Research Article
BibTex RIS Cite

Finite Element Analysis of the Influences of Feed Rate on Cutting Force and Chip Morphology in Orthogonal Turning of Ti6Al4V Alloy

Year 2024, Volume: 12 Issue: 2, 567 - 576, 29.06.2024
https://doi.org/10.29109/gujsc.1420233

Abstract

In this research, a finite element (FE) analysis of the influences of feed rate on cutting force and chip morphology in orthogonal turning proceess of Ti6Al4V alloy is carried out. A two-dimensional (2D) FE model is established to model the orthogonal turning process using an energy-based ductile failure criterion. Then, the influence of feed rate on cutting force and chip morphology is discussed. It is found that the predicted cutting force agrees well with the experiment result, and the failure energy criterion adjusted by a characteristic length can be used to compute cutting forces with an acceptable accuracy. The feed rate has a great impact on the chip morphology observed in serrated chip shape in turning of Ti6Al4V alloy. It can be observed that the fluctuant amplitude of cutting force increases sharply with increasing the feed rate, but the frequency decreases.

Ethical Statement

The author of this article declares that the materials and methods used in this study do not require ethical committee permission and/or legal-special permission.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • [1] Çelik, Y.H. ve Kılıçkap, E. (2018). Titanyum alaşımlarından Ti-6Al-4V’nın işlenmesinde karşılaşılan zorluklar: Derleme. Gazi Üniversitesi Fen Bilimleri Dergisi, Part C: Tasarım ve Teknoloji, 6(1), 163175.
  • [2] Safari, H., Sharif, S., Izman, S. and Jafari, H. (2014). Kurniawan, D. Cutting force and surface roughness characterization in cryogenic high-speed end milling of TI–6AL-4V ELI. Materials and Manufacturing Processes, 29 (3), 350356.
  • [3] Jianwei, M., Zhenyuan, J., Fuji, W. and Fuda, N. (2014). Spindle speed selection for high-speed milling of titanium alloy curved surface. Materials and Manufacturing Processes, 29, 364369.
  • [4] Kara, F., Aslantas, K. and Çiçek, A. (2015). ANN and multiple regression method-based modelling of cutting forces in orthogonal machining of AISI 316L stainless steel. Neural Computing and Applications, 26, 237–250.
  • [5] Binali, R. (2023). Parametric optimization of cutting force and temperature in finite element milling of AISI P20 steel. Journal of Materials and Mechatronics: A, 4(1), 244–256.
  • [6] Binali, R., Yaldız, S. ve Neşeli, S. (2021). S960QL yapı çeliğinin işlenebilirliğinin sonlu elemanlar yöntemi ile incelenmesi. Avrupa Bilim ve Teknoloji Dergisi, 31(1), 85–91.
  • [7] Korkmaz, M.E. and Günay, M. (2018). Finite element modelling of cutting forces and power consumption in turning of AISI 420 martensitic stainless steel. Arabian Journal for Science and Engineering, 43, 4863–4870.
  • [8] Binali, R., Coşkun, M. ve Neşeli, S. (2022). An Investigation of Power Consumption in Milling AISI P20 Plastic Mold Steel by Finite Elements Method. Avrupa Bilim ve Teknoloji Dergisi, 34, 513–518.
  • [9] Gupta, M.K., Korkmaz, M.E., Sarıkaya, M., Krolczyk, G.M. and Günay, M. (2022). In-process detection of cutting forces and cutting temperature signals in cryogenic assisted turning of titanium alloys: An analytical approach and experimental study. Mechanical Systems and Signal Processing, 169, 108772.
  • [10] Kara, F., Aslantas, K. and Çiçek, A. (2016). Prediction of cutting temperature in orthogonal machining of AISI316L using artificial neural network. Applied Soft Computing, 38, 64–74.
  • [11] Korkmaz, M.E., Çakıroğlu, R., Yaşar, N., Özmen, R. ve Günay, M. (2019). Al2014 Alüminyum alaşımının delinmesinde itme kuvvetinin sonlu elemanlar yöntemi ile analizi. El-Cezerî Fen ve Mühendislik Dergisi, 6(1), 193–199.
  • [12] Aydın, M. and Köklü, U. (2020). Analysis of flat-end milling forces considering chip formation process in high-speed cutting of Ti6Al4V titanium alloy. Simulation Modelling Practice and Theory, 100, 102039.
  • [13] Calamaz, M., Coupard, D. and Girot F. (2010). Numerical simulation of titanium alloy dry machining with a strain softening constitutive law. Machining Science and Technology, 14 (2), 244–257.
  • [14] Yaşar, N., Yurtkuran H. ve Günay M. (2018). Sertleştirilmiş X40CrMoV5-1 Çeliğinin Tornalanmasında Kesme Kuvvetinin Deneysel ve Nümerik Olarak İncelenmesi. Gazi Üniversitesi Fen Bilimleri Dergisi, Part C: Tasarım ve Teknoloji, 6(4), 765–773.
  • [15] Aydın, M. (2016). Dik kesme işleminde kalıcı gerilmelerin sonlu elemanlar yöntemiyle modellenmesi. Politeknik Dergisi, 19(3), 297304.
  • [16] Aydın, M. and Köklü, U. (2018). A study of ball-end milling forces by finite element model with Lagrangian boundary of orthogonal cutting operation. Journal of the Faculty of Engineering and Architecture of Gazi University, 33(2), 517527.
  • [17] Aydın, M. (2022). Titanyum alaşımının yüksek-hızlı işleme süreci: Kapsamlı sonlu eleman modelleme. Politeknik Dergisi, 25(2), 813826.
  • [18] Aydın, M. and Köklü, U. (2017). Identification and modeling of cutting forces in ball-end milling based on two different finite element models with Arbitrary Lagrangian Eulerian technique. The International Journal of Advanced Manufacturing Technology, 92, 1465–1480.
  • [19] Aydin, M. (2017). Prediction of cutting speed interval of diamond-coated tools with residual stress. Materials and Manufacturing Processes, 32, 145–150.
  • [20] Arrazola, P.J., Villar, A., Ugarte, D. and Marya, S. (2007). Serrated chip prediction in finite element modeling of the chip formation process. Machining Science and Technology, 11, 367–390.
  • [21] Ducobu, F., Rivière-Lorphèvre, E. and Filippi, E. (2017). Finite element modelling of 3D orthogonal cutting experimental tests with the Coupled Eulerian-Lagrangian (CEL) formulation. Finite Elements in Analysis and Design, 134, 27–40.
  • [22] Zhuang, K., Zhou, S., Zou, L., Lin, L., Liu, Y., Weng, J. and Gao, J. (2022). Numerical investigation of sequential cuts residual stress considering tool edge radius in machining of AISI 304 stainless steel. Simulation Modelling Practice and Theory, 118, 102525.
  • [23] Chen, G., Ren, C.Z., Yang, X.Y., Jin, X.M. and Guo, T. (2011). Finite element simulation of high-speed machining of titanium alloy (Ti-6Al-4V) based on ductile failure model. The International Journal of Advanced Manufacturing Technology, 56(9-12), 1027–1038.
  • [24] Zorev, N.N. (1963). Inter-relationship between shear processes occurring along tool face and shear plane in metal cutting. International Research in Production Engineering, 42–49.
  • [25] Calamaz, M., Coupard, D. and Girot, F. (2008). A new material model for 2D numerical sim-ulation of serrated chip formation when machining titanium alloy Ti6Al4V. International Journal of Machine Tools and Manufacture, 48, 275–288.
  • [26] Zhang, Y.C., Mabrouki, T., Nelias, D. and Gong, Y.D. (2011). Chip formation in orthogonal cutting considering interface limiting shear stress and damage evolution based on fracture energy approach. Finite Elements in Analysis and Design, 47, 850–863.
  • [27] Thepsonthi, T. and Özel, T. (2015). 3-D finite element process simulation of micro-end milling Ti-6Al-4V titanium alloy: experimental validations on chip flow and tool wear. Journal of Materials Processing Technology, 221, 128–145.
  • [28] Johnson, G.R. and Cook, W.H. (1983). A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the seventh international symposium on ballistics, The Hague, Netherlands, 541–547.
  • [29] Johnson, G.R. and Holmquist, T.J. (1989). Test data and computational strengthen and fracture model constants for materials subjected to large strain, high-strain rates, and high temperatures, LA-11463-MS, Los Alamos National laboratory.
  • [30] Wang, B. and Zhanqiang, L. (2014). Investigations on the chip formation mechanism and shear localization sensitivity of high-speed machining Ti6Al4V. The International Journal of Advanced Manufacturing Technology, 75, 1065–1076.
  • [31] Hillerborg, A., Modéer, M. and Petersson, PE. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 6, 773–781.
  • [32] Chen, G., Ren, C., Zhang, P., Cui, K. and Li, Y. (2013). Measurement and finite element simulation of micro-cutting temperatures of tool tip and workpiece. International Journal of Machine Tools and Manufacture, 75, 16–26.
  • [33] Vyas, A. and Shaw, M.C. (1999). Mechanics of saw–tooth chip formation in metal cutting. Journal of Manufacturing Science and Engineering, 121, 163–172.

Ti6Al4V Alaşımının Ortogonal Tornalanmasında İlerleme Hızının Kesme Kuvveti ve Talaş Morfolojisi Üzerindeki Etkilerinin Sonlu Elemanlar Analizi

Year 2024, Volume: 12 Issue: 2, 567 - 576, 29.06.2024
https://doi.org/10.29109/gujsc.1420233

Abstract

Bu araştırmada, Ti6Al4V alaşımının ortogonal tornalama işleminde ilerleme hızının kesme kuvveti ve talaş morfolojisi üzerindeki etkilerinin sonlu elemanlar analizi gerçekleştirilmiştir. Enerjiye dayalı sünek hasar kriteri kullanılarak ortogonal tornalama sürecini modellemek için iki boyutlu (2B) sonlu elemanlar (FE) modeli oluşturulmuştur. Daha sonra, ilerleme hızının kesme kuvveti ve talaş morfolojisi üzerindeki etkileri tartışılmıştır. Tahmin edilen kesme kuvvetinin deney sonucuyla iyi uyum sağladığı ve karakteristik uzunlukla kontrol edilen hasar enerjisi kriterinin, kesme kuvvetlerini kabul edilebilir bir doğrulukla hesaplamak için kullanılabileceği bulunmuştur. Ti6Al4V alaşımının tornalanmasında testere dişli talaş şeklinde gözlemlenen talaş morfolojisi üzerinde ilerleme hızının büyük bir etkisi vardır. İlerleme hızının artmasıyla kesme kuvvetinin dalgalanma genliğinin keskin bir şekilde arttığı, ancak frekansın azaldığı gözlemlenebilir.

Ethical Statement

Bu makalenin yazarı, bu çalışmada kullanılan materyal ve yöntemlerin etik kurul izni ve/veya yasal-özel izin gerektirmediğini beyan eder.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • [1] Çelik, Y.H. ve Kılıçkap, E. (2018). Titanyum alaşımlarından Ti-6Al-4V’nın işlenmesinde karşılaşılan zorluklar: Derleme. Gazi Üniversitesi Fen Bilimleri Dergisi, Part C: Tasarım ve Teknoloji, 6(1), 163175.
  • [2] Safari, H., Sharif, S., Izman, S. and Jafari, H. (2014). Kurniawan, D. Cutting force and surface roughness characterization in cryogenic high-speed end milling of TI–6AL-4V ELI. Materials and Manufacturing Processes, 29 (3), 350356.
  • [3] Jianwei, M., Zhenyuan, J., Fuji, W. and Fuda, N. (2014). Spindle speed selection for high-speed milling of titanium alloy curved surface. Materials and Manufacturing Processes, 29, 364369.
  • [4] Kara, F., Aslantas, K. and Çiçek, A. (2015). ANN and multiple regression method-based modelling of cutting forces in orthogonal machining of AISI 316L stainless steel. Neural Computing and Applications, 26, 237–250.
  • [5] Binali, R. (2023). Parametric optimization of cutting force and temperature in finite element milling of AISI P20 steel. Journal of Materials and Mechatronics: A, 4(1), 244–256.
  • [6] Binali, R., Yaldız, S. ve Neşeli, S. (2021). S960QL yapı çeliğinin işlenebilirliğinin sonlu elemanlar yöntemi ile incelenmesi. Avrupa Bilim ve Teknoloji Dergisi, 31(1), 85–91.
  • [7] Korkmaz, M.E. and Günay, M. (2018). Finite element modelling of cutting forces and power consumption in turning of AISI 420 martensitic stainless steel. Arabian Journal for Science and Engineering, 43, 4863–4870.
  • [8] Binali, R., Coşkun, M. ve Neşeli, S. (2022). An Investigation of Power Consumption in Milling AISI P20 Plastic Mold Steel by Finite Elements Method. Avrupa Bilim ve Teknoloji Dergisi, 34, 513–518.
  • [9] Gupta, M.K., Korkmaz, M.E., Sarıkaya, M., Krolczyk, G.M. and Günay, M. (2022). In-process detection of cutting forces and cutting temperature signals in cryogenic assisted turning of titanium alloys: An analytical approach and experimental study. Mechanical Systems and Signal Processing, 169, 108772.
  • [10] Kara, F., Aslantas, K. and Çiçek, A. (2016). Prediction of cutting temperature in orthogonal machining of AISI316L using artificial neural network. Applied Soft Computing, 38, 64–74.
  • [11] Korkmaz, M.E., Çakıroğlu, R., Yaşar, N., Özmen, R. ve Günay, M. (2019). Al2014 Alüminyum alaşımının delinmesinde itme kuvvetinin sonlu elemanlar yöntemi ile analizi. El-Cezerî Fen ve Mühendislik Dergisi, 6(1), 193–199.
  • [12] Aydın, M. and Köklü, U. (2020). Analysis of flat-end milling forces considering chip formation process in high-speed cutting of Ti6Al4V titanium alloy. Simulation Modelling Practice and Theory, 100, 102039.
  • [13] Calamaz, M., Coupard, D. and Girot F. (2010). Numerical simulation of titanium alloy dry machining with a strain softening constitutive law. Machining Science and Technology, 14 (2), 244–257.
  • [14] Yaşar, N., Yurtkuran H. ve Günay M. (2018). Sertleştirilmiş X40CrMoV5-1 Çeliğinin Tornalanmasında Kesme Kuvvetinin Deneysel ve Nümerik Olarak İncelenmesi. Gazi Üniversitesi Fen Bilimleri Dergisi, Part C: Tasarım ve Teknoloji, 6(4), 765–773.
  • [15] Aydın, M. (2016). Dik kesme işleminde kalıcı gerilmelerin sonlu elemanlar yöntemiyle modellenmesi. Politeknik Dergisi, 19(3), 297304.
  • [16] Aydın, M. and Köklü, U. (2018). A study of ball-end milling forces by finite element model with Lagrangian boundary of orthogonal cutting operation. Journal of the Faculty of Engineering and Architecture of Gazi University, 33(2), 517527.
  • [17] Aydın, M. (2022). Titanyum alaşımının yüksek-hızlı işleme süreci: Kapsamlı sonlu eleman modelleme. Politeknik Dergisi, 25(2), 813826.
  • [18] Aydın, M. and Köklü, U. (2017). Identification and modeling of cutting forces in ball-end milling based on two different finite element models with Arbitrary Lagrangian Eulerian technique. The International Journal of Advanced Manufacturing Technology, 92, 1465–1480.
  • [19] Aydin, M. (2017). Prediction of cutting speed interval of diamond-coated tools with residual stress. Materials and Manufacturing Processes, 32, 145–150.
  • [20] Arrazola, P.J., Villar, A., Ugarte, D. and Marya, S. (2007). Serrated chip prediction in finite element modeling of the chip formation process. Machining Science and Technology, 11, 367–390.
  • [21] Ducobu, F., Rivière-Lorphèvre, E. and Filippi, E. (2017). Finite element modelling of 3D orthogonal cutting experimental tests with the Coupled Eulerian-Lagrangian (CEL) formulation. Finite Elements in Analysis and Design, 134, 27–40.
  • [22] Zhuang, K., Zhou, S., Zou, L., Lin, L., Liu, Y., Weng, J. and Gao, J. (2022). Numerical investigation of sequential cuts residual stress considering tool edge radius in machining of AISI 304 stainless steel. Simulation Modelling Practice and Theory, 118, 102525.
  • [23] Chen, G., Ren, C.Z., Yang, X.Y., Jin, X.M. and Guo, T. (2011). Finite element simulation of high-speed machining of titanium alloy (Ti-6Al-4V) based on ductile failure model. The International Journal of Advanced Manufacturing Technology, 56(9-12), 1027–1038.
  • [24] Zorev, N.N. (1963). Inter-relationship between shear processes occurring along tool face and shear plane in metal cutting. International Research in Production Engineering, 42–49.
  • [25] Calamaz, M., Coupard, D. and Girot, F. (2008). A new material model for 2D numerical sim-ulation of serrated chip formation when machining titanium alloy Ti6Al4V. International Journal of Machine Tools and Manufacture, 48, 275–288.
  • [26] Zhang, Y.C., Mabrouki, T., Nelias, D. and Gong, Y.D. (2011). Chip formation in orthogonal cutting considering interface limiting shear stress and damage evolution based on fracture energy approach. Finite Elements in Analysis and Design, 47, 850–863.
  • [27] Thepsonthi, T. and Özel, T. (2015). 3-D finite element process simulation of micro-end milling Ti-6Al-4V titanium alloy: experimental validations on chip flow and tool wear. Journal of Materials Processing Technology, 221, 128–145.
  • [28] Johnson, G.R. and Cook, W.H. (1983). A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the seventh international symposium on ballistics, The Hague, Netherlands, 541–547.
  • [29] Johnson, G.R. and Holmquist, T.J. (1989). Test data and computational strengthen and fracture model constants for materials subjected to large strain, high-strain rates, and high temperatures, LA-11463-MS, Los Alamos National laboratory.
  • [30] Wang, B. and Zhanqiang, L. (2014). Investigations on the chip formation mechanism and shear localization sensitivity of high-speed machining Ti6Al4V. The International Journal of Advanced Manufacturing Technology, 75, 1065–1076.
  • [31] Hillerborg, A., Modéer, M. and Petersson, PE. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 6, 773–781.
  • [32] Chen, G., Ren, C., Zhang, P., Cui, K. and Li, Y. (2013). Measurement and finite element simulation of micro-cutting temperatures of tool tip and workpiece. International Journal of Machine Tools and Manufacture, 75, 16–26.
  • [33] Vyas, A. and Shaw, M.C. (1999). Mechanics of saw–tooth chip formation in metal cutting. Journal of Manufacturing Science and Engineering, 121, 163–172.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Numerical Methods in Mechanical Engineering
Journal Section Tasarım ve Teknoloji
Authors

Mehmet Aydın 0000-0003-1126-0601

Project Number -
Early Pub Date May 24, 2024
Publication Date June 29, 2024
Submission Date January 15, 2024
Acceptance Date March 13, 2024
Published in Issue Year 2024 Volume: 12 Issue: 2

Cite

APA Aydın, M. (2024). Ti6Al4V Alaşımının Ortogonal Tornalanmasında İlerleme Hızının Kesme Kuvveti ve Talaş Morfolojisi Üzerindeki Etkilerinin Sonlu Elemanlar Analizi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 12(2), 567-576. https://doi.org/10.29109/gujsc.1420233

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526