Research Article
BibTex RIS Cite

Limited Angle Rotary Magneto-Rheological Damper Design and Geometry Optimization

Year 2023, Volume: 11 Issue: 2, 511 - 523, 23.06.2023
https://doi.org/10.29109/gujsc.1216128

Abstract

Magneto-Rheological (MR) fluid is a type of smart materials, in which very rapid and reversible changes in apparent viscosities are obtained when excited with an appropriate magnetic field. The fact that the magnetic field is easy to control allows these liquids to be used especially as dampers. Today, linear damper (damper, shock absorber) and rotary damper (clutch, brake) designs are available. A limited Angle Rotary MR (LAD-MR) damper is a device in which the MR fluid is exposed to the magnetic field in the determined flow region while the MR fluid is transferred from one chamber to the other chamber with angularly limited rotational motion. In this study, a conceptual design of a new LAR-MR Damper was made. The most suitable design parameters for the determined target values ​​were determined with the help of computational fluid dynamics (CFD) of the design parameters affecting the torque performance.

References

  • [1] M. El-Kafafy, S.M. El-Demerdash, A.-A.M. Rabeih, Automotive Ride Comfort Control Using MR Fluid Damper, Engineering. 04 (2012) 179–187. doi:10.4236/eng.2012.44024.
  • [2] Q.H. Nguyen, N.D. Nguyen, S.B. Choi, Optimal design and performance evaluation of a flow-mode MR damper for front-loaded washing machines, Asia Pacific Journal on Computational Engineering. 1 (2014). doi:10.1186/2196-1166-1-3.
  • [3] J.-H. Kim, J.-H. Oh, Development of an above knee prosthesis using MR damper and leg simulator, Proceedings - IEEE International Conference on Robotics and Automation. 4 (2001) 3686–3691. doi:10.1109/ROBOT.2001.933191.
  • [4] İ. Şahin, Z. Parlak, C. Güneri, Araç Koltuk Süspansiyon Sistemleri İçin Çift Borulu Manyeto-Reolojik Amortisör Tasarımı ve Sayısal Analizleri, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji. 7 (2019) 331–343. doi:10.29109/gujsc.514507.
  • [5] G. Sozeri, A. Yilmaz, I. Sahin, Analysis and Comparison of Current Dependent Models of MR (Magnetoreological) Dampers Used in Knee Prosthesis, içinde: 2019 27th Signal Processing and Communications Applications Conference (SIU), IEEE, 2019: ss. 1–4. doi:10.1109/SIU.2019.8806306.
  • [6] J. Huang, J.. Zhang, Y. Yang, Y.. Wei, Analysis and design of a cylindrical magneto-rheological fluid brake, Journal of Materials Processing Technology. 129 (2002) 559–562. doi:10.1016/S0924-0136(02)00634-9.
  • [7] H.T. Guo, W.H. Liao, A novel multifunctional rotary actuator with magnetorheological fluid, Smart Materials and Structures. 21 (2012). doi:10.1088/0964-1726/21/6/065012.
  • [8] X. Lian, H. Deng, G. Han, M. Ma, X. Zhong, Y. Gao, R. Hu, Self-adapting model for variable stiffness magnetorheological dampers, Smart Materials and Structures. 31 (2022) 025006. doi:10.1088/1361-665X/ac3f79.
  • [9] A. Giorgetti, N. Baldanzini, M. Biasiotto, P. Citti, Design And Testing Of A MRF Rotational Damper For Vehicle Applications, Smart Materials and Structures. 19 (2010) 65006. doi:Artn 065006 Doi 10.1088/0964-1726/19/6/065006.
  • [10] F. Imaduddin, S.A. Mazlan, H. Zamzuri, A design and modelling review of rotary magnetorheological damper, Materials and Design. 51 (2013) 575–591. doi:10.1016/j.matdes.2013.04.042.
  • [11] A. Farjoud, N. Vahdati, Yap Fook Fah, Mathematical Model of Drum-type MR Brakes using Herschel-Bulkley Shear Model, Journal of Intelligent Material Systems and Structures. 19 (2008) 565–572. doi:10.1177/1045389X07077851.
  • [12] N.M. Wereley, J.U. Cho, Y.T. Choi, S.B. Choi, Magnetorheological dampers in shear mode, Smart Materials and Structures. 17 (2008). doi:10.1088/0964-1726/17/01/015022.
  • [13] K. Karakoc, E.J. Park, A. Suleman, Design considerations for an automotive magnetorheological brake, Mechatronics. 18 (2008) 434–447. doi:10.1016/j.mechatronics.2008.02.003.
  • [14] D. Quamar, C. Sarkar, Optimal Design of Hydraulic Disc Brake for Magnetorheological (MR) Application, Defence Science Journal. 72 (2022) 783–792. doi:10.14429/dsj.72.18369.
  • [15] A. Giorgetti, N. Baldanzini, M. Biasiotto, P. Citti, Design And Testing Of A MRF Rotational Damper For Vehicle Applications, Smart Materials and Structures. 19 (2010) 065006. doi:Artn 065006 Doi 10.1088/0964-1726/19/6/065006.
  • [16] L. Yang, S.Z. Chen, B. Zhang, Z.Z. Feng, A Rotary Magnetorheological Damper For A Tracked Vehicle, Advanced Materials Research. 328–330 (2011) 1135–1138. doi:10.4028/www.scientific.net/AMR.328-330.1135.
  • [17] J.Q. Zhang, Z.Z. Feng, Q. Jing, Optimization Analysis Of A New Vane MRF Damper, Journal of Physics: Conference Series. 149 (2009) 12087. doi:10.1088/1742-6596/149/1/012087.
  • [18] L. Deng, S. Sun, M. Christie, D. Ning, S. Jin, H. Du, S. Zhang, W. Li, Investigation of a seat suspension installed with compact variable stiffness and damping rotary magnetorheological dampers, Mechanical Systems and Signal Processing. 171 (2022) 108802. doi:10.1016/j.ymssp.2022.108802.
  • [19] R.S.T. Saini, S. Chandramohan, S. Sujatha, H. Kumar, Design of bypass rotary vane magnetorheological damper for prosthetic knee application, Journal of Intelligent Material Systems and Structures. 32 (2021) 931–942. doi:10.1177/1045389X20942577.
  • [20] TechnicalData, MRF-132DG Magneto-Rheological Fluid, Lord product selector guide: lord magnetorheological fluids. (2019). https://lordfulfillment.com/pdf/44/DS7015_MRF-132DGMRFluid.pdf.
  • [21] David Meeker, Finite Element Method Magnetics, (2023). https://www.femm.info/wiki/HomePage.
  • [22] Z. Parlak, Manyeto-Reoloji̇k Sıvılı Yarı Aktif Bir Sönümleyici Tasarımı ve Analizi, Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, 2010.
  • [23] A.C. Becnel, High Strength Semi-Active Energy Absorbers Using Shear And Mixed Mode Operation At High Shear Rates, Maryland University, Aerospace Engineering, 2014.
  • [24] ANSYS Inc., ANSYS Fluent Meshing User ’ s Guide, ANSYS, 2015.

Kısıtlı Açılı Dönel Manyeto-Reolojik Damper Tasarımı ve Geometrik Optimizasyonu

Year 2023, Volume: 11 Issue: 2, 511 - 523, 23.06.2023
https://doi.org/10.29109/gujsc.1216128

Abstract

Manyeto-Reolojik (MR) sıvı uygun bir manyetik alan ile uyarıldığında, görünür viskozitelerinde çok hızlı ve tersinebilen değişimler elde edilen, akıllı malzemelerin bir türüdür. Manyetik alanın kontrolünün kolay olması, bu sıvıları özellikle sönümleyici olarak kullanılabilmelerine olanak sağlamaktadır. Günümüzde doğrusal çalışan damper (sönümleyici, amortisör) ile, dönel olarak çalışan damper (kavrama, fren gibi) tasarımları mevcuttur. Kısıtlı Açılı Dönel MR (KAD-MR) damper ise, açısal olarak sınırlandırılmış dönme hareketiyle MR sıvıyı bir bölmeden diğer bölmeye aktarırken, belirlenen akış bölgesinde MR sıvının manyetik alana maruz bırakıldığı cihazdır. Bu çalışmada yeni bir KAD-MR Damperin kavramsal tasarımı yapılmış ve tork performansını etkileyen tasarım parametrelerinin, hesaplamalı akışkanlar dinamiği (HAD) yardımıyla, belirlenen hedef değerler için en uygun tasarım parametreleri belirlenmiştir.

References

  • [1] M. El-Kafafy, S.M. El-Demerdash, A.-A.M. Rabeih, Automotive Ride Comfort Control Using MR Fluid Damper, Engineering. 04 (2012) 179–187. doi:10.4236/eng.2012.44024.
  • [2] Q.H. Nguyen, N.D. Nguyen, S.B. Choi, Optimal design and performance evaluation of a flow-mode MR damper for front-loaded washing machines, Asia Pacific Journal on Computational Engineering. 1 (2014). doi:10.1186/2196-1166-1-3.
  • [3] J.-H. Kim, J.-H. Oh, Development of an above knee prosthesis using MR damper and leg simulator, Proceedings - IEEE International Conference on Robotics and Automation. 4 (2001) 3686–3691. doi:10.1109/ROBOT.2001.933191.
  • [4] İ. Şahin, Z. Parlak, C. Güneri, Araç Koltuk Süspansiyon Sistemleri İçin Çift Borulu Manyeto-Reolojik Amortisör Tasarımı ve Sayısal Analizleri, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji. 7 (2019) 331–343. doi:10.29109/gujsc.514507.
  • [5] G. Sozeri, A. Yilmaz, I. Sahin, Analysis and Comparison of Current Dependent Models of MR (Magnetoreological) Dampers Used in Knee Prosthesis, içinde: 2019 27th Signal Processing and Communications Applications Conference (SIU), IEEE, 2019: ss. 1–4. doi:10.1109/SIU.2019.8806306.
  • [6] J. Huang, J.. Zhang, Y. Yang, Y.. Wei, Analysis and design of a cylindrical magneto-rheological fluid brake, Journal of Materials Processing Technology. 129 (2002) 559–562. doi:10.1016/S0924-0136(02)00634-9.
  • [7] H.T. Guo, W.H. Liao, A novel multifunctional rotary actuator with magnetorheological fluid, Smart Materials and Structures. 21 (2012). doi:10.1088/0964-1726/21/6/065012.
  • [8] X. Lian, H. Deng, G. Han, M. Ma, X. Zhong, Y. Gao, R. Hu, Self-adapting model for variable stiffness magnetorheological dampers, Smart Materials and Structures. 31 (2022) 025006. doi:10.1088/1361-665X/ac3f79.
  • [9] A. Giorgetti, N. Baldanzini, M. Biasiotto, P. Citti, Design And Testing Of A MRF Rotational Damper For Vehicle Applications, Smart Materials and Structures. 19 (2010) 65006. doi:Artn 065006 Doi 10.1088/0964-1726/19/6/065006.
  • [10] F. Imaduddin, S.A. Mazlan, H. Zamzuri, A design and modelling review of rotary magnetorheological damper, Materials and Design. 51 (2013) 575–591. doi:10.1016/j.matdes.2013.04.042.
  • [11] A. Farjoud, N. Vahdati, Yap Fook Fah, Mathematical Model of Drum-type MR Brakes using Herschel-Bulkley Shear Model, Journal of Intelligent Material Systems and Structures. 19 (2008) 565–572. doi:10.1177/1045389X07077851.
  • [12] N.M. Wereley, J.U. Cho, Y.T. Choi, S.B. Choi, Magnetorheological dampers in shear mode, Smart Materials and Structures. 17 (2008). doi:10.1088/0964-1726/17/01/015022.
  • [13] K. Karakoc, E.J. Park, A. Suleman, Design considerations for an automotive magnetorheological brake, Mechatronics. 18 (2008) 434–447. doi:10.1016/j.mechatronics.2008.02.003.
  • [14] D. Quamar, C. Sarkar, Optimal Design of Hydraulic Disc Brake for Magnetorheological (MR) Application, Defence Science Journal. 72 (2022) 783–792. doi:10.14429/dsj.72.18369.
  • [15] A. Giorgetti, N. Baldanzini, M. Biasiotto, P. Citti, Design And Testing Of A MRF Rotational Damper For Vehicle Applications, Smart Materials and Structures. 19 (2010) 065006. doi:Artn 065006 Doi 10.1088/0964-1726/19/6/065006.
  • [16] L. Yang, S.Z. Chen, B. Zhang, Z.Z. Feng, A Rotary Magnetorheological Damper For A Tracked Vehicle, Advanced Materials Research. 328–330 (2011) 1135–1138. doi:10.4028/www.scientific.net/AMR.328-330.1135.
  • [17] J.Q. Zhang, Z.Z. Feng, Q. Jing, Optimization Analysis Of A New Vane MRF Damper, Journal of Physics: Conference Series. 149 (2009) 12087. doi:10.1088/1742-6596/149/1/012087.
  • [18] L. Deng, S. Sun, M. Christie, D. Ning, S. Jin, H. Du, S. Zhang, W. Li, Investigation of a seat suspension installed with compact variable stiffness and damping rotary magnetorheological dampers, Mechanical Systems and Signal Processing. 171 (2022) 108802. doi:10.1016/j.ymssp.2022.108802.
  • [19] R.S.T. Saini, S. Chandramohan, S. Sujatha, H. Kumar, Design of bypass rotary vane magnetorheological damper for prosthetic knee application, Journal of Intelligent Material Systems and Structures. 32 (2021) 931–942. doi:10.1177/1045389X20942577.
  • [20] TechnicalData, MRF-132DG Magneto-Rheological Fluid, Lord product selector guide: lord magnetorheological fluids. (2019). https://lordfulfillment.com/pdf/44/DS7015_MRF-132DGMRFluid.pdf.
  • [21] David Meeker, Finite Element Method Magnetics, (2023). https://www.femm.info/wiki/HomePage.
  • [22] Z. Parlak, Manyeto-Reoloji̇k Sıvılı Yarı Aktif Bir Sönümleyici Tasarımı ve Analizi, Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, 2010.
  • [23] A.C. Becnel, High Strength Semi-Active Energy Absorbers Using Shear And Mixed Mode Operation At High Shear Rates, Maryland University, Aerospace Engineering, 2014.
  • [24] ANSYS Inc., ANSYS Fluent Meshing User ’ s Guide, ANSYS, 2015.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Tasarım ve Teknoloji
Authors

Hakan Doğan 0000-0002-1719-4759

İsmail Şahin 0000-0002-0256-5692

Zekeriya Parlak 0000-0002-2487-0065

Early Pub Date June 12, 2023
Publication Date June 23, 2023
Submission Date December 8, 2022
Published in Issue Year 2023 Volume: 11 Issue: 2

Cite

APA Doğan, H., Şahin, İ., & Parlak, Z. (2023). Kısıtlı Açılı Dönel Manyeto-Reolojik Damper Tasarımı ve Geometrik Optimizasyonu. Gazi University Journal of Science Part C: Design and Technology, 11(2), 511-523. https://doi.org/10.29109/gujsc.1216128

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526