037.x
  • [19] Flematti, G. R., Scaffidi, A., Dixon, K. W., Smith, S. M., & Ghisalberti, E. L. (2011). Production of the seed germination stimulant karrikinolide from combustion of simple carbohydrates. Journal of Agricultural and Food Chemistry, 59(4), 1195–1198. https://doi.org/10.1021/jf1041728
  • [20] Flematti, G. R., Ghisalberti, E. L., Dixon, K. W., & Trengove, R. D. (2009). Identification of alkyl substituted 2H-furo[2,3-c]pyran-2-ones as germination stimulants present in smoke. Journal of Agricultural and Food Chemistry, 57(20), 9475–9480. https://doi.org/10.1021/jf9028128
  • [21] Flematti, G. R., Goddard-Borger, E. D., Merritt, D. J., Ghisalberti, E. L., Dixon, K. W., & Trengove, R. D. (2007). Preparation of 2H-furo[2,3-c]pyran-2-one derivatives and evaluation of their germination-promoting activity. Journal of Agricultural and Food Chemistry, 55(6), 2189–2194. https://doi.org/10.1021/jf0633241
  • [22] Sun, K., Chen, Y., Wagerle, T., Linnstaedt, D., Currie, M., Chmura, P., & Xu, M. (2008). Synthesis of butenolides as seed germination stimulants. Tetrahedron Letters, 49(18), 2922–2925. https://doi.org/10.1016/j.tetlet.2008.03.024
  • [23] Nelson, D. C., Flematti, G. R., Riseborough, J. A., Ghisalberti, E. L., Dixon, K. W., & Smitha, S. M. (2010). Karrikins enhance light responses during germination and seedling development in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 107(15), 7095–7100. https://doi.org/10.1073/pnas.0911635107
  • [24] Nelson, D. C., Riseborough, J. A., Flematti, G. R., Stevens, J., Ghisalberti, E. L., Dixon, K. W., & Smith, S. M. (2009). Karrikins discovered in smoke trigger arabidopsis seed germination by a mechanism requiring gibberellic acid synthesis and light. Plant Physiology, 149(2), 863–873. https://doi.org/10.1104/pp.108.131516
  • [25] Flematti, G. R., Ghisalberti, E. L., Dixon, K. W., & Trengove, R. D. (2005). Synthesis of the seed germination stimulant 3-methyl-2H-furo[2,3-c]pyran-2- one. Tetrahedron Letters, 46(34), 5719–5721. https://doi.org/10.1016/j.tetlet.2005.06.077
  • [26] De Cuyper, C., Struk, S., Braem, L., Gevaert, K., De Jaeger, G., & Goormachtig, S. (2017). Strigolactones, karrikins and beyond. Plant Cell and Environment, 40(9), 1691–1703. https://doi.org/10.1111/pce.12996
  • [27] Light, M. E., Gardner, M. J., Jäger, A. K., & Van Staden, J. (2002). Dual regulation of seed germination by smoke solutions. Plant Growth Regulation, 37(2), 135–141. https://doi.org/10.1023/A:1020536711989
  • [28] Light, M. E., Burger, B. V., Staerk, D., Kohout, L., & Van Staden, J. (2010). Butenolides from plant-derived smoke: natural plant-growth regulators with antagonistic actions on seed germination. Journal of Natural Products, 73(2), 267–269. https://doi.org/10.1021/np900630w
  • [29] Van Staden, J., Jäger, A. K., Light, M. E., & Burger, B. V. (2004). Isolation of the major germination cue from plant-derived smoke. South African Journal of Botany, 70(4), 654–659. https://doi.org/10.1016/S0254-6299(15)30206-4
  • [30] Schwachtje, J., & Baldwin, I. T. (2004). Smoke exposure alters endogenous gibberellin and abscisic acid pools and gibberellin sensitivity while eliciting germination in the post-fire annual, Nicotiana attenuata. Seed Science Research, 14(1), 51–60. https://doi.org/10.1079/ssr2003154
  • [31] Merritt, D. J., Kristiansen, M., Flematti, G. R., Turner, S. R., Ghisalberti, E. L., Trengove, R. D., & Dixon, K. W. (2006). Effects of a butenolide present in smoke on light-mediated germination of Australian Asteraceae. Seed Science Research, 16(1), 29–35. https://doi.org/10.1079/ssr2005232
  • [32] Daws, M., Davies, J., Pritchard, H., N.A.C, B., & Van Staden, J. (2007). Butenolide from plant-derived smoke enhances germination and seedling growth of arable weeds species. Plant Growth Regulation, 51, 73–82.
  • [33] Stevens, J., Merritt, D., Flematti, G., Ghisalberti, E., & Dixon, K. (2007). Seed germination of agricultural weeds is promoted by the butenolide 3-methyl-2H-furo[2,3-c]pyran-2-one under laboratory and field conditions. Plant Soil, 298, 113–24.
  • [34] Bewley, J. (1997). Seed germination and dormancy. Plant Cell, 9, 1055–1066.
  • [35] Grossmann, K. (1990). Plant growth retardants as tools in physiological research. Physiologia Plantarum, 78, 640–648.
  • [36] Kumlay, A. M., & Eryiğit, T. (2011). Bitkilerde Büyüme ve Gelişmeyi Düzenleyici Maddeler: Bitki Hormonları. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi Iğdır, 1(2), 47–56.
  • [37] Flematti, G. R., Dixon, K. W., & Smith, S. M. (2015). What are karrikins and how were they “discovered” by plants? BMC Biology, 13(1), 1–7. https://doi.org/10.1186/s12915-015-0219-0
  • [38] Nelson, D. C., Scaffidi, A., Dun, E. A., Waters, M. T., Flematti, G. R., Dixon, K. W., Christine, A., B., Emilio L. G., & Smith, S. M. (2011). F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 108(21), 8897–8902. https://doi.org/10.1073/pnas.1100987108
  • [39] Waters, M. T., Smith, S. M., & Nelson, D. C. (2011). Smoke signals and seed dormancy: Where next for MAX2? Plant Signaling and Behavior, 6(9), 1418–1422. https://doi.org/10.4161/psb.6.9.17303
  • [40] Shen, H., Luong, P., & Huq, E. (2007). The F-box protein MAX2 functions as a positive regulator of photomorphogenesis in Arabidopsis. Plant Physiology, 145(4), 1471–1483. https://doi.org/10.1104/pp.107.107227
  • [41] Bythell-Douglas, R., Rothfels, C. J., Stevenson, D. W. D., Graham, S. W., Wong, G. K. S., Nelson, D. C., & Bennett, T. (2017). Evolution of strigolactone receptors by gradual neo-functionalization of KAI2 paralogues. BMC Biology, 15(1), 1–21. https://doi.org/10.1186/s12915-017-0397-z
  • [42] Waters, M. T., Scaffidi, A., Sun, Y. K., Flematti, G. R., & Smith, S. M. (2014). The karrikin response system of Arabidopsis. Plant Journal, 79(4), 623–631. https://doi.org/10.1111/tpj.12430
  • [43] Stanga, J. P., Smith, S. M., Briggs, W. R., & Nelson, D. C. (2013). Suppressor of more axillary growth2 1 controls seed germination and seedling development in Arabidopsis. Plant Physiology, 163(1), 318–330. https://doi.org/10.1104/pp.113.221259
  • [44] Khosla, A., Morffy, N., Li, Q., Faure, L., Chang, S. H., Yao, J., & Nelson, D. C. (2020). Structure–Function analysis of SMAX1 reveals domains that mediate its karrikin-induced proteolysis and interaction with the receptor KAI2. Plant Cell, 32(8), 2639–2659. https://doi.org/10.1105/tpc.19.00752
  • [45] Kochanek, J., Long, R. L., Lisle, A. T., & Flematti, G. R. (2016). Karrikins identified in biochars indicate post-fire chemical cues can influence community diversity and plant development. PLoS ONE, 11(8), 1–19. https://doi.org/10.1371/journal.pone.0161234
  • [46] Van Staden, J., Sparg, S. G., Kulkarni, M. G., & Light, M. E. (2006). Post-germination effects of the smoke-derived compound 3-methyl-2H-furo[2,3-c]pyran-2-one, and its potential as a preconditioning agent. Field Crops Research, 98(2–3), 98–105. https://doi.org/10.1016/j.fcr.2005.12.007
  • [47] Tavsanoǧlu, C., Ergan, G., Catav, S. S., Zare, G., Küçükakyüz, K., & Özüdoǧru, B. (2017). Multiple fire-related cues stimulate germination in Chaenorhinum rubrifolium (Plantaginaceae), a rare annual in the Mediterranean Basin. Seed Science Research, 27(1), 26–38. https://doi.org/10.1017/S0960258516000283
  • [48] Çatav, Ş. S., Bekar, I., Ateş, B. S., Ergan, G., Oymak, F., Ülker, E. D., & Tavşanoǧlu, Ç. (2012). Germination response of five eastern Mediterranean woody species to smoke solutions derived from various plants. Turkish Journal of Botany, 36(5), 480–487. https://doi.org/10.3906/bot-1111-12
  • [49] Çatav, Ş. S., Küçükakyüz, K., Akbaş, K., & Tavşanoǧlu, Ç. (2014). Smoke-enhanced seed germination in Mediterranean Lamiaceae. Seed Science Research, 24(3), 257–264. https://doi.org/10.1017/S0960258514000142
  • [49] Kazancı, D. D. (2014). Akdeniz Bitkilerinin Yangın Sonrası Çimlenme Özelliklerinin Belirlenmesi, Yüksek Lisans Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • [50] Kępczyński, J. (2018). Induction of agricultural weed seed germination by smoke and smoke-derived karrikin (KAR1), with a particular reference to Avena fatua L. Acta Physiologiae Plantarum, 40(5). https://doi.org/10.1007/s11738-018-2663-2
  • [51] Cembrowska-Lech, D., & Kępczyński, J. (2016). Gibberellin-like effects of KAR1 on dormancy release of Avena fatua caryopses include participation of non-enzymatic antioxidants and cell cycle activation in embryos. Planta, 243(2), 531–548. https://doi.org/10.1007/s00425-015-2422-1
  • [52] Banerjee, A., & Roychoudhury, A. (2015). WRKY proteins: Signaling and regulation of expression during abiotic stress responses. Scientific World Journal, 2015, 17. https://doi.org/10.1155/2015/807560 [53] MousaviNik, M., Jowkar, A., & RahimianBoogar, A. (2016). Positive effects of karrikin on seed germination of three medicinal herbs under drought stress. Iran Agricultural Research, 35(2), 57–64. https://doi.org/10.22099/iar.2016.3780
  • [54] Li, W., Nguyen, K. H., Chu, H. D., Ha, C. Van, Watanabe, Y., Osakabe, Y., & Tran, L. S. P. (2017). The karrikin receptor KAI2 promotes drought resistance in Arabidopsis thaliana. PLoS Genetics, 13(11), 1–14. https://doi.org/10.1371/journal.pgen.1007076
  • [55] Casal, J. J. (2013). Photoreceptor signaling networks in plant responses to shade. Annual Review of Plant Biology, 64, 403–427. https://doi.org/10.1146/annurev-arplant-050312-120221
  • [56] Chen, J., Xu, W., Velten, J., Xin, Z., & Stout, J. (2012). Characterization of maize inbred lines for drought and heat tolerance. Journal of Soil and Water Conservation, 67(5), 354–364. https://doi.org/10.2489/jswc.67.5.354
  • [57] Bayuelo-Jiménez, J. S., Craig, R., & Lynch, J. P. (2002). Salinity tolerance of Phaseolus species during germination and early seedling growth. Crop Science, 42(5), 1584–1594. https://doi.org/10.2135/cropsci2002.1584
  • [58] Jain, N., & Van Staden, J. (2007). The potential of the smoke-derived compound 3-methyl-2H-furo[2,3-c]pyran-2- one as a priming agent for tomato seeds. Seed Science Research, 17(3), 175–181. https://doi.org/10.1017/S0960258507785896
  • [59] Aremu, A. O., Bairu, M. W., Finnie, J. F., & van Staden, J. (2012). Stimulatory role of smoke-water and karrikinolide on the photosynthetic pigment and phenolic contents of micropropagated “Williams” bananas. Plant Growth Regulation, 67(3), 271–279. https://doi.org/10.1007/s10725-012-9685-3
  • [60] Sharifi, P., & Shirani Bidabadi, S. (2020). Protection against salinity stress in black cumin involves karrikin and calcium by improving gas exchange attributes, ascorbate–glutathione cycle and fatty acid compositions. SN Applied Sciences, 2(12), 1–14. https://doi.org/10.1007/s42452-020-03843-3
  • [61] Çatav, Ş. S., Surgun-Acar, Y., & Zemheri-Navruz, F. (2021). Physiological, biochemical, and molecular responses of wheat seedlings to salinity and plant-derived smoke. South African Journal of Botany, 139, 148–157. https://doi.org/10.1016/j.sajb.2021.02.011
  • [63] Hayat, N., Afroz, N., Rehman, S., Bukhari, S. H., Iqbal, K., Khatoon, A., & Nawaz, G. (2022). Plant-derived smoke ameliorates salt stress in wheat by enhancing expressions of stress-responsive genes and antioxidant enzymatic activity. Agronomy, 12(1). https://doi.org/10.3390/agronomy12010028
  • [64] Khatoon, A., Ur R. S., Aslam, M. M., Jamil, M., & Komatsu, S. (2020). Plant-derived smoke affects biochemical mechanism on plant growth and seed germination. International Journal of Molecular Sciences, 21(20), 1–23. https://doi.org/10.3390/ijms21207760
  • [65] Jamil, M., Kanwal, M., Aslam, M. M., Khan, S. U., Malook, I., Tu, J., & Rehman, S. (2014). Effect of plant-derived smoke priming on physiological and biochemical characteristics of rice under salt stress condition. Australian Journal of Crop Science, 8(2), 159–170.
  • [66] Shah, F. A., Wei, X., Wang, Q., Liu, W., Wang, D., Yao, Y., & Wu, L. (2020). Karrikin Improves Osmotic and Salt Stress Tolerance via the Regulation of the Redox Homeostasis in the Oil Plant Sapium sebiferum. Frontiers in Plant Science, 11(March), 1–14. https://doi.org/10.3389/fpls.2020.00216
There are 65 citations in total.

Details

Primary Language Turkish
Journal Section Tasarım ve Teknoloji
Authors

Yasemin Kemeç Hürkan 0000-0003-4089-2683

Early Pub Date March 14, 2023
Publication Date March 25, 2023
Submission Date December 11, 2022
Published in Issue Year 2023 Volume: 11 Issue: 1

Cite

APA Kemeç Hürkan, Y. (2023). KARRİKİN: DUMANDAN GELEN YAŞAM. Gazi University Journal of Science Part C: Design and Technology, 11(1), 184-196. https://doi.org/10.29109/gujsc.1217335

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526