Research Article
BibTex RIS Cite

Yapay Zekâ Teknikleriyle Yükseköğretim Kurumları Sınavı (YKS) Puanlarının Tahmini

Year 2024, Erken Görünüm, 1 - 1
https://doi.org/10.29109/gujsc.1509217

Abstract

Yükseköğretim programlarına yerleştirmeler öncelikle öğrencilerin akademik başarılarına ve tercihlerine göre belirlenir. Yükseköğretim Kurumları Sınavı (YKS) giren öğrenciler başta YKS puanı, Ortaöğretim Başarı Puanı (OBP) ve tercih sıralamalarına göre kariyer hedeflerine uygun yükseköğretim bölümlerine yerleştirilir. YKS ile yerleşmede en önemli faktör sınav puanıdır. Bu sebeple öğrenciler, sınav öncesi netlerinden puanlarının belirlenmesi için öneri sistemlerine ihtiyaç duymaktadır. Deneme sınavları netlerinden öğrencilerin YKS puanlarını formüller yardımıyla hesaplayarak tahmin eden hâlihazırda çeşitli sistemler mevcuttur. Ancak yapay zekâ yöntemleriyle puanları tahmin eden uygulamalar bulunmamaktadır. Bu çalışmada YKS sınavına giren öğrencilerin deneme sınavı netlerine göre YKS puanlarının tahmini yapılmıştır. Bu çalışmada, iki aşamalı olan YKS sınavında TYT (Temel Yeterlilik Testi) ve AYT (Alan Yeterlilik Testi) puanlarının tahmin edilmesinde Yapay zekâ (YZ) tekniklerinden olan Makine Öğrenme (ML) algoritmalarından Lineer Regresyon (LR), Multi-Layered Perceptron (MLP), K-Nearest Neighbors (KNN), Random Forest (RF) gibi dört farklı model kullanılmış olup YKS sınavına girecek öğrencilere yönelik bir dijital öğrenme platformuna entegre edilecek yapay zeka tabanlı uygulama geliştirilmiştir. ML algoritmaları içerisinde TYT’ de en iyi performans gösteren MLP, R2 (0.999), MAE (0.056) ve RMSE (0.447) değerleri bulunmuştur. AYT’ de en iyi performans gösteren Lineer regresyon R2 (0.999) MAE (0.214) RMSE (0.0413) değeri bulunmuştur.

References

  • [1] H. Atılgan, "Türkiye’de kademeler arası geçiş: Dünü-bugünü ve bir model önerisi," Ege Eğitim Dergisi, vol. 19, no. 1, pp. 1-18, 2018.
  • [2] Ş. S. Gacanoğlu and C. Nakiboğlu, "Yükseköğretim Kurumları Sınavında Yer Alan Kimya Sorularının 2018 Yılı Kimya Dersi Öğretim Programı Kazanımlarına Göre Analizi," Turkiye Kimya Dernegi Dergisi Kısım C: Kimya Egitimi, vol. 7, no. 2, pp. 217-242, 2022.
  • [3] Y. Uzunpolat and A. Çakmak, "Yükseköğretim Kurumları Sınavında Çıkan DKAB Sorularının Ortaöğretim DKAB Öğretim Programı Çerçevesinde Analizi," Sirnak University Journal of Divinity Faculty/Sirnak Üniversitesi Ilahiyat Fakültesi Dergisi, no. 32, 2023.
  • [4] N. Çokişler, "Turist Rehberliği Programlarına Yerleşen Adayların Üniversite Sınavı Başarı İstatistikleri Üzerine Betimsel Bir Analiz (2021)," Yükseköğretim ve Bilim Dergisi, vol. 12, no. 3, pp. 621-632, 2022.
  • [5] B. Ersöz, H. İ. Bülbül, and Ş. Sağıroğlu, "Using LXP for Green Deal: A New Approach," in 2023 12th International Conference on Renewable Energy Research and Applications (ICRERA), 2023: IEEE, pp. 524-529.
  • [6] H. Bülbül and B. Ersöz, "Eğitimde yapay zekâ sanal gerçeklik ve sanal evren (Metaverse)," Yapay zekâ ve büyük veri kitap serisi (4. Baskı, s. 149-183) içinde. Nobel Akademik Yayıncılık, 2022.
  • [7] F. Tahiru, "AI in education: A systematic literature review," Journal of Cases on Information Technology (JCIT), vol. 23, no. 1, pp. 1-20, 2021.
  • [8] A. Öter, B. Ersöz, H. İ. Bülbül, and Ş. Sağıroğlu, "Using Generative Artificial Intelligence in Exams: A Research on KPSS with ChatGPT," International Journal of Educational Research Review, vol. 9, no. 4, pp. 269-274.
  • [9] H. Kirthika, S. Mayasre, and M. Balamurugan, "Score Predicting Web Application Using Machine Learning Techniques," in 2022 1st International Conference on Computational Science and Technology (ICCST), 2022: IEEE, pp. 157-161.
  • [10] Z. Wang and Y. Shi, "Prediction of the admission lines of college entrance examination based on machine learning," in 2016 2nd IEEE International Conference on Computer and Communications (ICCC), 2016: IEEE, pp. 332-335.
  • [11] D. Wang, D. Lian, Y. Xing, S. Dong, X. Sun, and J. Yu, "Analysis and prediction of influencing factors of college student achievement based on machine learning," Frontiers in Psychology, vol. 13, p. 881859, 2022.
  • [12] E. Çakıt and M. Dağdeviren, "Predicting the percentage of student placement: A comparative study of machine learning algorithms," Education and Information Technologies, vol. 27, no. 1, pp. 997-1022, 2022.
  • [13] B. Ujkani, D. Minkovska, and L. Stoyanova, "A machine learning approach for predicting student enrollment in the university," in 2021 XXX International Scientific Conference Electronics (ET), 2021: IEEE, pp. 1-4.
  • [14] S. Tankuş, "Üniversite sınavına giren öğrencilerin sınav sonuçlarının yapay zeka ile analizi ve değerlendirmesi: 2018 yılı Şanlıurfa ili örneği/Analysis and evaluation of the exam results of the students attending the university examination with artificial intelligence: 2018 Sanliurfa province," 2020.
  • [15] E. Erdem and F. Bozkurt, "A comparison of various supervised machine learning techniques for prostate cancer prediction," Avrupa Bilim ve Teknoloji Dergisi, no. 21, pp. 610-620, 2021.
  • [16] İ. Koyuncu and S. Gelbal, "Comparison of data mining classification algorithms on educational data under different conditions," Journal of Measurement and Evaluation in Education and Psychology, vol. 11, no. 4, pp. 325-345, 2020.
  • [17] H. Jin, Y.-G. Kim, Z. Jin, A. A. Rushchitc, and A. S. Al-Shati, "Optimization and analysis of bioenergy production using machine learning modeling: Multi-layer perceptron, Gaussian processes regression, K-nearest neighbors, and Artificial neural network models," Energy Reports, vol. 8, pp. 13979-13996, 2022.
  • [18] M. A. Jassim, "Analysis of the performance of the main algorithms for educational data mining: a review," in IOP conference series: materials science and engineering, 2021, vol. 1090, no. 1: IOP Publishing, p. 012084.
  • [19] M. A. Baig, S. A. Shaikh, K. K. Khatri, M. A. Shaikh, M. Z. Khan, and M. A. Rauf, "Prediction of Students Performance Level Using Integrated Approach of ML Algorithms," Int. J. Emerg. Technol. Learn., vol. 18, no. 1, pp. 216-234, 2023.
  • [20] S. A. Alwarthan, N. Aslam, and I. U. Khan, "Predicting student academic performance at higher education using data mining: a systematic review," Applied Computational Intelligence and Soft Computing, vol. 2022, 2022.
  • [21] Ö. Ali, "Automatic Detection of Epileptic Seizures from EEG Signals Using Artificial Intelligence Methods," Gazi University Journal of Science Part C: Design and Technology, pp. 1-1,2024.
  • [22] M. A. A. Walid, S. M. Ahmed, M. Zeyad, S. S. Galib, and M. Nesa, "Analysis of machine learning strategies for prediction of passing undergraduate admission test," International Journal of Information Management Data Insights, vol. 2, no. 2, p. 100111, 2022.
  • [23] D. Chicco, M. J. Warrens, and G. Jurman, "The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation," Peerj computer science, vol. 7, p. e623, 2021.
  • [24] U. Verma, C. Garg, M. Bhushan, P. Samant, A. Kumar, and A. Negi, "Prediction of students’ academic performance using Machine Learning Techniques," in 2022 International Mobile and Embedded Technology Conference (MECON), 2022: IEEE, pp. 151-156.
  • [25] T. O. Hodson, "Root mean square error (RMSE) or mean absolute error (MAE): When to use them or not," Geoscientific Model Development Discussions, vol. 2022, pp. 1-10, 2022.

Prediction of Higher Education Institutions Examination (YKS) Scores with Artificial Intelligence Techniques

Year 2024, Erken Görünüm, 1 - 1
https://doi.org/10.29109/gujsc.1509217

Abstract

Students' academic success and preferences primarily determine placements in higher education programs. Students who take the Higher Education Institutions Exam (YKS) are placed in higher education departments suitable for their career goals, primarily according to their YKS score, Secondary Education Success Score (OBP), and preference rankings. The most crucial factor in placement with YKS is the exam score. For this reason, students need recommendation systems to determine their scores from their pre-exam scores. Various systems currently calculate and estimate students' YKS scores from mock exams with the help of formulas. However, there are no applications that estimate scores with artificial intelligence methods. This study estimated the YKS scores of students who took the YKS exam according to their mock exam scores. In this study, four different models such as Linear Regression (LR), Multi-Layered Perceptron (MLP), K-Nearest Neighbors (KNN), and Random Forest (RF) from the Machine Learning (ML) algorithms, which are artificial intelligence (AI) techniques, were used in the prediction of TYT (Basic Proficiency Test) and AYT (Field Proficiency Test) scores in the two-stage YKS exam and an artificial intelligence-based application was developed to be integrated into a digital learning platform for students who will take the YKS exam. Among the ML algorithms, the best-performing MLP in TYT was found to be R2 (0.999), MAE (0.056), and RMSE (0.447). The best-performing Linear Regression in AYT was found to be R2 (0.999), MAE (0.214), and RMSE (0.0413).

Thanks

Yapay Zeka ve Büyük Veri Analitiği Güvenliği Uygulama ve Araştırma Merkezi

References

  • [1] H. Atılgan, "Türkiye’de kademeler arası geçiş: Dünü-bugünü ve bir model önerisi," Ege Eğitim Dergisi, vol. 19, no. 1, pp. 1-18, 2018.
  • [2] Ş. S. Gacanoğlu and C. Nakiboğlu, "Yükseköğretim Kurumları Sınavında Yer Alan Kimya Sorularının 2018 Yılı Kimya Dersi Öğretim Programı Kazanımlarına Göre Analizi," Turkiye Kimya Dernegi Dergisi Kısım C: Kimya Egitimi, vol. 7, no. 2, pp. 217-242, 2022.
  • [3] Y. Uzunpolat and A. Çakmak, "Yükseköğretim Kurumları Sınavında Çıkan DKAB Sorularının Ortaöğretim DKAB Öğretim Programı Çerçevesinde Analizi," Sirnak University Journal of Divinity Faculty/Sirnak Üniversitesi Ilahiyat Fakültesi Dergisi, no. 32, 2023.
  • [4] N. Çokişler, "Turist Rehberliği Programlarına Yerleşen Adayların Üniversite Sınavı Başarı İstatistikleri Üzerine Betimsel Bir Analiz (2021)," Yükseköğretim ve Bilim Dergisi, vol. 12, no. 3, pp. 621-632, 2022.
  • [5] B. Ersöz, H. İ. Bülbül, and Ş. Sağıroğlu, "Using LXP for Green Deal: A New Approach," in 2023 12th International Conference on Renewable Energy Research and Applications (ICRERA), 2023: IEEE, pp. 524-529.
  • [6] H. Bülbül and B. Ersöz, "Eğitimde yapay zekâ sanal gerçeklik ve sanal evren (Metaverse)," Yapay zekâ ve büyük veri kitap serisi (4. Baskı, s. 149-183) içinde. Nobel Akademik Yayıncılık, 2022.
  • [7] F. Tahiru, "AI in education: A systematic literature review," Journal of Cases on Information Technology (JCIT), vol. 23, no. 1, pp. 1-20, 2021.
  • [8] A. Öter, B. Ersöz, H. İ. Bülbül, and Ş. Sağıroğlu, "Using Generative Artificial Intelligence in Exams: A Research on KPSS with ChatGPT," International Journal of Educational Research Review, vol. 9, no. 4, pp. 269-274.
  • [9] H. Kirthika, S. Mayasre, and M. Balamurugan, "Score Predicting Web Application Using Machine Learning Techniques," in 2022 1st International Conference on Computational Science and Technology (ICCST), 2022: IEEE, pp. 157-161.
  • [10] Z. Wang and Y. Shi, "Prediction of the admission lines of college entrance examination based on machine learning," in 2016 2nd IEEE International Conference on Computer and Communications (ICCC), 2016: IEEE, pp. 332-335.
  • [11] D. Wang, D. Lian, Y. Xing, S. Dong, X. Sun, and J. Yu, "Analysis and prediction of influencing factors of college student achievement based on machine learning," Frontiers in Psychology, vol. 13, p. 881859, 2022.
  • [12] E. Çakıt and M. Dağdeviren, "Predicting the percentage of student placement: A comparative study of machine learning algorithms," Education and Information Technologies, vol. 27, no. 1, pp. 997-1022, 2022.
  • [13] B. Ujkani, D. Minkovska, and L. Stoyanova, "A machine learning approach for predicting student enrollment in the university," in 2021 XXX International Scientific Conference Electronics (ET), 2021: IEEE, pp. 1-4.
  • [14] S. Tankuş, "Üniversite sınavına giren öğrencilerin sınav sonuçlarının yapay zeka ile analizi ve değerlendirmesi: 2018 yılı Şanlıurfa ili örneği/Analysis and evaluation of the exam results of the students attending the university examination with artificial intelligence: 2018 Sanliurfa province," 2020.
  • [15] E. Erdem and F. Bozkurt, "A comparison of various supervised machine learning techniques for prostate cancer prediction," Avrupa Bilim ve Teknoloji Dergisi, no. 21, pp. 610-620, 2021.
  • [16] İ. Koyuncu and S. Gelbal, "Comparison of data mining classification algorithms on educational data under different conditions," Journal of Measurement and Evaluation in Education and Psychology, vol. 11, no. 4, pp. 325-345, 2020.
  • [17] H. Jin, Y.-G. Kim, Z. Jin, A. A. Rushchitc, and A. S. Al-Shati, "Optimization and analysis of bioenergy production using machine learning modeling: Multi-layer perceptron, Gaussian processes regression, K-nearest neighbors, and Artificial neural network models," Energy Reports, vol. 8, pp. 13979-13996, 2022.
  • [18] M. A. Jassim, "Analysis of the performance of the main algorithms for educational data mining: a review," in IOP conference series: materials science and engineering, 2021, vol. 1090, no. 1: IOP Publishing, p. 012084.
  • [19] M. A. Baig, S. A. Shaikh, K. K. Khatri, M. A. Shaikh, M. Z. Khan, and M. A. Rauf, "Prediction of Students Performance Level Using Integrated Approach of ML Algorithms," Int. J. Emerg. Technol. Learn., vol. 18, no. 1, pp. 216-234, 2023.
  • [20] S. A. Alwarthan, N. Aslam, and I. U. Khan, "Predicting student academic performance at higher education using data mining: a systematic review," Applied Computational Intelligence and Soft Computing, vol. 2022, 2022.
  • [21] Ö. Ali, "Automatic Detection of Epileptic Seizures from EEG Signals Using Artificial Intelligence Methods," Gazi University Journal of Science Part C: Design and Technology, pp. 1-1,2024.
  • [22] M. A. A. Walid, S. M. Ahmed, M. Zeyad, S. S. Galib, and M. Nesa, "Analysis of machine learning strategies for prediction of passing undergraduate admission test," International Journal of Information Management Data Insights, vol. 2, no. 2, p. 100111, 2022.
  • [23] D. Chicco, M. J. Warrens, and G. Jurman, "The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation," Peerj computer science, vol. 7, p. e623, 2021.
  • [24] U. Verma, C. Garg, M. Bhushan, P. Samant, A. Kumar, and A. Negi, "Prediction of students’ academic performance using Machine Learning Techniques," in 2022 International Mobile and Embedded Technology Conference (MECON), 2022: IEEE, pp. 151-156.
  • [25] T. O. Hodson, "Root mean square error (RMSE) or mean absolute error (MAE): When to use them or not," Geoscientific Model Development Discussions, vol. 2022, pp. 1-10, 2022.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Information Modelling, Management and Ontologies, Information Systems Education, Information Systems User Experience Design and Development
Journal Section Tasarım ve Teknoloji
Authors

Betül Ersöz 0000-0001-6221-1530

Halil İbrahim Bülbül 0000-0002-6525-7232

Early Pub Date November 21, 2024
Publication Date
Submission Date July 2, 2024
Acceptance Date September 23, 2024
Published in Issue Year 2024 Erken Görünüm

Cite

APA Ersöz, B., & Bülbül, H. İ. (2024). Yapay Zekâ Teknikleriyle Yükseköğretim Kurumları Sınavı (YKS) Puanlarının Tahmini. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji1-1. https://doi.org/10.29109/gujsc.1509217

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526