Review
BibTex RIS Cite

Sanayide Enerji Verimliliğinde Son Gelişmeler: Türkiye Örneği

Year 2024, Volume: 12 Issue: 2, 494 - 547, 29.06.2024
https://doi.org/10.29109/gujsc.1442017

Abstract

Ülkelerin kalkınma sürecindeki vazgeçilmez faktörlerden birisi olan üretimin kesintisiz bir şekilde sürebilmesi için uygun maliyetli, sürekli, güvenli ve temiz enerjiye ulaşabilmeleri büyük önem arz etmektedir. Ülkeler bir yandan büyümeye devam ederken, diğer yandan 2030 için belirlenen 2° ve 2050 yılına kadar karbon nötr hedeflerini göz önüne almak durumundadır. Bu amaç doğrultusunda çeşitli sektörel inovasyonların kullanılması gerekmektedir. Bu derlemede, küresel enerji tüketimi ve karbon salınımının başlıca sorumlularından olan sanayi sektöründeki güncel enerji verimliliği çalışmalarıyla ilgili yerli ve yabancı kaynaklar taranarak, ulaşılan olası çözüm önerileri başlıklar altında aktarılmıştır. Araştırmalar sonucunda, atık ısı geri kazanım sistemi ile ısıtma veriminin %32,32 artarak tüketilen elektrik enerjisinin yaklaşık %30’nun geri kazanılabildiği hesaplanmıştır. Kojenerasyon sistemlerinin var olan yapıya entegresi ile gaz türbinlerinin elektrik dönüşüm verimliliğinin %30-40 seviyelerinden %80-90‘lara çıktığı görülmüştür. Yapılan denetimlerde yatırımın kendini 1,5–3 yıl gibi bir sürede amorti ettiği tespit edilmiştir. Karbon nötr hedefi doğrultusunda geliştirilen bir diğer yöntem olan karbon yakalama teknolojisi üzerine yapılan çalışmalarda, demirçelik gibi karbon yoğun sektörlerde yöntemin CO_2 salınımını %65’e varan oranlarda düşüreceği hesaplanmaktadır. Çalışmanın devamında, Türkiye’nin enerji görünümü, yürürlükte olan verimlilik politikaları ile güncel sanayi istatistikleri derlenerek, endüstrideki enerji verimliliğini artırmaya yönelik çalışmalar yürütecek akademi ve özel sektör çalışanlarına katkıda bulunulması amaçlanmıştır. Sanayi sektörünün önemli bir tüketim kalemini oluşturduğu Türkiye’de, bu alanındaki en kapsamlı yasal düzenleme 2007 yılında yayınlanan 5627 sayılı Enerji Verimliliği Kanunu ve güncel versiyonu 2018’de paylaşılan ISO 50001 Enerji Yönetimi Sistemi Standardı’dır. Firmalara yapacakları temiz üretim teknolojileri uygulamalarının maliyetlerini yükseltmeyeceği gibi, aksine ekonomik açıdan da geri dönüşü kısa yatırımlar olduğunun aktarılması sanayi genelinde farkındalığı artıracaktır. Türkiye’deki sanayi sektörünün enerji tasarruf potansiyelinin en az %20 olduğu ve bunun yaklaşık %50'sinin küçük yatırım miktarları ile iki yıldan az sürede kendini amorti ederek gerçekleşebileceği tespit edilmiştir. Yenilenebilir Enerji Genel Müdürlüğü’nün çalışmalarına göre, sanayi sektöründe atılacak doğru adımlar ile Türkiye’nin toplam birincil enerji talebinin %15 düşürülebileceği hesaplanmıştır.

References

  • [1] Apergis, N., & Payne, J. E. (2009). Energy consumption and economic growth in Central America: Evidence from a panel cointegration and error correction model. Energy Economics, 31(2), 211–216. https://doi.org/10.1016/J.ENECO.2008.09.002
  • [2] Mishra, V., Smyth, R., & Sharma, S. (2009). The energy-GDP nexus: Evidence from a panel of Pacific Island countries. Resource and Energy Economics, 31(3), 210–220. https://doi.org/10.1016/J.RESENEECO.2009.04.002
  • [3] Liu, T. Y., & Lee, C. C. (2020). Convergence of the world’s energy use. Resource and Energy Economics, 62, 101199. https://doi.org/10.1016/J.RESENEECO.2020.101199
  • [4] Lee, C. C., Wang, C. W., Ho, S. J., & Wu, T. P. (2021). The impact of natural disaster on energy consumption: International evidence. Energy Economics, 97, 105021. https://doi.org/10.1016/J.ENECO.2020.105021
  • [5] Flavin, C., & Lenssen, N. (1994). Reshaping the electric power industry. Energy Policy, 22(12), 1029–1044. https://doi.org/10.1016/0301-4215(94)90017-5
  • [6] Doğan, H., & Yılankırkan, N. (2015). Türkiye’nin Enerji Verimliliği Potansiyeli ve Projeksiyonu. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 3(1), 375–384. https://dergipark.org.tr/tr/pub/gujsc/issue/7466/98302
  • [7] Hardcastle, A., & Waterman-Hoey, S. (2009). Energy Efficiency Industry Trends and Workforce Development in Washington State. https://pubs.extension.wsu.edu/energy-efficiency-industry-trends-and-workforce-development-in-washington-state
  • [8] IEA. (2022). World Energy Outlook 2022. https://www.iea.org/reports/world-energy-outlook-2022
  • [9] AEO. (2018). Annual Energy Outlook 2018 with projections to 2050. Washington, DC. https://www.eia.gov/outlooks/aeo/
  • [10] Lee, C. C., Lee, C. C., & Li, Y. Y. (2021). Oil price shocks, geopolitical risks, and green bond market dynamics. The North American Journal of Economics and Finance, 55, 101309. https://doi.org/10.1016/J.NAJEF.2020.101309
  • [11] Schmidt, T. S., & Sewerin, S. (2019). Measuring the temporal dynamics of policy mixes – An empirical analysis of renewable energy policy mixes’ balance and design features in nine countries. Research Policy, 48(10), 103557. https://doi.org/10.1016/J.RESPOL.2018.03.012
  • [12] Wang, Z., & Feng, C. (2015). A performance evaluation of the energy, environmental, and economic efficiency and productivity in China: An application of global data envelopment analysis. Applied Energy, 147, 617–626. https://doi.org/10.1016/J.APENERGY.2015.01.108
  • [13] Ghoneem, M. Y. M. (2016). Planning for Climate Change, Why does it Matter? (From Phenomenon to Integrative Action Plan). Procedia - Social and Behavioral Sciences, 216, 675–688. https://doi.org/10.1016/J.SBSPRO.2015.12.060
  • [14] Abbass, K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H., & Younis, I. (2022). A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research 2022 29:28, 29(28), 42539–42559. https://doi.org/10.1007/S11356-022-19718-6
  • [15] Jones, M. W., Peters, G. P., Gasser, T., Andrew, R. M., Schwingshackl, C., Gütschow, J., … Le Quéré, C. (2023). National contributions to climate change due to historical emissions of carbon dioxide, methane, and nitrous oxide since 1850. Scientific Data, 10(1). https://doi.org/10.1038/S41597-023-02041-1
  • [16] IEA. (2023). Energy Technology Perspectives 2023. https://www.iea.org/reports/energy-technology-perspectives-2023
  • [17] IEA. (2013). Energy Efficiency Market Trends and Medium-Term Prospects. OECD. https://doi.org/10.1787/9789264206052-EN
  • [18] EC. (2015). COM(2015) 80 final - A Framework Strategy for a Resilient Energy Union with a Forward-Looking Climate Change Policy. Brussels. http://eur-lex.europa.eu/resource.html?uri=cellar:1bd46c90-bdd4-11e4-bbe1-01aa75ed71a1.0001.03/DOC_1&format=PDF
  • [19] Ang, B. W. (2006). Monitoring changes in economy-wide energy efficiency: From energy–GDP ratio to composite efficiency index. Energy Policy, 34(5), 574–582. https://doi.org/10.1016/J.ENPOL.2005.11.011
  • [20] Hu, J. L., & Lin, C. H. (2008). Disaggregated energy consumption and GDP in Taiwan: A threshold co-integration analysis. Energy Economics, 30(5), 2342–2358. https://doi.org/10.1016/J.ENECO.2007.11.007
  • [21] Huang, B. N., Hwang, M. J., & Yang, C. W. (2008). Causal relationship between energy consumption and GDP growth revisited: A dynamic panel data approach. Ecological Economics, 67(1), 41–54. https://doi.org/10.1016/J.ECOLECON.2007.11.006
  • [22] Li, R., Wang, Q., Liu, Y., & Jiang, R. (2021). Per-capita carbon emissions in 147 countries: The effect of economic, energy, social, and trade structural changes. Sustainable Production and Consumption, 27, 1149–1164. https://doi.org/10.1016/J.SPC.2021.02.031
  • [23] Wang, Q., Yang, T., & Li, R. (2023). Does income inequality reshape the environmental Kuznets curve (EKC) hypothesis? A nonlinear panel data analysis. Environmental Research, 216, 114575. https://doi.org/10.1016/J.ENVRES.2022.114575
  • [24] Mielnik, O., & Goldemberg, J. (2002). Foreign direct investment and decoupling between energy and gross domestic product in developing countries. Energy Policy, 30(2), 87–89. https://doi.org/10.1016/S0301-4215(01)00080-5
  • [25] Duro, J. A., Alcántara, V., & Padilla, E. (2010). International inequality in energy intensity levels and the role of production composition and energy efficiency: An analysis of OECD countries. Ecological Economics, 69(12), 2468–2474. https://doi.org/10.1016/J.ECOLECON.2010.07.022
  • [26] Sineviciene, L., Sotnyk, I., & Kubatko, O. (2017). Determinants of energy efficiency and energy consumption of Eastern Europe post-communist economies. Energy & Environment, 28(8), 870–884. https://doi.org/10.1177/0958305X17734386
  • [27] Chang, C. P., Wen, J., Zheng, M., Dong, M., & Hao, Y. (2018). Is higher government efficiency conducive to improving energy use efficiency? Evidence from OECD countries. Economic Modelling, 72, 65–77. https://doi.org/10.1016/J.ECONMOD.2018.01.006
  • [28] Su, Y. W. (2018). Electricity demand in industrial and service sectors in Taiwan. Energy Efficiency, 11(6), 1541–1557. https://doi.org/10.1007/S12053-018-9615-Y/METRICS
  • [29] Newell, R. G., Jaffe, A. B., & Stavins, R. N. (1999). The induced innovation hypothesis and energy-saving technological change. Quarterly Journal of Economics, 114(3), 941–975. https://doi.org/10.1162/003355399556188
  • [30] Shi, G. M., Bi, J., & Wang, J. N. (2010). Chinese regional industrial energy efficiency evaluation based on a DEA model of fixing non-energy inputs. Energy Policy, 38(10), 6172–6179. https://doi.org/10.1016/J.ENPOL.2010.06.003
  • [31] Wu, H., Hao, Y., Ren, S., Yang, X., & Xie, G. (2021). Does internet development improve green total factor energy efficiency? Evidence from China. Energy Policy, 153, 112247. https://doi.org/10.1016/J.ENPOL.2021.112247
  • [32] Han, J., Miao, J., Shi, Y., & Miao, Z. (2021). Can the semi-urbanization of population promote or inhibit the improvement of energy efficiency in China? Sustainable Production and Consumption, 26, 921–932. https://doi.org/10.1016/J.SPC.2021.01.008
  • [33] IEA. (2023). Energy Efficiency 2023. https://www.iea.org/reports/energy-efficiency-2023
  • [34] IEA. (2023). Industry. https://www.iea.org/energy-system/industry
  • [35] UNEP. (2022). 2022 Global Status Report for Buildings and Construction. https://www.unep.org/resources/publication/2022-global-status-report-buildings-and-construction
  • [36] Thiel, G. P., & Stark, A. K. (2021). To decarbonize industry, we must decarbonize heat. Joule, 5(3), 531–550. https://doi.org/10.1016/J.JOULE.2020.12.007
  • [37] Rissman, J., Bataille, C., Masanet, E., Aden, N., Morrow, W. R., Zhou, N., … Helseth, J. (2020). Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070. Applied Energy, 266, 114848. https://doi.org/10.1016/J.APENERGY.2020.114848
  • [38] Napp, T. A., Gambhir, A., Hills, T. P., Florin, N., & Fennell, P. S. (2014). A review of the technologies, economics and policy instruments for decarbonising energy-intensive manufacturing industries. Renewable and Sustainable Energy Reviews, 30, 616–640. https://doi.org/10.1016/J.RSER.2013.10.036
  • [39] CEFIC. (2023). 2023 Facts and Figures of the European Chemical Industry. https://cefic.org/a-pillar-of-the-european-economy/facts-and-figures-of-the-european-chemical-industry/
  • [40] BP. (2023). Energy Outlook 2023. https://www.bp.com/en/global/corporate/energy-economics/energy-outlook.html
  • [41] Maghrabi, A. M., Song, J., & Markides, C. N. (2023). How can industrial heat decarbonisation be accelerated through energy efficiency? Applied Thermal Engineering, 233, 121092. https://doi.org/10.1016/J.APPLTHERMALENG.2023.121092 [42] Energy Efficiency Movement. (2022). The Energy Efficiency Playbook. https://www.energyefficiencymovement.com/insights/playbook/?utm_source=foleon&utm_medium=referral&utm_campaign=industrial_efficiency_2023
  • [43] Weis, B., Leprettre, B., Patra, M., Hanigovszki, N., Holm, P., Schuman, T., … Anderson, K. (2021). Increasing the Energy Savings of Motor Applications: The Extended Product Approach, 37–52. https://doi.org/10.1007/978-3-030-69799-0_4
  • [44] Jiao, J., Chen, C., & Bai, Y. (2020). Is green technology vertical spillovers more significant in mitigating carbon intensity? Evidence from Chinese industries. Journal of Cleaner Production, 257, 120354. https://doi.org/10.1016/J.JCLEPRO.2020.120354
  • [45] Kushnir, D., Hansen, T., Vogl, V., & Åhman, M. (2020). Adopting hydrogen direct reduction for the Swedish steel industry: A technological innovation system (TIS) study. Journal of Cleaner Production, 242, 118185. https://doi.org/10.1016/J.JCLEPRO.2019.118185
  • [46] Wang, Q., & Wang, S. (2020). Why does China’s carbon intensity decline and India’s carbon intensity rise? a decomposition analysis on the sectors. Journal of Cleaner Production, 265, 121569. https://doi.org/10.1016/J.JCLEPRO.2020.121569
  • [47] Worrell, E., & Boyd, G. (2022). Bottom-up estimates of deep decarbonization of U.S. manufacturing in 2050. Journal of Cleaner Production, 330, 129758. https://doi.org/10.1016/J.JCLEPRO.2021.129758
  • [48] Roy, S., Tran, T. A., & Natarajan, K. (2023). Recent Advancement of IoT Devices in Pollution Control and Health Applications. Recent Advancement of IoT Devices in Pollution Control and Health Applications, 1–208. https://doi.org/10.1016/C2021-0-03490-8
  • [49] Malinauskaite, J., Jouhara, H., Ahmad, L., Milani, M., Montorsi, L., & Venturelli, M. (2019). Energy Efficiency in Industry: EU and national policies in Italy and the UK. https://doi.org/10.1016/j.energy.2019.01.130
  • [50] Prognos. (2012). Die Energieperspektiven für die Schweiz bis 2050. https://www.bfe.admin.ch/bfe/de/home/politik/energieperspektiven-2050-plus.html
  • [51] Cagno, E., Worrell, E., Trianni, A., & Pugliese, G. (2013). A novel approach for barriers to industrial energy efficiency. Renewable and Sustainable Energy Reviews, 19, 290–308. https://doi.org/10.1016/J.RSER.2012.11.007
  • [52] Worrell, E., Bernstein, L., Roy, J., Price, L., & Harnisch, J. (2009). Industrial energy efficiency and climate change mitigation. Energy Efficiency, 2(2), 109–123. https://doi.org/10.1007/S12053-008-9032-8/TABLES/2
  • [53] Hossain, S. R., Ahmed, I., Azad, F. S., & Monjurul Hasan, A. S. M. (2020). Empirical investigation of energy management practices in cement industries of Bangladesh. Energy, 212, 118741. https://doi.org/10.1016/J.ENERGY.2020.118741
  • [54] Zhang, S., Worrell, E., & Crijns-Graus, W. (2015). Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry. Applied Energy, 147, 192–213. https://doi.org/10.1016/J.APENERGY.2015.02.081
  • [55] Tesema, G., & Worrell, E. (2015). Energy efficiency improvement potentials for the cement industry in Ethiopia. Energy, 93, 2042–2052. https://doi.org/10.1016/J.ENERGY.2015.10.057
  • [56] Thollander, P., & Ottosson, M. (2010). Energy management practices in Swedish energy-intensive industries. Journal of Cleaner Production, 18(12), 1125–1133. https://doi.org/10.1016/J.JCLEPRO.2010.04.011
  • [57] Andersson, E., & Thollander, P. (2019). Key performance indicators for energy management in the Swedish pulp and paper industry. Energy Strategy Reviews, 24, 229–235. https://doi.org/10.1016/J.ESR.2019.03.004
  • [58] Hasanbeigi, A., Menke, C., & Therdyothin, A. (2011). Technical and cost assessment of energy efficiency improvement and greenhouse gas emission reduction potentials in Thai cement industry. Energy Efficiency, 4(1), 93–113. https://doi.org/10.1007/S12053-010-9079-1/METRICS [59] Ates, S. A., & Durakbasa, N. M. (2012). Evaluation of corporate energy management practices of energy intensive industries in Turkey. Energy, 45(1), 81–91. https://doi.org/10.1016/J.ENERGY.2012.03.032
  • [60] Xu, B., & Lin, B. (2019). Can expanding natural gas consumption reduce China’s CO2 emissions? Energy Economics, 81, 393–407. https://doi.org/10.1016/J.ENECO.2019.04.012
  • [61] Su, B., & Ang, B. W. (2020). Demand contributors and driving factors of Singapore’s aggregate carbon intensities. Energy Policy, 146, 111817. https://doi.org/10.1016/J.ENPOL.2020.111817
  • [62] Han, Y., Zhang, F., Huang, L., Peng, K., & Wang, X. (2021). Does industrial upgrading promote eco-efficiency? ─A panel space estimation based on Chinese evidence. Energy Policy, 154, 112286. https://doi.org/10.1016/J.ENPOL.2021.112286
  • [63] Ofosu-Adarkwa, J., Xie, N., & Javed, S. A. (2020). Forecasting CO2 emissions of China’s cement industry using a hybrid Verhulst-GM(1,N) model and emissions’ technical conversion. Renewable and Sustainable Energy Reviews, 130, 109945. https://doi.org/10.1016/J.RSER.2020.109945
  • [64] Jin, G., Shi, X., Zhang, L., & Hu, S. (2020). Measuring the SCCs of different Chinese regions under future scenarios. Renewable and Sustainable Energy Reviews, 130, 109949. https://doi.org/10.1016/J.RSER.2020.109949
  • [65] Xu, B., & Lin, B. (2021). Investigating spatial variability of CO2 emissions in heavy industry: Evidence from a geographically weighted regression model. Energy Policy, 149, 112011. https://doi.org/10.1016/J.ENPOL.2020.112011
  • [66] Lin, B., & Xu, B. (2020). Effective ways to reduce CO2 emissions from China’s heavy industry? Evidence from semiparametric regression models. Energy Economics, 92, 104974. https://doi.org/10.1016/J.ENECO.2020.104974
  • [67] Xiong, S., Ma, X., & Ji, J. (2019). The impact of industrial structure efficiency on provincial industrial energy efficiency in China. Journal of Cleaner Production, 215, 952–962. https://doi.org/10.1016/J.JCLEPRO.2019.01.095
  • [68] Schaltegger, S., & Sturm, A. (1990). Ökologische Rationalität: Ansatzpunkte zur Ausgestaltung von ökologieorientierten Managementinstrumenten. Die Unternehmung, 44(4), 273–290. https://www.jstor.org/stable/24180467
  • [69] Zhang, F., & Huang, K. (2017). The role of government in industrial energy conservation in China: Lessons from the iron and steel industry. Energy for Sustainable Development, 39, 101–114. https://doi.org/10.1016/J.ESD.2017.05.003
  • [70] Liao, N., & He, Y. (2018). Exploring the effects of influencing factors on energy efficiency in industrial sector using cluster analysis and panel regression model. Energy, 158, 782–795. https://doi.org/10.1016/J.ENERGY.2018.06.049
  • [71] Agovino, M., Bartoletto, S., & Garofalo, A. (2019). Modelling the relationship between energy intensity and GDP for European countries: An historical perspective (1800–2000). Energy Economics, 82, 114–134. https://doi.org/10.1016/J.ENECO.2018.02.017
  • [72] Jimenez, R., & Mercado, J. (2014). Energy intensity: A decomposition and counterfactual exercise for Latin American countries. Energy Economics, 42, 161–171. https://doi.org/10.1016/J.ENECO.2013.12.015
  • [73] Wurlod, J. D., & Noailly, J. (2018). The impact of green innovation on energy intensity: An empirical analysis for 14 industrial sectors in OECD countries. Energy Economics, 71, 47–61. https://doi.org/10.1016/J.ENECO.2017.12.012
  • [74] Farajzadeh, Z., & Nematollahi, M. A. (2018). Energy intensity and its components in Iran: Determinants and trends. Energy Economics, 73, 161–177. https://doi.org/10.1016/J.ENECO.2018.05.021
  • [75] Pan, X., Uddin, M. K., Han, C., & Pan, X. (2019). Dynamics of financial development, trade openness, technological innovation and energy intensity: Evidence from Bangladesh. Energy, 171, 456–464. https://doi.org/10.1016/J.ENERGY.2018.12.200
  • [76] Rafiq, S., Salim, R., & Nielsen, I. (2016). Urbanization, openness, emissions, and energy intensity: A study of increasingly urbanized emerging economies. Energy Economics, 56, 20–28. https://doi.org/10.1016/J.ENECO.2016.02.007
  • [77] Tajudeen, I. A. (2021). The underlying drivers of economy-wide energy efficiency and asymmetric energy price responses. Energy Economics, 98, 105222. https://doi.org/10.1016/J.ENECO.2021.105222
  • [78] Karimu, A., Brännlund, R., Lundgren, T., & Söderholm, P. (2017). Energy intensity and convergence in Swedish industry: A combined econometric and decomposition analysis. Energy Economics, 62, 347–356. https://doi.org/10.1016/J.ENECO.2016.07.017
  • [79] YILDIZ, C. (2024). Binalarda Enerji Verimliliğinde Son Gelişmeler: Türkiye Örneği. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 12(1), 176–213. https://doi.org/10.29109/GUJSC.1293759
  • [80] Kaynak, S. (2005). Enerjinin Verimli Kullanımına Yaklaşımlar Küreselleşmenin Enerji Değişim Programı ve Enerji Politikaları. In TMMOB TÜRKİYE V. ENERJİ SEMPOZYUMU. Ankara: Elektrik Mühendisleri Odası. https://www.emo.org.tr/etkinlikler/enerji/etkinlik_metin.php?etkinlikkod=3&metin_kod=42
  • [81] Uzun, A., & Değirmen, M. (2018). Endüstriyel İşletmelerde Enerji Verimliliği ve Enerji Yönetimi. Uluslararası Ekonomik Araştırmalar Dergisi, 4(2), 83–97. https://dergipark.org.tr/tr/pub/ead/issue/48247/610769
  • [82] IEA. (2023). World Energy Outlook 2023. https://www.iea.org/reports/world-energy-outlook-2023
  • [83] IEA. (2022). CO2 Emissions in 2022. https://www.iea.org/reports/co2-emissions-in-2022
  • [84] Guo, H., Davidson, M. R., Chen, Q., Zhang, D., Jiang, N., Xia, Q., … Zhang, X. (2020). Power market reform in China: Motivations, progress, and recommendations. Energy Policy, 145, 111717. https://doi.org/10.1016/J.ENPOL.2020.111717
  • [85] Guang, F., Wen, L., & Sharp, B. (2022). Energy efficiency improvements and industry transition: An analysis of China’s electricity consumption. Energy, 244, 122625. https://doi.org/10.1016/J.ENERGY.2021.122625
  • [86] Lü, Y. L., Geng, J., & He, G. Z. (2015). Industrial transformation and green production to reduce environmental emissions: Taking cement industry as a case. Advances in Climate Change Research, 6(3–4), 202–209. https://doi.org/10.1016/J.ACCRE.2015.10.002
  • [87] Allcott, H., & Greenstone, M. (2012). Is There an Energy Efficiency Gap? Journal of Economic Perspectives, 26(1), 3–28. https://doi.org/10.1257/JEP.26.1.3
  • [88] Gillingham, K., Keyes, A., & Palmer, K. (2018). Advances in Evaluating Energy Efficiency Policies and Programs. https://doi.org/10.1146/annurev-resource-100517-023028, 10, 511–532. https://doi.org/10.1146/ANNUREV-RESOURCE-100517-023028
  • [89] Malinauskaite, J., Jouhara, H., Egilegor, B., Al-Mansour, F., Ahmad, L., & Pusnik, M. (2020). Energy efficiency in the industrial sector in the EU, Slovenia, and Spain. Energy, 208, 118398. https://doi.org/10.1016/J.ENERGY.2020.118398
  • [90] Ural, T., Akgün, M., Ertürk, M., Sıtkı Koçman Üniversitesi, M., Fakültesi, T., Sistemleri Mühendisliği, E., … Uygulamalı Bilimler Üniversitesi, S. (2020). Türkiye’de Doğalgazın Tüketildiği Mahallerde Kullanılan Havalandırma Menfezlerin Optimizasyonu. International Journal of Pure and Applied Sciences, 6(2), 157–168. https://doi.org/10.29132/IJPAS.814457
  • [91] Patterson, M. G. (1996). What is energy efficiency?: Concepts, indicators and methodological issues. Energy Policy, 24(5), 377–390. https://doi.org/10.1016/0301-4215(96)00017-1
  • [92] Herring, H. (2006). Energy efficiency—a critical view. Energy, 31(1), 10–20. https://doi.org/10.1016/J.ENERGY.2004.04.055
  • [93] Zhou, P., & Ang, B. W. (2008). Linear programming models for measuring economy-wide energy efficiency performance. Energy Policy, 36(8), 2911–2916. https://doi.org/10.1016/J.ENPOL.2008.03.041
  • [94] Kaufman, N., & Palmer, K. L. (2012). Energy efficiency program evaluations: Opportunities for learning and inputs to incentive mechanisms. Energy Efficiency, 5(2), 243–268. https://doi.org/10.1007/S12053-011-9130-X/TABLES/10
  • [95] Heutel, G. (2019). Prospect theory and energy efficiency. Journal of Environmental Economics and Management, 96, 236–254. https://doi.org/10.1016/J.JEEM.2019.06.005
  • [96] Musbah, H., Ali, G., Aly, H. H., & Little, T. A. (2022). Energy management using multi-criteria decision making and machine learning classification algorithms for intelligent system. Electric Power Systems Research, 203, 107645. https://doi.org/10.1016/J.EPSR.2021.107645
  • [97] Liu, P., Zhu, B., & Wang, P. (2021). A weighting model based on best–worst method and its application for environmental performance evaluation. Applied Soft Computing, 103, 107168. https://doi.org/10.1016/J.ASOC.2021.107168
  • [98] Okursoy, A., & Tezsürücü, D. (2015). Veri Zarflama Analizi ile Göreli Etkinliklerin Karşılaştırılması: Türkiye’deki İllerin Kültürel Göstergelerine İlişkin Bir Uygulama. Yönetim ve Ekonomi Dergisi, 21(2), 1–18. https://doi.org/10.18657/YECBU.92031
  • [99] Beltrán-Esteve, M., & Picazo-Tadeo, A. J. (2017). Assessing environmental performance in the European Union: Eco-innovation versus catching-up. Energy Policy, 104, 240–252. https://doi.org/10.1016/J.ENPOL.2017.01.054
  • [100] Chen, X., Liu, Z., & Zhu, Q. (2018). Performance evaluation of China’s high-tech innovation process: Analysis based on the innovation value chain. Technovation, 74–75, 42–53. https://doi.org/10.1016/J.TECHNOVATION.2018.02.009
  • [101] Koltai, T., Lozano, S., Uzonyi-Kecskés, J., & Moreno, P. (2017). Evaluation of the results of a production simulation game using a dynamic DEA approach. Computers & Industrial Engineering, 105, 1–11. https://doi.org/10.1016/J.CIE.2016.12.048
  • [102] Zhou, X., Luo, R., An, Q., Wang, S., & Lev, B. (2019). Water resource environmental carrying capacity-based reward and penalty mechanism: A DEA benchmarking approach. Journal of Cleaner Production, 229, 1294–1306. https://doi.org/10.1016/J.JCLEPRO.2019.05.004
  • [103] Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444. https://doi.org/10.1016/0377-2217(78)90138-8
  • [104] Asghar, S., Sasaki, N., Jourdain, D., & Tsusaka, T. W. (2018). Levels of Technical, Allocative, and Groundwater Use Efficiency and the Factors Affecting the Allocative Efficiency of Wheat Farmers in Pakistan. Sustainability 2018, Vol. 10, Page 1619, 10(5), 1619. https://doi.org/10.3390/SU10051619
  • [105] Singh, G., Singh, P., Sodhi, G. P. S., & Tiwari, D. (2021). Energy auditing and data envelopment analysis (DEA) based optimization for increased energy use efficiency in wheat cultivation (Triticum aestium L.) in north-western India. Sustainable Energy Technologies and Assessments, 47, 101453. https://doi.org/10.1016/J.SETA.2021.101453
  • [106] Michali, M., Emrouznejad, A., Dehnokhalaji, A., & Clegg, B. (2021). Noise-pollution efficiency analysis of European railways: A network DEA model. Transportation Research Part D: Transport and Environment, 98, 102980. https://doi.org/10.1016/J.TRD.2021.102980
  • [107] Izadikhah, M., Azadi, M., Toloo, M., & Hussain, F. K. (2021). Sustainably resilient supply chains evaluation in public transport: A fuzzy chance-constrained two-stage DEA approach. Applied Soft Computing, 113, 107879. https://doi.org/10.1016/J.ASOC.2021.107879
  • [108] Fukuyama, H., Matousek, R., & Tzeremes, N. G. (2020). A Nerlovian cost inefficiency two-stage DEA model for modeling banks’ production process: Evidence from the Turkish banking system. Omega, 95, 102198. https://doi.org/10.1016/J.OMEGA.2020.102198
  • [109] Henriques, I. C., Sobreiro, V. A., Kimura, H., & Mariano, E. B. (2020). Two-stage DEA in banks: Terminological controversies and future directions. Expert Systems with Applications, 161, 113632. https://doi.org/10.1016/J.ESWA.2020.113632
  • [110] Wu, H., Lv, K., Liang, L., & Hu, H. (2017). Measuring performance of sustainable manufacturing with recyclable wastes: A case from China’s iron and steel industry. Omega, 66, 38–47. https://doi.org/10.1016/J.OMEGA.2016.01.009
  • [111] Chen, X., & Lin, B. (2020). Assessment of eco-efficiency change considering energy and environment: A study of China’s non-ferrous metals industry. Journal of Cleaner Production, 277, 123388. https://doi.org/10.1016/J.JCLEPRO.2020.123388
  • [112] Yu, C., Shi, L., Wang, Y., Chang, Y., & Cheng, B. (2016). The eco-efficiency of pulp and paper industry in China: an assessment based on slacks-based measure and Malmquist–Luenberger index. Journal of Cleaner Production, 127, 511–521. https://doi.org/10.1016/J.JCLEPRO.2016.03.153
  • [113] Feng, C., Huang, J. B., Wang, M., & Song, Y. (2018). Energy efficiency in China’s iron and steel industry: Evidence and policy implications. Journal of Cleaner Production, 177, 837–845. https://doi.org/10.1016/J.JCLEPRO.2017.12.231
  • [114] He, Y., Liao, N., & Zhou, Y. (2018). Analysis on provincial industrial energy efficiency and its influencing factors in China based on DEA-RS-FANN. Energy, 142, 79–89. https://doi.org/10.1016/J.ENERGY.2017.10.011
  • [115] Lin, B., & Zhang, G. (2017). Energy efficiency of Chinese service sector and its regional differences. Journal of Cleaner Production, 168, 614–625. https://doi.org/10.1016/J.JCLEPRO.2017.09.020
  • [116] Lin, B., & Zhao, H. (2016). Technology gap and regional energy efficiency in China’s textile industry: A non-parametric meta-frontier approach. Journal of Cleaner Production, 137, 21–28. https://doi.org/10.1016/J.JCLEPRO.2016.07.055
  • [117] Zhu, Q., Li, X., Li, F., & Zhou, D. (2020). The potential for energy saving and carbon emission reduction in China’s regional industrial sectors. Science of The Total Environment, 716, 135009. https://doi.org/10.1016/J.SCITOTENV.2019.135009
  • [118] Lin, B., & Xu, M. (2018). Regional differences on CO2 emission efficiency in metallurgical industry of China. Energy Policy, 120, 302–311. https://doi.org/10.1016/J.ENPOL.2018.05.050
  • [119] Hahn, G. J., Brandenburg, M., & Becker, J. (2021). Valuing supply chain performance within and across manufacturing industries: A DEA-based approach. International Journal of Production Economics, 240, 108203. https://doi.org/10.1016/J.IJPE.2021.108203
  • [120] Zhou, X., Chen, H., Chai, J., Wang, S., & Lev, B. (2020). Performance evaluation and prediction of the integrated circuit industry in China: A hybrid method. Socio-Economic Planning Sciences, 69, 100712. https://doi.org/10.1016/J.SEPS.2019.05.003
  • [121] Chen, H., Qi, S., & Tan, X. (2022). The improvement pathway for industrial energy efficiency under sustainability perspective. Sustainable Energy Technologies and Assessments, 51, 101949. https://doi.org/10.1016/J.SETA.2022.101949
  • [122] Henning, S., Hasselbring, W., Burmester, H., Möbius, A., & Wojcieszak, M. (2021). Goals and measures for analyzing power consumption data in manufacturing enterprises. Journal of Data, Information and Management, 3(1), 65–82. https://doi.org/10.1007/S42488-021-00043-5/FIGURES/7
  • [123] Graetz, G., & Michaels, G. (2018). Robots at Work. The Review of Economics and Statistics, 100(5), 753–768. https://doi.org/10.1162/REST_A_00754
  • [124] Kumaresan, N., & Miyazaki, K. (1999). An integrated network approach to systems of innovation—the case of robotics in Japan. Research Policy, 28(6), 563–585. https://doi.org/10.1016/S0048-7333(98)00128-0
  • [125] Sherwani, F., Asad, M. M., & Ibrahim, B. S. K. K. (2020). Collaborative Robots and Industrial Revolution 4.0 (IR 4.0). 2020 International Conference on Emerging Trends in Smart Technologies, ICETST 2020. https://doi.org/10.1109/ICETST49965.2020.9080724
  • [126] Aghion, P., Jones, B. F., Jones, C. I., Agrawal, A., Ahmadpoor, M., Auclert, A., … Jones, C. (2017). Artificial Intelligence and Economic Growth. https://doi.org/10.3386/W23928
  • [127] Berg, A., Buffie, E. F., & Zanna, L. F. (2018). Should we fear the robot revolution? (The correct answer is yes). Journal of Monetary Economics, 97, 117–148. https://doi.org/10.1016/J.JMONECO.2018.05.014
  • [128] Zeira, J. (1998). Workers, Machines, and Economic Growth. The Quarterly Journal of Economics, 113(4), 1091–1117. https://doi.org/10.1162/003355398555847
  • [129] Kromann, L., Malchow-Møller, N., Skaksen, J. R., & Sørensen, A. (2020). Automation and productivity—a cross-country, cross-industry comparison. Industrial and Corporate Change, 29(2), 265–287. https://doi.org/10.1093/ICC/DTZ039
  • [130] Ballestar, M. T., Díaz-Chao, Á., Sainz, J., & Torrent-Sellens, J. (2020). Knowledge, robots and productivity in SMEs: Explaining the second digital wave. Journal of Business Research, 108, 119–131. https://doi.org/10.1016/J.JBUSRES.2019.11.017
  • [131] Acemoglu, D., & Restrepo, P. (2018). Low-Skill and High-Skill Automation. https://doi.org/10.1086/697242, 12(2), 204–232. https://doi.org/10.1086/697242
  • [132] Acemoglu, D., & Restrepo, P. (2020). Robots and Jobs: Evidence from US Labor Markets. https://doi.org/10.1086/705716, 128(6), 2188–2244. https://doi.org/10.1086/705716
  • [133] Yun, J. H. J., Won, D. K., Jeong, E. S., Park, K. B., Yang, J. H., & Park, J. Y. (2016). The relationship between technology, business model, and market in autonomous car and intelligent robot industries. Technological Forecasting and Social Change, 103, 142–155. https://doi.org/10.1016/J.TECHFORE.2015.11.016
  • [134] Jung, J. H., & Lim, D. G. (2020). Industrial robots, employment growth, and labor cost: A simultaneous equation analysis. Technological Forecasting and Social Change, 159, 120202. https://doi.org/10.1016/J.TECHFORE.2020.120202
  • [135] Keynes, J. M. (2010). Economic Possibilities for Our Grandchildren. Essays in Persuasion, 321–332. https://doi.org/10.1007/978-1-349-59072-8_25
  • [136] Goos, M., Manning, A., & Salomons, A. (2014). Explaining Job Polarization: Routine-Biased Technological Change and Offshoring. American Economic Review, 104(8), 2509–26. https://doi.org/10.1257/AER.104.8.2509
  • [137] Michaels, G., Natraj, A., & Van Reenen, J. V. (2014). Has ICT Polarized Skill Demand? Evidence from Eleven Countries over Twenty-Five Years. The Review of Economics and Statistics, 96(1), 60–77. https://doi.org/10.1162/REST_A_00366
  • [138] Autor, D. H., & Dorn, D. (2013). The Growth of Low-Skill Service Jobs and the Polarization of the US Labor Market. American Economic Review, 103(5), 1553–97. https://doi.org/10.1257/AER.103.5.1553
  • [139] Herrendorf, B., Rogerson, R., & Valentinyi, Á. (2013). Two Perspectives on Preferences and Structural Transformation. American Economic Review, 103(7), 2752–89. https://doi.org/10.1257/AER.103.7.2752
  • [140] Wang, E. Z., Lee, C. C., & Li, Y. (2022). Assessing the impact of industrial robots on manufacturing energy intensity in 38 countries. Energy Economics, 105, 105748. https://doi.org/10.1016/J.ENECO.2021.105748
  • [141] Meike, D., & Ribickis, L. (2011). Energy efficient use of robotics in the automobile industry. IEEE 15th International Conference on Advanced Robotics: New Boundaries for Robotics, ICAR 2011, 507–511. https://doi.org/10.1109/ICAR.2011.6088567
  • [142] Paryanto, Brossog, M., Bornschlegl, M., & Franke, J. (2015). Reducing the energy consumption of industrial robots in manufacturing systems. International Journal of Advanced Manufacturing Technology, 78(5–8), 1315–1328. https://doi.org/10.1007/S00170-014-6737-Z/METRICS
  • [143] Gadaleta, M., Pellicciari, M., & Berselli, G. (2019). Optimization of the energy consumption of industrial robots for automatic code generation. Robotics and Computer-Integrated Manufacturing, 57, 452–464. https://doi.org/10.1016/J.RCIM.2018.12.020
  • [144] Scalera, L., Boscariol, P., Carabin, G., Vidoni, R., & Gasparetto, A. (2020). Enhancing Energy Efficiency of a 4-DOF Parallel Robot Through Task-Related Analysis. Machines 2020, Vol. 8, Page 10, 8(1), 10. https://doi.org/10.3390/MACHINES8010010
  • [145] Kaya, D., Çanka Kılıç, F., & Öztürk, H. H. (2021). Energy Management and Energy Efficiency in Industry. https://doi.org/10.1007/978-3-030-25995-2
  • [146] Çanka Kılıç, F. (2017). Endüstriyel Kazanlarda Enerji Verimliliği ve Emisyon Azalımı Fırsatları. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 5(2), 147–158. https://dergipark.org.tr/tr/pub/gujsc/issue/49772/638531
  • [147] Yildiz Töre, G., & Elitaş, G. (2022). Industrial Energy Efficiency Technologies and Management Applications in Turkey. European Journal of Engineering and Applied Sciences, 5(2), 55–72. https://doi.org/10.55581/EJEAS.1217357
  • [148] Yıldız, A., Akgül, S., & Güverci̇n, S. (2018). Enerji Verimliliği ve Sanayideki Uygulamaları. İleri Teknoloji Bilimleri Dergisi, 7(1), 16–22. https://dergipark.org.tr/tr/pub/duzceitbd/issue/37903/362117
  • [149] Terrell, R. E. (2012). Improving Compressed Air System Efficiency—Know What You Really Need. http://dx.doi.org/10.1080/01998595.1999.10530444, 96(1), 7–15. https://doi.org/10.1080/01998595.1999.10530444
  • [150] Rusen, S. E., Topcu, M. A., Celtek, S. A., Celep, G. K., & Rusen, A. (2018). Investigation of energy saving potentials of a food factory by energy audit. Journal of Engineering Research and Applied Science, 7(1), 848–860. https://www.journaleras.com/index.php/jeras/article/view/116
  • [151] Sousa Santos, V., Cabello Eras, J. J., Sagastume Gutierrez, A., & Cabello Ulloa, M. J. (2019). Assessment of the energy efficiency estimation methods on induction motors considering real-time monitoring. Measurement, 136, 237–247. https://doi.org/10.1016/J.MEASUREMENT.2018.12.080
  • [152] Chuang, H. C., Li, G. De, & Lee, C. T. (2019). The efficiency improvement of AC induction motor with constant frequency technology. Energy, 174, 805–813. https://doi.org/10.1016/J.ENERGY.2019.03.019
  • [153] Ahmed, A. A., Moharam, B. A., & Rashad, E. E. (2022). Improving energy efficiency and economics of motor-pump-system using electric variable-speed drives for automatic transition of working points. Computers & Electrical Engineering, 97, 107607. https://doi.org/10.1016/J.COMPELECENG.2021.107607
  • [154] John, N., Mohandas, R., Rajappan, S. C., & Shakthi, S. (2013). Energy Saving Mechanism Using Variable Frequency Drives.
  • [155] Bakman, I., Gevorkov, L., & Vodovozov, V. (2014). Predictive control of a variable-speed multi-pump motor drive. IEEE International Symposium on Industrial Electronics, 1409–1414. https://doi.org/10.1109/ISIE.2014.6864820
  • [156] Bakman, I., & Gevorkov, L. (2015). Speed control strategy selection for multi-pump systems. 2015 56th International Scientific Conference on Power and Electrical Engineering of Riga Technical University, RTUCON 2015. https://doi.org/10.1109/RTUCON.2015.7343174
  • [157] Vodovozov, V., Lehtla, T., Bakman, I., Raud, Z., & Gevorkov, L. (2016). Energy-efficient predictive control of centrifugal multi-pump stations. 10th International Conference - 2016 Electric Power Quality and Supply Reliability, PQ 2016, Proceedings, 233–238. https://doi.org/10.1109/PQ.2016.7724119
  • [158] Vodovozov, V., & Raud, Z. (2017). Predictive control of multi-pump stations with variable-speed drives. IET Electric Power Applications, 11(5), 911–917. https://doi.org/10.1049/IET-EPA.2016.0361
  • [159] Akhan, H. (2022). Sanayide enerji yönetimi: Pompa ve fan sistemlerinde verimlilik artırıcı uygulamalar. Trakya Üniversitesi Mühendislik Bilimleri Dergisi, 23(1), 11–23. https://dergipark.org.tr/tr/pub/tujes/issue/70957/1039319
  • [160] Sen, P. K. (1997). Reducing power consumption for axial flow mine ventilation fans. Journal of Mines, Metals and Fuels, 45(9–10), 301–303. https://www.informaticsjournals.com/index.php/jmmf/issue/archive/5
  • [161] De Souza, E. (2015). Improving the energy efficiency of mine fan assemblages. Applied Thermal Engineering, 90, 1092–1097. https://doi.org/10.1016/J.APPLTHERMALENG.2015.04.048
  • [162] Panigrahi, D. C., & Mishra, D. P. (2014). CFD Simulations for the Selection of an Appropriate Blade Profile for Improving Energy Efficiency in Axial Flow Mine Ventilation Fans. Journal of Sustainable Mining, 13(1), 15–21. https://doi.org/10.7424/JSM140104
  • [163] Okochi, G. S., & Yao, Y. (2016). A review of recent developments and technological advancements of variable-air-volume (VAV) air-conditioning systems. Renewable and Sustainable Energy Reviews, 59, 784–817. https://doi.org/10.1016/J.RSER.2015.12.328
  • [164] Andersson, E., & Thollander, P. (2019). Key performance indicators for energy management in the Swedish pulp and paper industry. Energy Strategy Reviews, 24, 229–235. https://doi.org/10.1016/J.ESR.2019.03.004
  • [165] Dünya Bankası. (2011). Türkiye’de Enerji Tasarrufu Potansiyelini Kullanmak. https://documents1.worldbank.org/curated/pt/521081468318313907/pdf/522100Energy0S0ential0Energy0Turkey.pdf
  • [166] Kaya, D. (2019). Demir Çelik Sektöründe Enerji Verimliliği. Bayburt Üniversitesi Fen Bilimleri Dergisi, 2(2), 201–204. https://dergipark.org.tr/tr/pub/bufbd/issue/50962/650393
  • [167] Chisalita, D. A., Petrescu, L., Cobden, P., van Dijk, H. A. J. (Eric), Cormos, A. M., & Cormos, C. C. (2019). Assessing the environmental impact of an integrated steel mill with post-combustion CO2 capture and storage using the LCA methodology. Journal of Cleaner Production, 211, 1015–1025. https://doi.org/10.1016/J.JCLEPRO.2018.11.256
  • [168] Luh, S., Budinis, S., Giarola, S., Schmidt, T. J., & Hawkes, A. (2020). Long-term development of the industrial sector – Case study about electrification, fuel switching, and CCS in the USA. Computers & Chemical Engineering, 133, 106602. https://doi.org/10.1016/J.COMPCHEMENG.2019.106602
  • [169] Ünlü, O. (2009). Sanayide Enerji Tasarrufu Çalışmalarının Önemi ve Buhar Sistemleri İle İlgili Uygulama Örnekleri. TMMOB Makina Mühendisleri Odası. https://mmo.org.tr/tesisat-muhendisligi-111/makale/sanayide-enerji-tasarrufu-calismalarinin-onemi-ve-buhar-sistemleri
  • [170] Amran, M., Makul, N., Fediuk, R., Lee, Y. H., Vatin, N. I., Lee, Y. Y., & Mohammed, K. (2022). Global carbon recoverability experiences from the cement industry. Case Studies in Construction Materials, 17, e01439. https://doi.org/10.1016/J.CSCM.2022.E01439
  • [171] Belaïd, F. (2022). How does concrete and cement industry transformation contribute to mitigating climate change challenges? Resources, Conservation & Recycling Advances, 15, 200084. https://doi.org/10.1016/J.RCRADV.2022.200084
  • [172] Miller, S. A., Habert, G., Myers, R. J., & Harvey, J. T. (2021). Achieving net zero greenhouse gas emissions in the cement industry via value chain mitigation strategies. One Earth, 4(10), 1398–1411. https://doi.org/10.1016/J.ONEEAR.2021.09.011
  • [173] Cao, Z., Myers, R. J., Lupton, R. C., Duan, H., Sacchi, R., Zhou, N., … Liu, G. (2020). The sponge effect and carbon emission mitigation potentials of the global cement cycle. Nature Communications 2020 11:1, 11(1), 1–9. https://doi.org/10.1038/s41467-020-17583-w
  • [174] Van Ruijven, B. J., Van Vuuren, D. P., Boskaljon, W., Neelis, M. L., Saygin, D., & Patel, M. K. (2016). Long-term model-based projections of energy use and CO2 emissions from the global steel and cement industries. Resources, Conservation and Recycling, 112, 15–36. https://doi.org/10.1016/J.RESCONREC.2016.04.016
  • [175] National Bureau of Statistics. (2021). China Environment Statistics Yearbook. China Statistics Press. Beijing. http://www.stats.gov.cn/sj/ndsj/2021/indexeh.htm
  • [176] Tavman, İ. (2016). Türkiye’nin Elektrik Üretimi ve Tüketimi, Çimento Sanayinde Enerji Geri Kazanımı. In Enerji Stratejileri: İzmir Sempozyumu. Buca: Dokuz Eylül University. https://www.researchgate.net/publication/303033772_Turkiye’nin_Elektrik_Uretimi_ve_Tuketimi_-Cimento_Sanayinde_Enerji_Geri_Kazanimi
  • [177] Leeson, D., Mac Dowell, N., Shah, N., Petit, C., & Fennell, P. S. (2017). A Techno-economic analysis and systematic review of carbon capture and storage (CCS) applied to the iron and steel, cement, oil refining and pulp and paper industries, as well as other high purity sources. International Journal of Greenhouse Gas Control, 61, 71–84. https://doi.org/10.1016/J.IJGGC.2017.03.020
  • [178] Psarras, P. C., Comello, S., Bains, P., Charoensawadpong, P., Reichelstein, S., & Wilcox, J. (2017). Carbon Capture and Utilization in the Industrial Sector. Environmental Science and Technology, 51(19), 11440–11449. https://doi.org/10.1021/ACS.EST.7B01723/SUPPL_FILE/ES7B01723_SI_006.XLSX
  • [179] Tomatis, M., Jeswani, H. K., Stamford, L., & Azapagic, A. (2020). Assessing the environmental sustainability of an emerging energy technology: Solar thermal calcination for cement production. Science of The Total Environment, 742, 140510. https://doi.org/10.1016/J.SCITOTENV.2020.140510
  • [180] Bundela, P. S., & Chawla, V. (2010). Sustainable Development through Waste Heat Recovery. American Journal of Environmental Sciences, 6(1), 83–89. https://doi.org/10.3844/AJESSP.2010.83.89
  • [181] Wang, J., Dai, Y., & Gao, L. (2009). Exergy analyses and parametric optimizations for different cogeneration power plants in cement industry. Applied Energy, 86(6), 941–948. https://doi.org/10.1016/J.APENERGY.2008.09.001
  • [182] Thirugnanasambandam, M., Hasanuzzaman, M., Saidur, R., Ali, M. B., Rajakarunakaran, S., Devaraj, D., & Rahim, N. A. (2011). Analysis of electrical motors load factors and energy savings in an Indian cement industry. Energy, 36(7), 4307–4314. https://doi.org/10.1016/J.ENERGY.2011.04.011
  • [183] Polat, B., Seval Bayram, N., Polat, A., Üniversitesi, M., Meslek Yüksekokulu, T., Teknolojisi Programı, İ., … Mühendisliği Bölümü, İ. (2017). Güneydoğu Anadolu Bölgesi için İnşaat Sektöründeki İş Güvenliği Koşullarının İncelenmesi. International Journal of Pure and Applied Sciences, 3(2), 68–78. https://doi.org/10.29132/IJPAS.341909
  • [184] Mezinska, I., & Strode, S. (2015). Emerging Horizons of Environmental Management in Food Sector Companies. Procedia - Social and Behavioral Sciences, 213, 527–532. https://doi.org/10.1016/J.SBSPRO.2015.11.445
  • [185] Corsini, A., Bonacina, F., Feudo, S., Lucchetta, F., & Marchegiani, A. (2016). Multivariate KPI for Energy Management of Cooling Systems in Food Industry. Energy Procedia, 101, 297–304. https://doi.org/10.1016/J.EGYPRO.2016.11.038
  • [186] Jovanović, B., Filipović, J., & Bakić, V. (2017). Energy management system implementation in Serbian manufacturing – Plan-Do-Check-Act cycle approach. Journal of Cleaner Production, 162, 1144–1156. https://doi.org/10.1016/J.JCLEPRO.2017.06.140
  • [187] Pradella, A. M., de Freitas Rocha Loures, E., da Costa, S. E. G., & de Lima, E. P. (2019). Energy Efficiency in the Food Industry: A Systematic Literature Review. Brazilian Archives of Biology and Technology, 62(specialissue), e19190002. https://doi.org/10.1590/1678-4324-SMART-2019190002
  • [188] Jagtap, S., Rahimifard, S., & Duong, L. N. K. (2022). Real-time data collection to improve energy efficiency: A case study of food manufacturer. Journal of Food Processing and Preservation, 46(8), e14338. https://doi.org/10.1111/JFPP.14338
  • [189] Rüşen, S. E., & Çevik, M. S. (2020). Bir Gıda Fabrikasında Enerji Verimliliğinin İyileştirilmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(3), 539–552. https://doi.org/10.19113/SDUFENBED.498966
  • [190] Bahattin Kıyılmaz, M., Keçebaş, A., Ertürk, M., Sıtkı Koçman Üniversitesi, M., Bilimleri Enstitüsü, F., Sistemleri Mühendisliği, E., … Mühendisliği Bölümü, M. (2021). Sanayide Enerji Yönetimi Sistemi için Bir Gıda Tesisinin Enerji Verimliliğinin İyileştirilmesi. International Journal of Pure and Applied Sciences, 7(1), 51–62. https://doi.org/10.29132/IJPAS.815077
  • [191] Kaya, M. (2012). Sanayide Enerji Verimliliği Potansiyeli ve Basınçlı Hava Sistemlerinde Verimlilik. İstanbul Teknik Üniversitesi, İstanbul. https://polen.itu.edu.tr/items/e19c0c7e-1a95-40f2-a756-5dcdc65acbe9
  • [192] AKBAŞ, B., KAYA, D., & EYİDOĞAN, M. (2018). Bir Otomobil Montaj Fabrikasının Enerji Tüketim Analizi ve Enerji Tasarrufu Potansiyelinin Değerlendirilmesi. Mühendis ve Makina, 59(691), 85–100. https://dergipark.org.tr/tr/pub/muhendismakina/issue/48796/621082
  • [193] Rivera, J. L., & Reyes-Carrillo, T. (2014). A Framework for Environmental and Energy Analysis of the Automobile Painting Process. Procedia CIRP, 15, 171–175. https://doi.org/10.1016/J.PROCIR.2014.06.022
  • [194] Çanka Kiliç, F., Eyidoğan, M., & Sapmaz, S. (2018). Bir otomobil montaj işletmesinde enerji verimliliği artırıcı çözümlerin irdelenmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 6(1), 149–162. https://doi.org/10.29109/HTTP-GUJSC-GAZI-EDU-TR.331104
  • [195] Uylukçuoglu, Ö. E. (2017). Otomativ Sanayinde Enerji Verimliliği Ve Enerji Tasarruf Olanaklarının Belirlenmesi. İstanbul Teknik Üniversitesi, İstanbul. http://hdl.handle.net/11527/12789
  • [196] Capehart, B. L. (Barney L. ), Turner, W. C., & Kennedy, W. J. (2016). Guide to Energy Management. The Fairmont Press, Inc. https://www.routledge.com/Guide-to-Energy-Management-Eighth-Edition/Capehart-PhD-CEM-Turner-PhD-PE-CEM-Kennedy-PhD-PE/p/book/9781498759335
  • [197] Uzun, A., & Değirmen, M. (2018). Endüstriyel İşletmelerde Enerji Verimliliği ve Enerji Yönetimi. Uluslararası Ekonomik Araştırmalar Dergisi, 4(2), 83–97. https://dergipark.org.tr/tr/pub/ead/issue/48247/610769
  • [198] Prashanth, M. S., Eshwar, R., Patel, V. K., Selvaraj, J., Rohit, R., Rahul, R., & Menon, G. K. (2014). A multi faceted approach to energy conservation in foundries. Procedia Engineering, 97, 1815–1824. https://doi.org/10.1016/j.proeng.2014.12.335
  • [199] Lee, S. K., Teng, M. C., Fan, K. S., Yang, K. H., & Horng, R. S. (2011). Application of an energy management system in combination with FMCS to high energy consuming IT industries of Taiwan. Energy Conversion and Management, 52(8–9), 3060–3070. https://doi.org/10.1016/J.ENCONMAN.2010.12.031
  • [200] Moya, D., Torres, R., & Stegen, S. (2016). Analysis of the Ecuadorian energy audit practices: A review of energy efficiency promotion. Renewable and Sustainable Energy Reviews, 62, 289–296. https://doi.org/10.1016/J.RSER.2016.04.052
  • [201] Bunse, K., Vodicka, M., Schönsleben, P., Brülhart, M., & Ernst, F. O. (2011). Integrating energy efficiency performance in production management – gap analysis between industrial needs and scientific literature. Journal of Cleaner Production, 19(6–7), 667–679. https://doi.org/10.1016/J.JCLEPRO.2010.11.011
  • [202] Schulze, M., Nehler, H., Ottosson, M., & Thollander, P. (2016). Energy management in industry – a systematic review of previous findings and an integrative conceptual framework. Journal of Cleaner Production, 112, 3692–3708. https://doi.org/10.1016/J.JCLEPRO.2015.06.060
  • [203] McLaughlin, E., Choi, J. K., & Kissock, K. (2022). Techno-Economic Impact Assessments of Energy Efficiency Improvements in the Industrial Combustion Systems. Journal of Energy Resources Technology, Transactions of the ASME, 144(8). https://doi.org/10.1115/1.4053137/1128944
  • [204] Cagno, E., Franzò, S., Storoni, E., & Trianni, A. (2022). A characterisation framework of energy services offered by energy service companies. Applied Energy, 324, 119674. https://doi.org/10.1016/J.APENERGY.2022.119674
  • [205] Thollander, P., & Palm, J. (2015). Industrial Energy Management Decision Making for Improved Energy Efficiency—Strategic System Perspectives and Situated Action in Combination. Energies 2015, Vol. 8, Pages 5694-5703, 8(6), 5694–5703. https://doi.org/10.3390/EN8065694
  • [206] Bertoldi P, Diluiso F, Castellazzi L, N., L., & T., S. (2018). Energy Consumption and Energy Efficiency Trends in the EU-28 2000-2015. European Commission, JRC Science for Policy Report. https://ec.europa.eu/jrc%0Ahttps://ec.europa.eu/jrc%0Ahttp://publications.jrc.ec.europa.eu/repository/bitstream/JRC110326/efficiency_trends_2017__final_lr.pdf
  • [207] Andrei, M., Thollander, P., Pierre, I., Gindroz, B., & Rohdin, P. (2021). Decarbonization of industry: Guidelines towards a harmonized energy efficiency policy program impact evaluation methodology. Energy Reports, 7, 1385–1395. https://doi.org/10.1016/J.EGYR.2021.02.067
  • [208] Backlund, S., & Thollander, P. (2015). Impact after three years of the Swedish energy audit program. Energy, 82, 54–60. https://doi.org/10.1016/J.ENERGY.2014.12.068
  • [209] Andersson, E., Arfwidsson, O., Bergstrand, V., & Thollander, P. (2017). A study of the comparability of energy audit program evaluations. Journal of Cleaner Production, 142, 2133–2139. https://doi.org/10.1016/J.JCLEPRO.2016.11.070
  • [210] Abdel-Hadi, A., Salem, A. R., Abbas, A. I., Qandil, M., & Amano, R. S. (2021). Study of energy saving analysis for different industries. Journal of Energy Resources Technology, Transactions of the ASME, 143(5). https://doi.org/10.1115/1.4048249/1086572
  • [211] Kluczek, A., & Olszewski, P. (2017). Energy audits in industrial processes. Journal of Cleaner Production, 142, 3437–3453. https://doi.org/10.1016/J.JCLEPRO.2016.10.123
  • [212] Worrell, E., Laitner, J. A., Ruth, M., & Finman, H. (2003). Productivity benefits of industrial energy efficiency measures. Energy, 28(11), 1081–1098. https://doi.org/10.1016/S0360-5442(03)00091-4
  • [213] Pye, M., & McKane, A. (2000). Making a stronger case for industrial energy efficiency by quantifying non-energy benefits. Resources, Conservation and Recycling, 28(3–4), 171–183. https://doi.org/10.1016/S0921-3449(99)00042-7
  • [214] Nehler, T., & Rasmussen, J. (2016). How do firms consider non-energy benefits? Empirical findings on energy-efficiency investments in Swedish industry. Journal of Cleaner Production, 113, 472–482. https://doi.org/10.1016/J.JCLEPRO.2015.11.070
  • [215] Zuberi, M. J. S., Tijdink, A., & Patel, M. K. (2017). Techno-economic analysis of energy efficiency improvement in electric motor driven systems in Swiss industry. Applied Energy, 205, 85–104. https://doi.org/10.1016/J.APENERGY.2017.07.121
  • [216] Kapp, S., Choi, J. K., & Kissock, K. (2022). Toward energy-efficient industrial thermal systems for regional manufacturing facilities. Energy Reports, 8, 1377–1387. https://doi.org/10.1016/J.EGYR.2021.12.060
  • [217] Bosu, I., Mahmoud, H., & Hassan, H. (2023). Energy audit and management of an industrial site based on energy efficiency, economic, and environmental analysis. Applied Energy, 333, 120619. https://doi.org/10.1016/J.APENERGY.2022.120619
  • [218] Martin, R., Muûls, M., De Preux, L. B., & Wagner, U. J. (2012). Anatomy of a paradox: Management practices, organizational structure and energy efficiency. Journal of Environmental Economics and Management, 63(2), 208–223. https://doi.org/10.1016/J.JEEM.2011.08.003
  • [219] Tiller, S. R. (2011). Organizational Structure and Management Systems. Leadership and Management in Engineering, 12(1), 20–23. https://doi.org/10.1061/(ASCE)LM.1943-5630.0000160
  • [220] Sola, A. V. H., & Mota, C. M. M. (2020). Influencing factors on energy management in industries. Journal of Cleaner Production, 248, 119263. https://doi.org/10.1016/J.JCLEPRO.2019.119263
  • [221] Otsuka, A. (2023). Industrial electricity consumption efficiency and energy policy in Japan. Utilities Policy, 81, 101519. https://doi.org/10.1016/J.JUP.2023.101519
  • [222] Neves, F. de O., Salgado, E. G., & Beijo, L. A. (2017). Analysis of the Environmental Management System based on ISO 14001 on the American continent. Journal of environmental management, 199, 251–262. https://doi.org/10.1016/J.JENVMAN.2017.05.049
  • [223] Marimon, F., & Casadesús, M. (2017). Reasons to Adopt ISO 50001 Energy Management System. Sustainability 2017, Vol. 9, Page 1740, 9(10), 1740. https://doi.org/10.3390/SU9101740
  • [224] Ferland, K., Brown, J., Meffert, B., Hake, D., Krawczyk, M., Mazza, M., & Waz, P. (2009). Results from the Texas Pilot Project on Manufacturing Plant Energy Efficiency Certification. https://www.eceee.org/library/conference_proceedings/ACEEE_industry/2009/Panel_3/3.59/
  • [225] Zhou, X., Zhang, H., Rong, Y., Song, J., Fang, S., Xu, Z., … Markides, C. N. (2022). Comparative study for air compression heat recovery based on organic Rankine cycle (ORC) in cryogenic air separation units. Energy, 255, 124514. https://doi.org/10.1016/J.ENERGY.2022.124514
  • [226] Song, J., Li, X., Wang, K., & Markides, C. N. (2020). Parametric optimisation of a combined supercritical CO2 (S-CO2) cycle and organic Rankine cycle (ORC) system for internal combustion engine (ICE) waste-heat recovery. Energy Conversion and Management, 218, 112999. https://doi.org/10.1016/J.ENCONMAN.2020.112999
  • [227] Markides, C. N. (2013). The role of pumped and waste heat technologies in a high-efficiency sustainable energy future for the UK. Applied Thermal Engineering, 53(2), 197–209. https://doi.org/10.1016/J.APPLTHERMALENG.2012.02.037
  • [228] Gangar, N., Macchietto, S., & Markides, C. N. (2020). Recovery and Utilization of Low-Grade Waste Heat in the Oil-Refining Industry Using Heat Engines and Heat Pumps: An International Technoeconomic Comparison. Energies 2020, Vol. 13, Page 2560, 13(10), 2560. https://doi.org/10.3390/EN13102560
  • [229] European Commission. (2016). EU Strategy on Heating and Cooling. https://www.europarl.europa.eu/legislative-train/package-energy-efficiency/file-eu-strategy-on-heating-and-cooling
  • [230] Jouhara, H., & Olabi, A. G. (2018). Editorial: Industrial waste heat recovery. Energy, 160, 1–2. https://doi.org/10.1016/J.ENERGY.2018.07.013
  • [231] Jouhara, H., Chauhan, A., Nannou, T., Almahmoud, S., Delpech, B., & Wrobel, L. C. (2017). Heat pipe based systems - Advances and applications. Energy, 128, 729–754. https://doi.org/10.1016/J.ENERGY.2017.04.028
  • [232] Cura, Ö., & Öğüt, E. (2022). Bir İşletmeye Ait Yardımcı Tesislerin Enerji Tüketimi ve Verimliliğinin İncelenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 10(4), 1910–1925. https://doi.org/10.29130/DUBITED.878810
  • [233] Fitó, J., Hodencq, S., Ramousse, J., Wurtz, F., Stutz, B., Debray, F., & Vincent, B. (2020). Energy- and exergy-based optimal designs of a low-temperature industrial waste heat recovery system in district heating. Energy Conversion and Management, 211, 112753. https://doi.org/10.1016/J.ENCONMAN.2020.112753
  • [234] Maouris, G., Sarabia Escriva, E. J., Acha, S., Shah, N., & Markides, C. N. (2020). CO2 refrigeration system heat recovery and thermal storage modelling for space heating provision in supermarkets: An integrated approach. Applied Energy, 264, 114722. https://doi.org/10.1016/J.APENERGY.2020.114722
  • [235] Liang, Y., Yu, Z., & Li, W. (2019). A Waste Heat-Driven Cooling System Based on Combined Organic Rankine and Vapour Compression Refrigeration Cycles. Applied Sciences 2019, Vol. 9, Page 4242, 9(20), 4242. https://doi.org/10.3390/APP9204242
  • [236] Lecompte, S., Oyewunmi, O. A., Markides, C. N., Lazova, M., Kaya, A., Van Den Broek, M., & De Paepe, M. (2017). Case Study of an Organic Rankine Cycle (ORC) for Waste Heat Recovery from an Electric Arc Furnace (EAF). Energies 2017, Vol. 10, Page 649, 10(5), 649. https://doi.org/10.3390/EN10050649
  • [237] Fatigati, F., Vittorini, D., Wang, Y., Song, J., Markides, C. N., & Cipollone, R. (2020). Design and Operational Control Strategy for Optimum Off-Design Performance of an ORC Plant for Low-Grade Waste Heat Recovery. Energies 2020, Vol. 13, Page 5846, 13(21), 5846. https://doi.org/10.3390/EN13215846
  • [238] Ishaq, H., Dincer, I., & Naterer, G. F. (2018). New trigeneration system integrated with desalination and industrial waste heat recovery for hydrogen production. Applied Thermal Engineering, 142, 767–778. https://doi.org/10.1016/J.APPLTHERMALENG.2018.07.019
  • [239] Wang, F., Wang, L., Zhang, H., Xia, L., Miao, H., & Yuan, J. (2021). Design and optimization of hydrogen production by solid oxide electrolyzer with marine engine waste heat recovery and ORC cycle. Energy Conversion and Management, 229, 113775. https://doi.org/10.1016/J.ENCONMAN.2020.113775
  • [240] Bühler, F., Petrović, S., Holm, F. M., Karlsson, K., & Elmegaard, B. (2018). Spatiotemporal and economic analysis of industrial excess heat as a resource for district heating. Energy, 151, 715–728. https://doi.org/10.1016/J.ENERGY.2018.03.059
  • [241] Pettersson, K., Axelsson, E., Eriksson, L., Svensson, E., Berntsson, T., & Harvey, S. (2020). Holistic methodological framework for assessing the benefits of delivering industrial excess heat to a district heating network. International Journal of Energy Research, 44(4), 2634–2651. https://doi.org/10.1002/ER.5005
  • [242] Rastegarpour, S., Mariotti, A., Ferrarini, L., & Aminyavari, M. (2023). Energy efficiency improvement for industrial boilers through a flue-gas condensing heat recovery system with nonlinear MPC approach. Applied Thermal Engineering, 229, 120554. https://doi.org/10.1016/J.APPLTHERMALENG.2023.120554
  • [243] Johnson, I., Choate, W. T., & Davidson, A. (2008). Waste Heat Recovery. Technology and Opportunities in U.S. Industry. https://doi.org/10.2172/1218716
  • [244] Firth, A., Zhang, B., & Yang, A. (2019). Quantification of global waste heat and its environmental effects. Applied Energy, 235, 1314–1334. https://doi.org/10.1016/J.APENERGY.2018.10.102
  • [245] Forman, C., Muritala, I. K., Pardemann, R., & Meyer, B. (2016). Estimating the global waste heat potential. Renewable and Sustainable Energy Reviews, 57, 1568–1579. https://doi.org/10.1016/J.RSER.2015.12.192
  • [246] Jouhara, H., Khordehgah, N., Almahmoud, S., Delpech, B., Chauhan, A., & Tassou, S. A. (2018). Waste heat recovery technologies and applications. Thermal Science and Engineering Progress, 6, 268–289. https://doi.org/10.1016/J.TSEP.2018.04.017
  • [247] Christodoulides, P., Agathokleous, R., Aresti, L., Kalogirou, S. A., Tassou, S. A., & Florides, G. A. (2022). Waste Heat Recovery Technologies Revisited with Emphasis on New Solutions, Including Heat Pipes, and Case Studies. Energies 2022, Vol. 15, Page 384, 15(1), 384. https://doi.org/10.3390/EN15010384
  • [248] Yan, S. R., Fazilati, M. A., Samani, N., Ghasemi, H., Toghraie, D., Nguyen, Q., & Karimipour, A. (2020). Energy efficiency optimization of the waste heat recovery system with embedded phase change materials in greenhouses: A thermo-economic-environmental study. Journal of Energy Storage, 30, 101445. https://doi.org/10.1016/J.EST.2020.101445
  • [249] Remeli, M. F., Tan, L., Date, A., Singh, B., & Akbarzadeh, A. (2015). Simultaneous power generation and heat recovery using a heat pipe assisted thermoelectric generator system. Energy Conversion and Management, 91, 110–119. https://doi.org/10.1016/J.ENCONMAN.2014.12.001
  • [250] Jouhara, H., Almahmoud, S., Chauhan, A., Delpech, B., Bianchi, G., Tassou, S. A., … Arribas, J. J. (2017). Experimental and theoretical investigation of a flat heat pipe heat exchanger for waste heat recovery in the steel industry. Energy, 141, 1928–1939. https://doi.org/10.1016/J.ENERGY.2017.10.142
  • [251] Oğulata, R. T., Doba, F., & Yilmaz, T. (1999). Second-law and experimental analysis of a cross-flow heat exchanger. HEAT TRANSFER ENGINEERING, 20(2), 20–27. https://doi.org/10.1080/014576399271547
  • [252] Farshi, L. G., Khalili, S., & Mosaffa, A. H. (2018). Thermodynamic analysis of a cascaded compression – Absorption heat pump and comparison with three classes of conventional heat pumps for the waste heat recovery. Applied Thermal Engineering, 128, 282–296. https://doi.org/10.1016/J.APPLTHERMALENG.2017.09.032
  • [253] Gibbs, B. M. (1987). Boiler fuel savings by heat recovery and reduced standby losses. Heat Recovery Systems and CHP, 7(2), 151–157. https://doi.org/10.1016/0890-4332(87)90079-2
  • [254] Butcher, T. A., & Litzke, W. (1994). Condensing economizers for small coal-fired boilers and furnaces. https://doi.org/10.2172/296650
  • [255] Wang, C., He, B., Yan, L., Pei, X., & Chen, S. (2014). Thermodynamic analysis of a low-pressure economizer based waste heat recovery system for a coal-fired power plant. Energy, 65, 80–90. https://doi.org/10.1016/J.ENERGY.2013.11.084
  • [256] Willems, D. (2018). Advanced System Controls and Energy Savings for Industrial Boilers. ASME 2006 Citrus Engineering Conference, CEC 2006, 11–22. https://doi.org/10.1115/CEC2006-5202
  • [257] Wang, D., Bao, A., Kunc, W., & Liss, W. (2012). Coal power plant flue gas waste heat and water recovery. Applied Energy, 91(1), 341–348. https://doi.org/10.1016/J.APENERGY.2011.10.003
  • [258] Peris, B., Navarro-Esbrí, J., Molés, F., & Mota-Babiloni, A. (2015). Experimental study of an ORC (organic Rankine cycle) for low grade waste heat recovery in a ceramic industry. Energy, 85, 534–542. https://doi.org/10.1016/J.ENERGY.2015.03.065
  • [259] Ramirez, M., Epelde, M., De Arteche, M. G., Panizza, A., Hammerschmid, A., Baresi, M., & Monti, N. (2017). Performance evaluation of an ORC unit integrated to a waste heat recovery system in a steel mill. Energy Procedia, 129, 535–542. https://doi.org/10.1016/J.EGYPRO.2017.09.183
  • [260] Cao, S. J., Kong, X. R., Deng, Y., Zhang, W., Yang, L., & Ye, Z. P. (2017). Investigation on thermal performance of steel heat exchanger for ground source heat pump systems using full-scale experiments and numerical simulations. Applied Thermal Engineering, 115, 91–98. https://doi.org/10.1016/J.APPLTHERMALENG.2016.12.098
  • [261] Jouhara, H., Almahmoud, S., Chauhan, A., Delpech, B., Nannou, T., Tassou, S. A., … Arribas, J. J. (2017). Experimental investigation on a flat heat pipe heat exchanger for waste heat recovery in steel industry. Energy Procedia, 123, 329–334. https://doi.org/10.1016/J.EGYPRO.2017.07.262
  • [262] Qin, S., & Chang, S. (2017). Modeling, thermodynamic and techno-economic analysis of coke production process with waste heat recovery. Energy, 141, 435–450. https://doi.org/10.1016/J.ENERGY.2017.09.105
  • [263] Naeimi, A., Bidi, M., Ahmadi, M. H., Kumar, R., Sadeghzadeh, M., & Alhuyi Nazari, M. (2019). Design and exergy analysis of waste heat recovery system and gas engine for power generation in Tehran cement factory. Thermal Science and Engineering Progress, 9, 299–307. https://doi.org/10.1016/J.TSEP.2018.12.007
  • [264] Rüstem Çalapkulu, S. (2020). Kojenerasyon Sistemleri ve Trijenerasyon Sistemleri. Mühendis ve Makine, 5. https://www.mmo.org.tr/sites/default/files/14_9.pdf
  • [265] Özturk, H., & Kaya, D. (2012). Biyoyakıt Üretimi ve Kullanımı. Ankara: TMMOB Makina Mühendisleri Odası. https://kitap.mmo.org.tr/biyoyakit-uretimi-ve-kullanimi
  • [266] Elektrikport. (2015, April 28). Kojenerasyon Sistemi. 2023, https://www.elektrikport.com/universite/kojenerasyon-sistemi/4286#ad-image-0
  • [267] Ritchie, H. (2020). Sector by sector: where do global greenhouse gas emissions come from? https://ourworldindata.org/ghg-emissions-by-sector
  • [268] Turgut, O., Bjerketvedt, V. S., Tomasgard, A., & Roussanaly, S. (2021). An integrated analysis of carbon capture and storage strategies for power and industry in Europe. Journal of Cleaner Production, 329, 129427. https://doi.org/10.1016/J.JCLEPRO.2021.129427
  • [269] IC Change. (2014). Mitigation of climate change. keneamazon.net. https://keneamazon.net/Documents/Publications/Virtual-Library/Impacto/157.pdf
  • [270] Knopf, B., Chen, Y. H. H., De Cian, E., Förster, H., Kanudia, A., Karkatsouli, I., … Van Vuuren, D. P. (2013). Beyond 2020-Strategies and Costs for Transforming The European Energy System. Climate Change Economics, 4(supp01). https://doi.org/10.1142/S2010007813400010
  • [271] Vangkilde-Pedersen, T., Anthonsen, K. L., Smith, N., Kirk, K., neele, F., van der Meer, B., … Peter Christensen, N. (2009). Assessing European capacity for geological storage of carbon dioxide–the EU GeoCapacity project. Energy Procedia, 1(1), 2663–2670. https://doi.org/10.1016/J.EGYPRO.2009.02.034
  • [272] Mirza, N., & Kearns, D. ,. (2022). State Of The Art: Ccs Technologıes 2022. Global CSS Institute.
  • [273] Mostafa, M., Antonicelli, C., Varela, C., Barletta, D., & Zondervan, E. (2022). Capturing CO2 from the atmosphere: Design and analysis of a large-scale DAC facility. Carbon Capture Science & Technology, 4, 100060. https://doi.org/10.1016/J.CCST.2022.100060
  • [274] Arning, K., Offermann-van Heek, J., Linzenich, A., Kaetelhoen, A., Sternberg, A., Bardow, A., & Ziefle, M. (2019). Same or different? Insights on public perception and acceptance of carbon capture and storage or utilization in Germany. Energy Policy, 125, 235–249. https://doi.org/10.1016/J.ENPOL.2018.10.039
  • [275] Ahmed, M., Bashar, I., Alam, S. T., Wasi, A. I., Jerin, I., Khatun, S., & Rahman, M. (2021). An overview of Asian cement industry: Environmental impacts, research methodologies and mitigation measures. Sustainable Production and Consumption, 28, 1018–1039. https://doi.org/10.1016/J.SPC.2021.07.024
  • [276] Fennell, P. S., Davis, S. J., & Mohammed, A. (2021). Decarbonizing cement production. Joule, 5(6), 1305–1311. https://doi.org/10.1016/j.joule.2021.04.011
  • [277] Tapia, J. F. D., Lee, J. Y., Ooi, R. E. H., Foo, D. C. Y., & Tan, R. R. (2018). A review of optimization and decision-making models for the planning of CO2 capture, utilization and storage (CCUS) systems. Sustainable Production and Consumption, 13, 1–15. https://doi.org/10.1016/J.SPC.2017.10.001
  • [278] Anthony, E. J., & Clough, P. T. (2019). Post-Combustion Carbon Capture and Storage in Industry. Energy, Environment, and Sustainability, 39–53. https://doi.org/10.1007/978-981-13-3296-8_4/COVER
  • [279] Bataille, C., Åhman, M., Neuhoff, K., Nilsson, L. J., Fischedick, M., Lechtenböhmer, S., … Rahbar, S. (2018). A review of technology and policy deep decarbonization pathway options for making energy-intensive industry production consistent with the Paris Agreement. Journal of Cleaner Production, 187, 960–973. https://doi.org/10.1016/J.JCLEPRO.2018.03.107
  • [280] Roussanaly, S., Berghout, N., Fout, T., Garcia, M., Gardarsdottir, S., Nazir, S. M., … Rubin, E. S. (2021). Towards improved cost evaluation of Carbon Capture and Storage from industry. International Journal of Greenhouse Gas Control, 106, 103263. https://doi.org/10.1016/J.IJGGC.2021.103263
  • [281] Anika, O. C., Nnabuife, S. G., Bello, A., Okoroafor, E. R., Kuang, B., & Villa, R. (2022). Prospects of low and zero-carbon renewable fuels in 1.5-degree net zero emission actualisation by 2050: A critical review. Carbon Capture Science & Technology, 5, 100072. https://doi.org/10.1016/J.CCST.2022.100072
  • [282] IEA. (2020). Global Energy Review 2020. https://www.iea.org/reports/global-energy-review-2020
  • [283] IPCC. (2022). Climate Change 2022: Mitigation of Climate Change. https://www.ipcc.ch/report/ar6/wg3/
  • [284] Cachola, C. da S., Ciotta, M., Azevedo dos Santos, A., & Peyerl, D. (2023). Deploying of the carbon capture technologies for CO2 emission mitigation in the industrial sectors. Carbon Capture Science & Technology, 7, 100102. https://doi.org/10.1016/J.CCST.2023.100102
  • [285] Gough, C., & Mander, S. (2019). Beyond Social Acceptability: Applying Lessons from CCS Social Science to Support Deployment of BECCS. Current Sustainable/Renewable Energy Reports, 6(4), 116–123. https://doi.org/10.1007/S40518-019-00137-0/METRICS
  • [286] Roussanaly, S., Jakobsen, J. P., Hognes, E. H., & Brunsvold, A. L. (2013). Benchmarking of CO2 transport technologies: Part I—Onshore pipeline and shipping between two onshore areas. International Journal of Greenhouse Gas Control, 19, 584–594. https://doi.org/10.1016/J.IJGGC.2013.05.031
  • [287] Roussanaly, S., Brunsvold, A. L., & Hognes, E. S. (2014). Benchmarking of CO2 transport technologies: Part II – Offshore pipeline and shipping to an offshore site. International Journal of Greenhouse Gas Control, 28, 283–299. https://doi.org/10.1016/J.IJGGC.2014.06.019
  • [288] Global CCS Institute. (2023). Global Status of CCS 2023. https://status23.globalccsinstitute.com/
  • [289] Shaw, R., & Mukherjee, S. (2022). The development of carbon capture and storage (CCS) in India: A critical review. Carbon Capture Science & Technology, 2, 100036. https://doi.org/10.1016/J.CCST.2022.100036
  • [290] Cormos, A. M., Dragan, S., Petrescu, L., Chisalita, D. A., Szima, S., Sandu, V. C., & Cormos, C. C. (2019). Reducing Carbon Footprint of Energy-Intensive Applications by CO2 Capture Technologies: An Integrated Technical and Environmental Assessment. Chemical Engineering Transactions, 76, 1033–1038. https://doi.org/10.3303/CET1976173
  • [291] Hanak, D. P., Erans, M., Nabavi, S. A., Jeremias, M., Romeo, L. M., & Manovic, V. (2018). Technical and economic feasibility evaluation of calcium looping with no CO2 recirculation. Chemical Engineering Journal, 335, 763–773. https://doi.org/10.1016/J.CEJ.2017.11.022
  • [292] Alshammari, Y. M. (2021). Scenario analysis for energy transition in the chemical industry: An industrial case study in Saudi Arabia. Energy Policy, 150, 112128. https://doi.org/10.1016/J.ENPOL.2020.112128
  • [293] Griffin, P. W., Hammond, G. P., & Norman, J. B. (2018). Industrial energy use and carbon emissions reduction in the chemicals sector: A UK perspective. Applied Energy, 227, 587–602. https://doi.org/10.1016/J.APENERGY.2017.08.010
  • [294] Koşaroğlu, Ş. M., & Şengönül, A. (2018). Elektrik Tüketimi ve Ekonomik Büyüme Arasındaki İlişki: BRICS Ülkeleri İçin Bir Uygulama. Cumhuriyet Üniversitesi İktisadi ve İdari Bilimler Dergisi, 19(2), 431–447. http://esjournal.cumhuriyet.edu.tr/tr/pub/cumuiibf/issue/40744/455123
  • [295] Ergül, M., & Soylu, Ö. B. (2022). Türkiye’de Ticari Açıklık Ve Sanayide Enerji Tüketimi İlişkisi. Dicle Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 12(24), 34–48. https://doi.org/10.53092/DUIIBFD.1125920
  • [296] EİGM. (2022). Türkiye Ulusal Enerji Planı. https://enerji.gov.tr//Media/Dizin/EIGM/tr/Raporlar/TUEP/Türkiye_Ulusal_Enerji_Planı.pdf
  • [297] EPDK. (2023). 2022 Yılı Elektrik Piyasası Gelişim Raporu. https://epdk.gov.tr/detay/icerik/3-0-0-102/yillik-rapor-elektrik-piyasasi-gelisim-raporlari
  • [298] ETKB. (2023, March 16). Elektrik . T.C. Enerji ve Tabii Kaynaklar Bakanlığı. 2023, https://enerji.gov.tr/bilgi-merkezi-enerji-elektrik
  • [299] ETKB. (2022). 2021 Ulusal Enerji Denge Tablosu - Orijinal Birimler / Bin TEP. https://enerji.gov.tr/eigm-raporlari
  • [300] IICEC. (2020). Turkey Energy Outlook 2020 . https://iicec.sabanciuniv.edu/tr/teo
  • [301] TÜİK. (2023). Sera Gazı Emisyon İstatistikleri, 1990-2021. https://data.tuik.gov.tr/Bulten/Index?p=Sera-Gazi-Emisyon-Istatistikleri-1990-2021-49672
  • [302] Subramanian, S., Bastian, H., Hoffmeister, A., Jennings, B., Tolentino, C., Vaidyanathan, S., & Nadel, S. (2022). 2022 International Energy Efficiency Scorecard. Washington. https://www.aceee.org/research-report/i2201
  • [303] TMMOB Makina Mühendisleri Odası. (2012). Dünya’da ve Türkiye’de Enerji Verimliliği. https://www.mmo.org.tr/kitaplar/dunyada-ve-turkiyede-enerji-verimliligi-0
  • [304] ETKB. (2022). Ulusal Enerji Verimliliği Eylem Planı 2022 Gelişim Raporu. https://enerji.gov.tr/evced-enerji-verimliligi-uevep
  • [305] TÜİK. (2024). Adrese Dayalı Nüfus Kayıt Sistemi Sonuçları, 2023. https://data.tuik.gov.tr/Bulten/Index?p=Adrese-Dayali-Nufus-Kayit-Sistemi-Sonuclari-2023-49684 [306] TÜİK. (2023). Sektör Bilançoları, 2022. https://data.tuik.gov.tr/Bulten/Index?p=Sektor-Bilancolari-2022-49677
  • [307] TÜİK. (2023). Yıllık Sanayi ve Hizmet İstatistikleri, 2022. https://data.tuik.gov.tr/Bulten/Index?p=Yillik-Sanayi-ve-Hizmet-Istatistikleri-2022-49569
  • [308] TÜİK. (2024). Ücretli Çalışan İstatistikleri, Aralık 2023. https://data.tuik.gov.tr/Bulten/Index?p=Paid-Employee-Statistics-December-2023-49368
  • [309] IEA. (2023). World Energy Statistics and Balances. https://www.iea.org/data-and-statistics/data-product/world-energy-statistics-and-balances
  • [310] Köse, Z. (2016). Türkiye Ekonomisinde 2003-2014 Döneminde Ekonomik Büyüme İşsizlik ve Enflasyon İlişkisi. Türk Sosyal Bilimler Araştırmaları Dergisi, 1(1), 54–71. http://tursbad.hku.edu.tr/tr/pub/tursbad/issue/31330/341770
  • [311] Greenaway, D., Morgan, W., & Wright, P. (1997). Trade liberalization and growth in developing countries: Some new evidence. World Development, 25(11), 1885–1892. https://doi.org/10.1016/S0305-750X(97)00072-7
  • [312] Sadorsky, P. (2012). Energy consumption, output and trade in South America. Energy Economics, 34(2), 476–488. https://doi.org/10.1016/J.ENECO.2011.12.008
  • [313] Aydin, M. (2018). Enerji Tüketimi İle Ekonomik Büyüme Arasındaki İlişki: Düşük ve Orta Gelirli Ülkeler Örneği. Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 36(1), 1–15. https://doi.org/10.17065/HUNIIBF.411122
  • [314] Solow, R. (1956). A Contribution to the Theory of Economic Growth. The Quarterly Journal of Economics, 70(1), 65–94. https://doi.org/10.2307/1884513
  • [315] Swan, T. W. (1956). Economic Growth and Capital Accumulation. Economic Record, 32(2), 334–361. https://doi.org/10.1111/J.1475-4932.1956.TB00434.X
  • [316] Romer, P. (1986). Increasing Returns and Long-run Growth. Journal of Political Economy, 94(5), 1002–37. https://doi.org/10.1086/261420
  • [317] Paul, S., & Bhattacharya, R. N. (2004). Causality between energy consumption and economic growth in India: a note on conflicting results. Energy Economics, 26(6), 977–983. https://doi.org/10.1016/J.ENECO.2004.07.002
  • [318] Akinlo, A. E. (2008). Energy consumption and economic growth: Evidence from 11 Sub-Sahara African countries. Energy Economics, 30(5), 2391–2400. https://doi.org/10.1016/J.ENECO.2008.01.008
  • [319] Wolde-Rufael, Y. (2009). Energy consumption and economic growth: The experience of African countries revisited. Energy Economics, 31(2), 217–224. https://doi.org/10.1016/J.ENECO.2008.11.005
  • [320] Wang, S. S., Zhou, D. Q., Zhou, P., & Wang, Q. W. (2011). CO2 emissions, energy consumption and economic growth in China: A panel data analysis. Energy Policy, 39(9), 4870–4875. https://doi.org/10.1016/J.ENPOL.2011.06.032
  • [321] Belke, A., Dobnik, F., & Dreger, C. (2011). Energy consumption and economic growth: New insights into the cointegration relationship. Energy Economics, 33(5), 782–789. https://doi.org/10.1016/J.ENECO.2011.02.005
  • [322] Kraft, J., & Kraft, A. (1978). On the Relationship Between Energy and GNP. The Journal of Energy and Development, 3(2), 401–403.
  • [323] Yu, E. S. H., & Choi, J.-Y. (1985). Causal relationship between energy and GNP. The Journal of Energy and Development, 10(2), 249–272. https://www.jstor.org/stable/24807818
  • [324] Masih, A. M. M., & Masih, R. (1996). Energy consumption, real income and temporal causality: results from a multi-country study based on cointegration and error-correction modelling techniques. Energy Economics, 18(3), 165–183. https://doi.org/10.1016/0140-9883(96)00009-6
  • [325] Mehrara, M. (2007). Energy consumption and economic growth: The case of oil exporting countries. Energy Policy, 35(5), 2939–2945. https://doi.org/10.1016/J.ENPOL.2006.10.018
  • [326] Karadaş, H. A., Koşaroğlu, Ş. M., & Salihoğlu, E. (2017). Enerji Tüketimi ve Ekonomik Büyüme. Cumhuriyet Üniversitesi İktisadi ve İdari Bilimler Dergisi, 18(1), 129–141. http://esjournal.cumhuriyet.edu.tr/tr/pub/cumuiibf/issue/32216/357734
  • [327] Altıner, A. (2019). MINT Ülkelerinde Enerji Tüketimi ve Ekonomik Büyüme İlişkisi: Panel Nedensellik Analizi. Gümüşhane Üniversitesi Sosyal Bilimler Dergisi, 10(2), 369–378. https://dergipark.org.tr/tr/pub/gumus/issue/47286/454031
  • [328] Terzi, H. (1998). Türkiye’’de Elektrik Tüketimi Ve Ekonomik Büyüme İlişkisi: Sektörel Bir Karşılaştırma. İktisat İşletme ve Finans, 13(144), 62–71. https://doi.org/10.3848/IIF.1998.144.4020
  • [329] Mucuk, M., & Uysal, D. (2009). Türkiye ekonomisinde enerji tüketimi ve ekonomik büyüme. Maliye Dergisi, 0(157), 105–115. http://search/yayin/detay/97762
  • [330] Başar, S., Tosun, B., & Bartık, A. (2020). Türkiye’de Büyüme ve Sektörel Bazda Elektrik Tüketimi Arasındaki İlişki. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 34(3), 1089–1109. https://doi.org/10.16951/ATAUNIIIBD.724638
  • [331] Öznur, A., & Özet, Ü. . (2016). Türkiye’de Ticari Açıklık, Finansal Açıklık ve Ekonomik Büyüme Arasındaki İlişkiler: Sınır Testi Yaklaşımı. Niğde Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 9(1), 255–272. https://dergipark.org.tr/tr/pub/niguiibfd/issue/19761/211636
  • [332] İlter, Ş., & Burtan Doğan, B. (2018). Ticari ve Finansal Dışa Açıklık Oranı İle Ekonomik Büyüme Arasındaki Nedensellik İlişkisi: Türkiye Örneği. Dicle Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 8(15), 89–115. https://dergipark.org.tr/tr/pub/duiibfd/issue/37998/438742
  • [333] Güngör, B. (2022). Türkiye’de Ticari Açıklık ve Doğrudan Yabancı Yatırım İlişkisi. Artuklu Kaime Uluslararası İktisadi ve İdari Araştırmalar Dergisi, 1–15. https://doi.org/10.55119/ARTUKLU.1056193
  • [334] Korkmaz, Ö. (2018). Enerji Tüketimi İle Finansal Açıklık, Ticari Açıklık Ve Finansal Gelişme Arasındaki İlişkinin Karşılaştırmalı Analizi: Türkiye ve İtalya Örneği. Uluslararası İktisadi ve İdari İncelemeler Dergisi, 83–100. https://doi.org/10.18092/ULIKIDINCE.441281
  • [335] Özyıldız, T., & Diner, , Eda. (2022). Finansal Dışa Açıklık Ve Ekonomik Büyüme Arasındaki İlişki: Gelişmekte Olan Ülkeler İçin Bir Panel Veri Analizi. EKEV Akademi Dergisi, (90), 441–458. https://dergipark.org.tr/tr/pub/sosekev/issue/71356/1147208
  • [336] Saçık, S. Y. (2009). Büyümenin Bir Kaynağı Olarak Ticari Dışa Açıklık. Sosyal Ekonomik Araştırmalar Dergisi, 9(17), 525–548. https://dergipark.org.tr/tr/pub/susead/issue/28418/302603
  • [337] Özata, E. (2015). Türkiye’de Enerji Tüketimi ve Ekonomik Büyüme Arasındaki İlişkilerin Ekonometrik İncelemesi. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, (26). https://dergipark.org.tr/tr/pub/dpusbe/issue/4768/65577
  • [338] Barut, M. E., & Çelik, E. (2021). Türkiye’de Sanayide Tüketilen Elektrik Enerjisi İle Ekonomik Büyüme Arasındaki İlişki: Granger Nedensellik Analizi. Nicel Bilimler Dergisi, 3(1), 43–58. https://doi.org/10.51541/NICEL.900484
  • [339] Caffal, C. (1995). Learning from experiences with energy management in industry. (S. Hodgson, Ed.). Sittard: Centre for Analysis and Dissemination of Demonstrated Energy Technologies (CADDET analyes series, ISSN 0925-0085; no.17).
  • [340] Larsen, A., & Jensen, M. (1999). Evaluations of energy audits and the regulator. Energy Policy, 27(9), 557–564. https://doi.org/10.1016/S0301-4215(99)00033-6
  • [341] Bertoldi, P., & Rezessy, S. (2007). Voluntary Agreements for Energy Efficiency: Review and Results of European Experiences. http://dx.doi.org/10.1260/095830507780157258, 18(1), 37–73. https://doi.org/10.1260/095830507780157258
  • [342] Bjørner, T. B., & Jensen, H. H. (2002). Energy taxes, voluntary agreements and investment subsidies—a micro-panel analysis of the effect on Danish industrial companies’ energy demand. Resource and Energy Economics, 24(3), 229–249. https://doi.org/10.1016/S0928-7655(01)00049-5
  • [343] Christoffersen, L. B., Larsen, A., & Togeby, M. (2006). Empirical analysis of energy management in Danish industry. Journal of Cleaner Production, 14(5), 516–526. https://doi.org/10.1016/J.JCLEPRO.2005.03.017
  • [344] Kaya, D., & Öztürk, H. H. (2014). Sanayide Enerji Yönetimi ve Enerji Verimliliği:Uygulamalı Örneklerle. Uniwersytet śląski. Kocaeli: Umuttepe Yayınevi. https://doi.org/10.2/JQUERY.MIN.JS
  • [345] T.C. Ticaret Bakanlığı İhracat Genel Müdürlüğü. (2022). Tekstil ve Hammaddeleri Raporu 2022. https://ticaret.gov.tr/data/5b87000813b8761450e18d7b/Tekstil%20ve%20Hammaddeleri%20Raporu%202022.pdf
  • [346] Deği̇rmen, D., & Eker Şanli, G. (2022). BİR TEKSTİL İŞLETMESİNDE ENERJİ VERİMLİLİĞİ VE EMİSYON AZALTIM OLANAKLARININ ARAŞTIRILMASI: HAVLU ÜRETİM TESİSİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 27(1), 71–88. https://doi.org/10.17482/UUMFD.1022661
  • [347] Gelir, B. Ç. (2017). Tekstil Sektöründe Kullanılan Ramöz Makinelerinde Isı Geri Kazanımı ile Enerji Tasarrufu. Namık Kemal Üniversitesi. http://acikerisim.nku.edu.tr/xmlui/handle/20.500.11776/2424
  • [348] Tunc, M., Kaplan, K., Sisbot, S., & Camdali, U. (2016). Energy management and optimization: Case study of a textile plant in Istanbul, Turkey. World Journal of Engineering, 13(4), 348–355. https://doi.org/10.1108/WJE-08-2016-046/FULL/XML
  • [349] Pulat, E., Etemoglu, A. B., & Can, M. (2009). Waste-heat recovery potential in Turkish textile industry: Case study for city of Bursa. Renewable and Sustainable Energy Reviews, 13(3), 663–672. https://doi.org/10.1016/J.RSER.2007.10.002
  • [350] Koçlu, A. (2011). Tekstil endüstrisinde plakalı ısı değiştiricilerle atık ısı geri kazanım sistemi ve performansının değerlendirilmesi. https://acikbilim.yok.gov.tr/handle/20.500.12812/688933
  • [351] Kaşka, Ö. (2014). Energy and exergy analysis of an organic Rankine for power generation from waste heat recovery in steel industry. Energy Conversion and Management, 77, 108–117. https://doi.org/10.1016/J.ENCONMAN.2013.09.026
  • [352] TÜTÜNCÜ, G., & ÖZGENER, Ö. (2016). ÇİMENTO SEKTÖRÜNDE ATIK ISI GERİ KAZANIM SİSTEMİNİN TERMODİNAMİK İNCELEMESİ. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 18(53), 205–223. https://doi.org/10.21205/deufmd.20165318382
  • [353] Eyi̇doğan, M., Kaya, D., Dursun, Ş., & Taylan, O. (2014). Endüstriyel Tav Fırınlarında Enerji Tasarrufu ve Emisyon Azaltım Fırsatları. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 29(4), 735–743. https://doi.org/10.17341/GUMMFD.76579
  • [354] İbrahim TOPAL, H., Kopaç, M., & Mustafa EYRİBOYUN, ve. (2017). Çatalağzı Termik Elektrik Santrali ile Bölgesel Isıtma Yapılabilirliğin Enerji Analizi. Isı Bilimi ve Tekniği Dergisi, 37(1), 139–146. https://dergipark.org.tr/tr/pub/isibted/issue/33976/376112
  • [355] Isı, A., Kazanım, G., Yönelik, S., Araştırması, L., Örnek, S., İncelemesi, V., … Özgün, Ö. (2019). Atık Isı Geri Kazanım Sistemlerine Yönelik Literatür Araştırması ve Sanayiden Örnek Vaka İncelemesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 34(2), 57–72. https://doi.org/10.21605/CUKUROVAUMMFD.608955
  • [356] Tokgöz, N., & Özgün, Ö. (2019). Atık Isı Geri Kazanım Sistemlerine Yönelik Literatür Araştırması ve Sanayiden Örnek Vaka İncelemesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 34(2), 57–72. https://doi.org/10.21605/CUKUROVAUMMFD.608955
  • [357] Akhan, H. (2023). Energy Management Practices for Improving Energy Efficiency in Industries: Furnace, Steam Boiler, HVAC, and Cooling Systems. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 38(1), 195–210. https://doi.org/10.21605/CUKUROVAUMFD.1273782
  • [358] T.C. Ticaret Bakanlığı İhracat Genel Müdürlüğü. (2022). Otomotiv Sektör Raporu 2022. https://ticaret.gov.tr/data/5b87000813b8761450e18d7b/OTOMOTİV%20SEKTÖR%20RAPORU.pdf
  • [359] SİPAHİ, B. (2019). Otomotiv sanayinde potansiyel enerji verimliliği projeleri. Kocaeli Üniversitesi, Kocaeli. https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=sEsy_Ef8v6QhfewgfYilXg&no=RpCvuO52LGsXsIs2novr-g
  • [360] Ediz, S. B. (2023, July 26). Otomotiv yan sanayisinde parça üretim faaliyetlerinden kaynaklanan karbon emisyonları, karbon ayak izi hesaplamaları ve enerji verimliliği uygulama önerileri. Uludağ Üniversitesi, Bursa. http://hdl.handle.net/11452/33953
  • [361] Arif Göçer, D., & Yiğit, Ö. (2020). Hava Kompresörü Verimliliğine Basınç Yükseltici Kullanımının Etkisinin İncelenmesi. Avrupa Bilim ve Teknoloji Dergisi, 136–141. https://doi.org/10.31590/EJOSAT.801905
  • [362] SAPMAZ, S., & KAYA, D. (2017). Basınçlı Hava Sistemlerinde Enerji Verimliliği ve Emisyon Azaltım Fırsatlarının İncelenmesi. Mühendis ve Makina, 58(689), 23–36. https://dergipark.org.tr/en/pub/muhendismakina/issue/48819/621632
  • [363] DEĞİRMEN, D., HASDEMİR, I., & ŞANLI, G. E. (2023). OTOMOTİV VE GIDA SEKTÖRLERİNDE ENERJİ VERİMLİLİĞİ VE KARBON EMİSYONUNUN AZALTIMI İLE İLGİLİ BİR ÇALIŞMA. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 28(3), 937–956. https://doi.org/10.17482/UUMFD.1340246
  • [364] Ener Ruşen, S. (2019). Elektrik Motorlarının Verimlilik ve CO2 Emisyon Analizi; Bir Gıda Fabrikası Örneği. Avrupa Bilim ve Teknoloji Dergisi, (17), 564–569. https://doi.org/10.31590/EJOSAT.622573
  • [365] Dubnička, R., Lipnický, L., Barčik, M., & Gašparovský, D. (2016). Comprehensive view of LED products in luminaires. Proceedings of International Conference DEMISEE 2016: Diagnostic of Electrical Machines and Insulating Systems in Electrical Engineering, 66–70. https://doi.org/10.1109/DEMISEE.2016.7530467
  • [366] PERDAHÇI, C. (2018). Metal İşleme Tesis Aydınlatmasında Led Lamba Ve Floresan Lamba Karşılaştırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 30(3), 105–113. https://dergipark.org.tr/tr/pub/fumbd/issue/39229/461985
  • [367] YILDIZ, C., & AKGÜL, A. (2023). Türkiye’nin Akdeniz kıyılarında açık deniz güneş ve rüzgâr enerjisi üretiminin verim bazlı karşılaştırılması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(1), 122–136. https://doi.org/10.25092/BAUNFBED.1149532
  • [368] YILDIZ, C. (2020, September). Offshore Solar Plants: A Design Study. Graduate School of Natural and Applied Sciences, İSTANBUL. https://www.researchgate.net/publication/361536147_Offshore_Solar_Plants_A_Design_Study
  • [369] Alshammari, Y. M. (2021). Scenario analysis for energy transition in the chemical industry: An industrial case study in Saudi Arabia. Energy Policy, 150, 112128. https://doi.org/10.1016/J.ENPOL.2020.112128
  • [370] An, Y., Zhou, D., Yu, J., Shi, X., & Wang, Q. (2021). Carbon emission reduction characteristics for China’s manufacturing firms: Implications for formulating carbon policies. Journal of Environmental Management, 284, 112055. https://doi.org/10.1016/J.JENVMAN.2021.112055
  • [371] TÜİK. (2024). Dış Ticaret İstatistikleri, Aralık 2023. https://data.tuik.gov.tr/Bulten/Index?p=Dis-Ticaret-Istatistikleri-Aralik-2023-49630
  • [372] Su, Y. W. (2023). The drivers and barriers of energy efficiency. Energy Policy, 178, 113598. https://doi.org/10.1016/J.ENPOL.2023.113598
  • [373] Saçık, S. Y. (2009). Büyümenin Bir Kaynağı Olarak Ticari Dışa Açıklık. Sosyal Ekonomik Araştırmalar Dergisi, 9(17), 525–548. https://dergipark.org.tr/tr/pub/susead/issue/28418/302603

Recent Developments in Energy Efficiency of Industry: The Case of Türkiye

Year 2024, Volume: 12 Issue: 2, 494 - 547, 29.06.2024
https://doi.org/10.29109/gujsc.1442017

Abstract

It is critical that countries have access to affordable, continuous, safe, and clean energy in order for production, which is one of the most important aspects in their development processes, to continue uninterrupted. While countries continue to grow, they must also consider the 2°C targets for 2030 and carbon neutrality by 2050. For this purpose, various sectoral innovations need to be used. In this review, domestic and foreign sources related to current energy efficiency studies in the industrial sector, which is one of the main responsible for global energy consumption and carbon emissions, have been scanned and possible solution suggestions have been presented under headings. As a result of the research, it was calculated that with the waste heat recovery system, the heating efficiency could increase by 32.32% and approximately 30% of the consumed electrical energy could be recovered. It has been observed that with the integration of cogeneration systems into the existing structure, the electricity conversion efficiency of gas turbines increased from 30-40% to 80-90%. During the audits, it was determined that the investment amortized itself in a period of 1.5-3 years. Carbon capture technology, another option designed to meet the carbon neutral target, is estimated to reduce CO2 emissions by up to 65% in carbon-intensive sectors such as iron and steel. In the continuation of the study, it is aimed to contribute to academic and private sector employees who will carry out studies to increase energy efficiency in the industry by compiling Turkey's energy outlook, current efficiency policies and current industrial statistics. In Turkey, where the industrial sector is a significant consumer item, the most complete legal regulation in this field is the Energy Efficiency Law No. 5627, published in 2007, and the ISO 50001 Energy Management System Standard, the most recent edition of which was shared in 2018. In this context, providing guidance enterprises that their clean production technology applications would not increase their costs, but will instead be investments with short economic returns, will raise industry awareness. It has been estimated that Turkey's industrial sector has an energy savings potential of at least 20%, with about 50% of this achievable with minimal investments and amortization in less than two years. According to research conducted by the General Directorate of Renewable Energy, Turkey's overall primary energy demand can be decreased by 15% with the proper industrial sector policies implemented.

References

  • [1] Apergis, N., & Payne, J. E. (2009). Energy consumption and economic growth in Central America: Evidence from a panel cointegration and error correction model. Energy Economics, 31(2), 211–216. https://doi.org/10.1016/J.ENECO.2008.09.002
  • [2] Mishra, V., Smyth, R., & Sharma, S. (2009). The energy-GDP nexus: Evidence from a panel of Pacific Island countries. Resource and Energy Economics, 31(3), 210–220. https://doi.org/10.1016/J.RESENEECO.2009.04.002
  • [3] Liu, T. Y., & Lee, C. C. (2020). Convergence of the world’s energy use. Resource and Energy Economics, 62, 101199. https://doi.org/10.1016/J.RESENEECO.2020.101199
  • [4] Lee, C. C., Wang, C. W., Ho, S. J., & Wu, T. P. (2021). The impact of natural disaster on energy consumption: International evidence. Energy Economics, 97, 105021. https://doi.org/10.1016/J.ENECO.2020.105021
  • [5] Flavin, C., & Lenssen, N. (1994). Reshaping the electric power industry. Energy Policy, 22(12), 1029–1044. https://doi.org/10.1016/0301-4215(94)90017-5
  • [6] Doğan, H., & Yılankırkan, N. (2015). Türkiye’nin Enerji Verimliliği Potansiyeli ve Projeksiyonu. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 3(1), 375–384. https://dergipark.org.tr/tr/pub/gujsc/issue/7466/98302
  • [7] Hardcastle, A., & Waterman-Hoey, S. (2009). Energy Efficiency Industry Trends and Workforce Development in Washington State. https://pubs.extension.wsu.edu/energy-efficiency-industry-trends-and-workforce-development-in-washington-state
  • [8] IEA. (2022). World Energy Outlook 2022. https://www.iea.org/reports/world-energy-outlook-2022
  • [9] AEO. (2018). Annual Energy Outlook 2018 with projections to 2050. Washington, DC. https://www.eia.gov/outlooks/aeo/
  • [10] Lee, C. C., Lee, C. C., & Li, Y. Y. (2021). Oil price shocks, geopolitical risks, and green bond market dynamics. The North American Journal of Economics and Finance, 55, 101309. https://doi.org/10.1016/J.NAJEF.2020.101309
  • [11] Schmidt, T. S., & Sewerin, S. (2019). Measuring the temporal dynamics of policy mixes – An empirical analysis of renewable energy policy mixes’ balance and design features in nine countries. Research Policy, 48(10), 103557. https://doi.org/10.1016/J.RESPOL.2018.03.012
  • [12] Wang, Z., & Feng, C. (2015). A performance evaluation of the energy, environmental, and economic efficiency and productivity in China: An application of global data envelopment analysis. Applied Energy, 147, 617–626. https://doi.org/10.1016/J.APENERGY.2015.01.108
  • [13] Ghoneem, M. Y. M. (2016). Planning for Climate Change, Why does it Matter? (From Phenomenon to Integrative Action Plan). Procedia - Social and Behavioral Sciences, 216, 675–688. https://doi.org/10.1016/J.SBSPRO.2015.12.060
  • [14] Abbass, K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H., & Younis, I. (2022). A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research 2022 29:28, 29(28), 42539–42559. https://doi.org/10.1007/S11356-022-19718-6
  • [15] Jones, M. W., Peters, G. P., Gasser, T., Andrew, R. M., Schwingshackl, C., Gütschow, J., … Le Quéré, C. (2023). National contributions to climate change due to historical emissions of carbon dioxide, methane, and nitrous oxide since 1850. Scientific Data, 10(1). https://doi.org/10.1038/S41597-023-02041-1
  • [16] IEA. (2023). Energy Technology Perspectives 2023. https://www.iea.org/reports/energy-technology-perspectives-2023
  • [17] IEA. (2013). Energy Efficiency Market Trends and Medium-Term Prospects. OECD. https://doi.org/10.1787/9789264206052-EN
  • [18] EC. (2015). COM(2015) 80 final - A Framework Strategy for a Resilient Energy Union with a Forward-Looking Climate Change Policy. Brussels. http://eur-lex.europa.eu/resource.html?uri=cellar:1bd46c90-bdd4-11e4-bbe1-01aa75ed71a1.0001.03/DOC_1&format=PDF
  • [19] Ang, B. W. (2006). Monitoring changes in economy-wide energy efficiency: From energy–GDP ratio to composite efficiency index. Energy Policy, 34(5), 574–582. https://doi.org/10.1016/J.ENPOL.2005.11.011
  • [20] Hu, J. L., & Lin, C. H. (2008). Disaggregated energy consumption and GDP in Taiwan: A threshold co-integration analysis. Energy Economics, 30(5), 2342–2358. https://doi.org/10.1016/J.ENECO.2007.11.007
  • [21] Huang, B. N., Hwang, M. J., & Yang, C. W. (2008). Causal relationship between energy consumption and GDP growth revisited: A dynamic panel data approach. Ecological Economics, 67(1), 41–54. https://doi.org/10.1016/J.ECOLECON.2007.11.006
  • [22] Li, R., Wang, Q., Liu, Y., & Jiang, R. (2021). Per-capita carbon emissions in 147 countries: The effect of economic, energy, social, and trade structural changes. Sustainable Production and Consumption, 27, 1149–1164. https://doi.org/10.1016/J.SPC.2021.02.031
  • [23] Wang, Q., Yang, T., & Li, R. (2023). Does income inequality reshape the environmental Kuznets curve (EKC) hypothesis? A nonlinear panel data analysis. Environmental Research, 216, 114575. https://doi.org/10.1016/J.ENVRES.2022.114575
  • [24] Mielnik, O., & Goldemberg, J. (2002). Foreign direct investment and decoupling between energy and gross domestic product in developing countries. Energy Policy, 30(2), 87–89. https://doi.org/10.1016/S0301-4215(01)00080-5
  • [25] Duro, J. A., Alcántara, V., & Padilla, E. (2010). International inequality in energy intensity levels and the role of production composition and energy efficiency: An analysis of OECD countries. Ecological Economics, 69(12), 2468–2474. https://doi.org/10.1016/J.ECOLECON.2010.07.022
  • [26] Sineviciene, L., Sotnyk, I., & Kubatko, O. (2017). Determinants of energy efficiency and energy consumption of Eastern Europe post-communist economies. Energy & Environment, 28(8), 870–884. https://doi.org/10.1177/0958305X17734386
  • [27] Chang, C. P., Wen, J., Zheng, M., Dong, M., & Hao, Y. (2018). Is higher government efficiency conducive to improving energy use efficiency? Evidence from OECD countries. Economic Modelling, 72, 65–77. https://doi.org/10.1016/J.ECONMOD.2018.01.006
  • [28] Su, Y. W. (2018). Electricity demand in industrial and service sectors in Taiwan. Energy Efficiency, 11(6), 1541–1557. https://doi.org/10.1007/S12053-018-9615-Y/METRICS
  • [29] Newell, R. G., Jaffe, A. B., & Stavins, R. N. (1999). The induced innovation hypothesis and energy-saving technological change. Quarterly Journal of Economics, 114(3), 941–975. https://doi.org/10.1162/003355399556188
  • [30] Shi, G. M., Bi, J., & Wang, J. N. (2010). Chinese regional industrial energy efficiency evaluation based on a DEA model of fixing non-energy inputs. Energy Policy, 38(10), 6172–6179. https://doi.org/10.1016/J.ENPOL.2010.06.003
  • [31] Wu, H., Hao, Y., Ren, S., Yang, X., & Xie, G. (2021). Does internet development improve green total factor energy efficiency? Evidence from China. Energy Policy, 153, 112247. https://doi.org/10.1016/J.ENPOL.2021.112247
  • [32] Han, J., Miao, J., Shi, Y., & Miao, Z. (2021). Can the semi-urbanization of population promote or inhibit the improvement of energy efficiency in China? Sustainable Production and Consumption, 26, 921–932. https://doi.org/10.1016/J.SPC.2021.01.008
  • [33] IEA. (2023). Energy Efficiency 2023. https://www.iea.org/reports/energy-efficiency-2023
  • [34] IEA. (2023). Industry. https://www.iea.org/energy-system/industry
  • [35] UNEP. (2022). 2022 Global Status Report for Buildings and Construction. https://www.unep.org/resources/publication/2022-global-status-report-buildings-and-construction
  • [36] Thiel, G. P., & Stark, A. K. (2021). To decarbonize industry, we must decarbonize heat. Joule, 5(3), 531–550. https://doi.org/10.1016/J.JOULE.2020.12.007
  • [37] Rissman, J., Bataille, C., Masanet, E., Aden, N., Morrow, W. R., Zhou, N., … Helseth, J. (2020). Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070. Applied Energy, 266, 114848. https://doi.org/10.1016/J.APENERGY.2020.114848
  • [38] Napp, T. A., Gambhir, A., Hills, T. P., Florin, N., & Fennell, P. S. (2014). A review of the technologies, economics and policy instruments for decarbonising energy-intensive manufacturing industries. Renewable and Sustainable Energy Reviews, 30, 616–640. https://doi.org/10.1016/J.RSER.2013.10.036
  • [39] CEFIC. (2023). 2023 Facts and Figures of the European Chemical Industry. https://cefic.org/a-pillar-of-the-european-economy/facts-and-figures-of-the-european-chemical-industry/
  • [40] BP. (2023). Energy Outlook 2023. https://www.bp.com/en/global/corporate/energy-economics/energy-outlook.html
  • [41] Maghrabi, A. M., Song, J., & Markides, C. N. (2023). How can industrial heat decarbonisation be accelerated through energy efficiency? Applied Thermal Engineering, 233, 121092. https://doi.org/10.1016/J.APPLTHERMALENG.2023.121092 [42] Energy Efficiency Movement. (2022). The Energy Efficiency Playbook. https://www.energyefficiencymovement.com/insights/playbook/?utm_source=foleon&utm_medium=referral&utm_campaign=industrial_efficiency_2023
  • [43] Weis, B., Leprettre, B., Patra, M., Hanigovszki, N., Holm, P., Schuman, T., … Anderson, K. (2021). Increasing the Energy Savings of Motor Applications: The Extended Product Approach, 37–52. https://doi.org/10.1007/978-3-030-69799-0_4
  • [44] Jiao, J., Chen, C., & Bai, Y. (2020). Is green technology vertical spillovers more significant in mitigating carbon intensity? Evidence from Chinese industries. Journal of Cleaner Production, 257, 120354. https://doi.org/10.1016/J.JCLEPRO.2020.120354
  • [45] Kushnir, D., Hansen, T., Vogl, V., & Åhman, M. (2020). Adopting hydrogen direct reduction for the Swedish steel industry: A technological innovation system (TIS) study. Journal of Cleaner Production, 242, 118185. https://doi.org/10.1016/J.JCLEPRO.2019.118185
  • [46] Wang, Q., & Wang, S. (2020). Why does China’s carbon intensity decline and India’s carbon intensity rise? a decomposition analysis on the sectors. Journal of Cleaner Production, 265, 121569. https://doi.org/10.1016/J.JCLEPRO.2020.121569
  • [47] Worrell, E., & Boyd, G. (2022). Bottom-up estimates of deep decarbonization of U.S. manufacturing in 2050. Journal of Cleaner Production, 330, 129758. https://doi.org/10.1016/J.JCLEPRO.2021.129758
  • [48] Roy, S., Tran, T. A., & Natarajan, K. (2023). Recent Advancement of IoT Devices in Pollution Control and Health Applications. Recent Advancement of IoT Devices in Pollution Control and Health Applications, 1–208. https://doi.org/10.1016/C2021-0-03490-8
  • [49] Malinauskaite, J., Jouhara, H., Ahmad, L., Milani, M., Montorsi, L., & Venturelli, M. (2019). Energy Efficiency in Industry: EU and national policies in Italy and the UK. https://doi.org/10.1016/j.energy.2019.01.130
  • [50] Prognos. (2012). Die Energieperspektiven für die Schweiz bis 2050. https://www.bfe.admin.ch/bfe/de/home/politik/energieperspektiven-2050-plus.html
  • [51] Cagno, E., Worrell, E., Trianni, A., & Pugliese, G. (2013). A novel approach for barriers to industrial energy efficiency. Renewable and Sustainable Energy Reviews, 19, 290–308. https://doi.org/10.1016/J.RSER.2012.11.007
  • [52] Worrell, E., Bernstein, L., Roy, J., Price, L., & Harnisch, J. (2009). Industrial energy efficiency and climate change mitigation. Energy Efficiency, 2(2), 109–123. https://doi.org/10.1007/S12053-008-9032-8/TABLES/2
  • [53] Hossain, S. R., Ahmed, I., Azad, F. S., & Monjurul Hasan, A. S. M. (2020). Empirical investigation of energy management practices in cement industries of Bangladesh. Energy, 212, 118741. https://doi.org/10.1016/J.ENERGY.2020.118741
  • [54] Zhang, S., Worrell, E., & Crijns-Graus, W. (2015). Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry. Applied Energy, 147, 192–213. https://doi.org/10.1016/J.APENERGY.2015.02.081
  • [55] Tesema, G., & Worrell, E. (2015). Energy efficiency improvement potentials for the cement industry in Ethiopia. Energy, 93, 2042–2052. https://doi.org/10.1016/J.ENERGY.2015.10.057
  • [56] Thollander, P., & Ottosson, M. (2010). Energy management practices in Swedish energy-intensive industries. Journal of Cleaner Production, 18(12), 1125–1133. https://doi.org/10.1016/J.JCLEPRO.2010.04.011
  • [57] Andersson, E., & Thollander, P. (2019). Key performance indicators for energy management in the Swedish pulp and paper industry. Energy Strategy Reviews, 24, 229–235. https://doi.org/10.1016/J.ESR.2019.03.004
  • [58] Hasanbeigi, A., Menke, C., & Therdyothin, A. (2011). Technical and cost assessment of energy efficiency improvement and greenhouse gas emission reduction potentials in Thai cement industry. Energy Efficiency, 4(1), 93–113. https://doi.org/10.1007/S12053-010-9079-1/METRICS [59] Ates, S. A., & Durakbasa, N. M. (2012). Evaluation of corporate energy management practices of energy intensive industries in Turkey. Energy, 45(1), 81–91. https://doi.org/10.1016/J.ENERGY.2012.03.032
  • [60] Xu, B., & Lin, B. (2019). Can expanding natural gas consumption reduce China’s CO2 emissions? Energy Economics, 81, 393–407. https://doi.org/10.1016/J.ENECO.2019.04.012
  • [61] Su, B., & Ang, B. W. (2020). Demand contributors and driving factors of Singapore’s aggregate carbon intensities. Energy Policy, 146, 111817. https://doi.org/10.1016/J.ENPOL.2020.111817
  • [62] Han, Y., Zhang, F., Huang, L., Peng, K., & Wang, X. (2021). Does industrial upgrading promote eco-efficiency? ─A panel space estimation based on Chinese evidence. Energy Policy, 154, 112286. https://doi.org/10.1016/J.ENPOL.2021.112286
  • [63] Ofosu-Adarkwa, J., Xie, N., & Javed, S. A. (2020). Forecasting CO2 emissions of China’s cement industry using a hybrid Verhulst-GM(1,N) model and emissions’ technical conversion. Renewable and Sustainable Energy Reviews, 130, 109945. https://doi.org/10.1016/J.RSER.2020.109945
  • [64] Jin, G., Shi, X., Zhang, L., & Hu, S. (2020). Measuring the SCCs of different Chinese regions under future scenarios. Renewable and Sustainable Energy Reviews, 130, 109949. https://doi.org/10.1016/J.RSER.2020.109949
  • [65] Xu, B., & Lin, B. (2021). Investigating spatial variability of CO2 emissions in heavy industry: Evidence from a geographically weighted regression model. Energy Policy, 149, 112011. https://doi.org/10.1016/J.ENPOL.2020.112011
  • [66] Lin, B., & Xu, B. (2020). Effective ways to reduce CO2 emissions from China’s heavy industry? Evidence from semiparametric regression models. Energy Economics, 92, 104974. https://doi.org/10.1016/J.ENECO.2020.104974
  • [67] Xiong, S., Ma, X., & Ji, J. (2019). The impact of industrial structure efficiency on provincial industrial energy efficiency in China. Journal of Cleaner Production, 215, 952–962. https://doi.org/10.1016/J.JCLEPRO.2019.01.095
  • [68] Schaltegger, S., & Sturm, A. (1990). Ökologische Rationalität: Ansatzpunkte zur Ausgestaltung von ökologieorientierten Managementinstrumenten. Die Unternehmung, 44(4), 273–290. https://www.jstor.org/stable/24180467
  • [69] Zhang, F., & Huang, K. (2017). The role of government in industrial energy conservation in China: Lessons from the iron and steel industry. Energy for Sustainable Development, 39, 101–114. https://doi.org/10.1016/J.ESD.2017.05.003
  • [70] Liao, N., & He, Y. (2018). Exploring the effects of influencing factors on energy efficiency in industrial sector using cluster analysis and panel regression model. Energy, 158, 782–795. https://doi.org/10.1016/J.ENERGY.2018.06.049
  • [71] Agovino, M., Bartoletto, S., & Garofalo, A. (2019). Modelling the relationship between energy intensity and GDP for European countries: An historical perspective (1800–2000). Energy Economics, 82, 114–134. https://doi.org/10.1016/J.ENECO.2018.02.017
  • [72] Jimenez, R., & Mercado, J. (2014). Energy intensity: A decomposition and counterfactual exercise for Latin American countries. Energy Economics, 42, 161–171. https://doi.org/10.1016/J.ENECO.2013.12.015
  • [73] Wurlod, J. D., & Noailly, J. (2018). The impact of green innovation on energy intensity: An empirical analysis for 14 industrial sectors in OECD countries. Energy Economics, 71, 47–61. https://doi.org/10.1016/J.ENECO.2017.12.012
  • [74] Farajzadeh, Z., & Nematollahi, M. A. (2018). Energy intensity and its components in Iran: Determinants and trends. Energy Economics, 73, 161–177. https://doi.org/10.1016/J.ENECO.2018.05.021
  • [75] Pan, X., Uddin, M. K., Han, C., & Pan, X. (2019). Dynamics of financial development, trade openness, technological innovation and energy intensity: Evidence from Bangladesh. Energy, 171, 456–464. https://doi.org/10.1016/J.ENERGY.2018.12.200
  • [76] Rafiq, S., Salim, R., & Nielsen, I. (2016). Urbanization, openness, emissions, and energy intensity: A study of increasingly urbanized emerging economies. Energy Economics, 56, 20–28. https://doi.org/10.1016/J.ENECO.2016.02.007
  • [77] Tajudeen, I. A. (2021). The underlying drivers of economy-wide energy efficiency and asymmetric energy price responses. Energy Economics, 98, 105222. https://doi.org/10.1016/J.ENECO.2021.105222
  • [78] Karimu, A., Brännlund, R., Lundgren, T., & Söderholm, P. (2017). Energy intensity and convergence in Swedish industry: A combined econometric and decomposition analysis. Energy Economics, 62, 347–356. https://doi.org/10.1016/J.ENECO.2016.07.017
  • [79] YILDIZ, C. (2024). Binalarda Enerji Verimliliğinde Son Gelişmeler: Türkiye Örneği. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 12(1), 176–213. https://doi.org/10.29109/GUJSC.1293759
  • [80] Kaynak, S. (2005). Enerjinin Verimli Kullanımına Yaklaşımlar Küreselleşmenin Enerji Değişim Programı ve Enerji Politikaları. In TMMOB TÜRKİYE V. ENERJİ SEMPOZYUMU. Ankara: Elektrik Mühendisleri Odası. https://www.emo.org.tr/etkinlikler/enerji/etkinlik_metin.php?etkinlikkod=3&metin_kod=42
  • [81] Uzun, A., & Değirmen, M. (2018). Endüstriyel İşletmelerde Enerji Verimliliği ve Enerji Yönetimi. Uluslararası Ekonomik Araştırmalar Dergisi, 4(2), 83–97. https://dergipark.org.tr/tr/pub/ead/issue/48247/610769
  • [82] IEA. (2023). World Energy Outlook 2023. https://www.iea.org/reports/world-energy-outlook-2023
  • [83] IEA. (2022). CO2 Emissions in 2022. https://www.iea.org/reports/co2-emissions-in-2022
  • [84] Guo, H., Davidson, M. R., Chen, Q., Zhang, D., Jiang, N., Xia, Q., … Zhang, X. (2020). Power market reform in China: Motivations, progress, and recommendations. Energy Policy, 145, 111717. https://doi.org/10.1016/J.ENPOL.2020.111717
  • [85] Guang, F., Wen, L., & Sharp, B. (2022). Energy efficiency improvements and industry transition: An analysis of China’s electricity consumption. Energy, 244, 122625. https://doi.org/10.1016/J.ENERGY.2021.122625
  • [86] Lü, Y. L., Geng, J., & He, G. Z. (2015). Industrial transformation and green production to reduce environmental emissions: Taking cement industry as a case. Advances in Climate Change Research, 6(3–4), 202–209. https://doi.org/10.1016/J.ACCRE.2015.10.002
  • [87] Allcott, H., & Greenstone, M. (2012). Is There an Energy Efficiency Gap? Journal of Economic Perspectives, 26(1), 3–28. https://doi.org/10.1257/JEP.26.1.3
  • [88] Gillingham, K., Keyes, A., & Palmer, K. (2018). Advances in Evaluating Energy Efficiency Policies and Programs. https://doi.org/10.1146/annurev-resource-100517-023028, 10, 511–532. https://doi.org/10.1146/ANNUREV-RESOURCE-100517-023028
  • [89] Malinauskaite, J., Jouhara, H., Egilegor, B., Al-Mansour, F., Ahmad, L., & Pusnik, M. (2020). Energy efficiency in the industrial sector in the EU, Slovenia, and Spain. Energy, 208, 118398. https://doi.org/10.1016/J.ENERGY.2020.118398
  • [90] Ural, T., Akgün, M., Ertürk, M., Sıtkı Koçman Üniversitesi, M., Fakültesi, T., Sistemleri Mühendisliği, E., … Uygulamalı Bilimler Üniversitesi, S. (2020). Türkiye’de Doğalgazın Tüketildiği Mahallerde Kullanılan Havalandırma Menfezlerin Optimizasyonu. International Journal of Pure and Applied Sciences, 6(2), 157–168. https://doi.org/10.29132/IJPAS.814457
  • [91] Patterson, M. G. (1996). What is energy efficiency?: Concepts, indicators and methodological issues. Energy Policy, 24(5), 377–390. https://doi.org/10.1016/0301-4215(96)00017-1
  • [92] Herring, H. (2006). Energy efficiency—a critical view. Energy, 31(1), 10–20. https://doi.org/10.1016/J.ENERGY.2004.04.055
  • [93] Zhou, P., & Ang, B. W. (2008). Linear programming models for measuring economy-wide energy efficiency performance. Energy Policy, 36(8), 2911–2916. https://doi.org/10.1016/J.ENPOL.2008.03.041
  • [94] Kaufman, N., & Palmer, K. L. (2012). Energy efficiency program evaluations: Opportunities for learning and inputs to incentive mechanisms. Energy Efficiency, 5(2), 243–268. https://doi.org/10.1007/S12053-011-9130-X/TABLES/10
  • [95] Heutel, G. (2019). Prospect theory and energy efficiency. Journal of Environmental Economics and Management, 96, 236–254. https://doi.org/10.1016/J.JEEM.2019.06.005
  • [96] Musbah, H., Ali, G., Aly, H. H., & Little, T. A. (2022). Energy management using multi-criteria decision making and machine learning classification algorithms for intelligent system. Electric Power Systems Research, 203, 107645. https://doi.org/10.1016/J.EPSR.2021.107645
  • [97] Liu, P., Zhu, B., & Wang, P. (2021). A weighting model based on best–worst method and its application for environmental performance evaluation. Applied Soft Computing, 103, 107168. https://doi.org/10.1016/J.ASOC.2021.107168
  • [98] Okursoy, A., & Tezsürücü, D. (2015). Veri Zarflama Analizi ile Göreli Etkinliklerin Karşılaştırılması: Türkiye’deki İllerin Kültürel Göstergelerine İlişkin Bir Uygulama. Yönetim ve Ekonomi Dergisi, 21(2), 1–18. https://doi.org/10.18657/YECBU.92031
  • [99] Beltrán-Esteve, M., & Picazo-Tadeo, A. J. (2017). Assessing environmental performance in the European Union: Eco-innovation versus catching-up. Energy Policy, 104, 240–252. https://doi.org/10.1016/J.ENPOL.2017.01.054
  • [100] Chen, X., Liu, Z., & Zhu, Q. (2018). Performance evaluation of China’s high-tech innovation process: Analysis based on the innovation value chain. Technovation, 74–75, 42–53. https://doi.org/10.1016/J.TECHNOVATION.2018.02.009
  • [101] Koltai, T., Lozano, S., Uzonyi-Kecskés, J., & Moreno, P. (2017). Evaluation of the results of a production simulation game using a dynamic DEA approach. Computers & Industrial Engineering, 105, 1–11. https://doi.org/10.1016/J.CIE.2016.12.048
  • [102] Zhou, X., Luo, R., An, Q., Wang, S., & Lev, B. (2019). Water resource environmental carrying capacity-based reward and penalty mechanism: A DEA benchmarking approach. Journal of Cleaner Production, 229, 1294–1306. https://doi.org/10.1016/J.JCLEPRO.2019.05.004
  • [103] Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444. https://doi.org/10.1016/0377-2217(78)90138-8
  • [104] Asghar, S., Sasaki, N., Jourdain, D., & Tsusaka, T. W. (2018). Levels of Technical, Allocative, and Groundwater Use Efficiency and the Factors Affecting the Allocative Efficiency of Wheat Farmers in Pakistan. Sustainability 2018, Vol. 10, Page 1619, 10(5), 1619. https://doi.org/10.3390/SU10051619
  • [105] Singh, G., Singh, P., Sodhi, G. P. S., & Tiwari, D. (2021). Energy auditing and data envelopment analysis (DEA) based optimization for increased energy use efficiency in wheat cultivation (Triticum aestium L.) in north-western India. Sustainable Energy Technologies and Assessments, 47, 101453. https://doi.org/10.1016/J.SETA.2021.101453
  • [106] Michali, M., Emrouznejad, A., Dehnokhalaji, A., & Clegg, B. (2021). Noise-pollution efficiency analysis of European railways: A network DEA model. Transportation Research Part D: Transport and Environment, 98, 102980. https://doi.org/10.1016/J.TRD.2021.102980
  • [107] Izadikhah, M., Azadi, M., Toloo, M., & Hussain, F. K. (2021). Sustainably resilient supply chains evaluation in public transport: A fuzzy chance-constrained two-stage DEA approach. Applied Soft Computing, 113, 107879. https://doi.org/10.1016/J.ASOC.2021.107879
  • [108] Fukuyama, H., Matousek, R., & Tzeremes, N. G. (2020). A Nerlovian cost inefficiency two-stage DEA model for modeling banks’ production process: Evidence from the Turkish banking system. Omega, 95, 102198. https://doi.org/10.1016/J.OMEGA.2020.102198
  • [109] Henriques, I. C., Sobreiro, V. A., Kimura, H., & Mariano, E. B. (2020). Two-stage DEA in banks: Terminological controversies and future directions. Expert Systems with Applications, 161, 113632. https://doi.org/10.1016/J.ESWA.2020.113632
  • [110] Wu, H., Lv, K., Liang, L., & Hu, H. (2017). Measuring performance of sustainable manufacturing with recyclable wastes: A case from China’s iron and steel industry. Omega, 66, 38–47. https://doi.org/10.1016/J.OMEGA.2016.01.009
  • [111] Chen, X., & Lin, B. (2020). Assessment of eco-efficiency change considering energy and environment: A study of China’s non-ferrous metals industry. Journal of Cleaner Production, 277, 123388. https://doi.org/10.1016/J.JCLEPRO.2020.123388
  • [112] Yu, C., Shi, L., Wang, Y., Chang, Y., & Cheng, B. (2016). The eco-efficiency of pulp and paper industry in China: an assessment based on slacks-based measure and Malmquist–Luenberger index. Journal of Cleaner Production, 127, 511–521. https://doi.org/10.1016/J.JCLEPRO.2016.03.153
  • [113] Feng, C., Huang, J. B., Wang, M., & Song, Y. (2018). Energy efficiency in China’s iron and steel industry: Evidence and policy implications. Journal of Cleaner Production, 177, 837–845. https://doi.org/10.1016/J.JCLEPRO.2017.12.231
  • [114] He, Y., Liao, N., & Zhou, Y. (2018). Analysis on provincial industrial energy efficiency and its influencing factors in China based on DEA-RS-FANN. Energy, 142, 79–89. https://doi.org/10.1016/J.ENERGY.2017.10.011
  • [115] Lin, B., & Zhang, G. (2017). Energy efficiency of Chinese service sector and its regional differences. Journal of Cleaner Production, 168, 614–625. https://doi.org/10.1016/J.JCLEPRO.2017.09.020
  • [116] Lin, B., & Zhao, H. (2016). Technology gap and regional energy efficiency in China’s textile industry: A non-parametric meta-frontier approach. Journal of Cleaner Production, 137, 21–28. https://doi.org/10.1016/J.JCLEPRO.2016.07.055
  • [117] Zhu, Q., Li, X., Li, F., & Zhou, D. (2020). The potential for energy saving and carbon emission reduction in China’s regional industrial sectors. Science of The Total Environment, 716, 135009. https://doi.org/10.1016/J.SCITOTENV.2019.135009
  • [118] Lin, B., & Xu, M. (2018). Regional differences on CO2 emission efficiency in metallurgical industry of China. Energy Policy, 120, 302–311. https://doi.org/10.1016/J.ENPOL.2018.05.050
  • [119] Hahn, G. J., Brandenburg, M., & Becker, J. (2021). Valuing supply chain performance within and across manufacturing industries: A DEA-based approach. International Journal of Production Economics, 240, 108203. https://doi.org/10.1016/J.IJPE.2021.108203
  • [120] Zhou, X., Chen, H., Chai, J., Wang, S., & Lev, B. (2020). Performance evaluation and prediction of the integrated circuit industry in China: A hybrid method. Socio-Economic Planning Sciences, 69, 100712. https://doi.org/10.1016/J.SEPS.2019.05.003
  • [121] Chen, H., Qi, S., & Tan, X. (2022). The improvement pathway for industrial energy efficiency under sustainability perspective. Sustainable Energy Technologies and Assessments, 51, 101949. https://doi.org/10.1016/J.SETA.2022.101949
  • [122] Henning, S., Hasselbring, W., Burmester, H., Möbius, A., & Wojcieszak, M. (2021). Goals and measures for analyzing power consumption data in manufacturing enterprises. Journal of Data, Information and Management, 3(1), 65–82. https://doi.org/10.1007/S42488-021-00043-5/FIGURES/7
  • [123] Graetz, G., & Michaels, G. (2018). Robots at Work. The Review of Economics and Statistics, 100(5), 753–768. https://doi.org/10.1162/REST_A_00754
  • [124] Kumaresan, N., & Miyazaki, K. (1999). An integrated network approach to systems of innovation—the case of robotics in Japan. Research Policy, 28(6), 563–585. https://doi.org/10.1016/S0048-7333(98)00128-0
  • [125] Sherwani, F., Asad, M. M., & Ibrahim, B. S. K. K. (2020). Collaborative Robots and Industrial Revolution 4.0 (IR 4.0). 2020 International Conference on Emerging Trends in Smart Technologies, ICETST 2020. https://doi.org/10.1109/ICETST49965.2020.9080724
  • [126] Aghion, P., Jones, B. F., Jones, C. I., Agrawal, A., Ahmadpoor, M., Auclert, A., … Jones, C. (2017). Artificial Intelligence and Economic Growth. https://doi.org/10.3386/W23928
  • [127] Berg, A., Buffie, E. F., & Zanna, L. F. (2018). Should we fear the robot revolution? (The correct answer is yes). Journal of Monetary Economics, 97, 117–148. https://doi.org/10.1016/J.JMONECO.2018.05.014
  • [128] Zeira, J. (1998). Workers, Machines, and Economic Growth. The Quarterly Journal of Economics, 113(4), 1091–1117. https://doi.org/10.1162/003355398555847
  • [129] Kromann, L., Malchow-Møller, N., Skaksen, J. R., & Sørensen, A. (2020). Automation and productivity—a cross-country, cross-industry comparison. Industrial and Corporate Change, 29(2), 265–287. https://doi.org/10.1093/ICC/DTZ039
  • [130] Ballestar, M. T., Díaz-Chao, Á., Sainz, J., & Torrent-Sellens, J. (2020). Knowledge, robots and productivity in SMEs: Explaining the second digital wave. Journal of Business Research, 108, 119–131. https://doi.org/10.1016/J.JBUSRES.2019.11.017
  • [131] Acemoglu, D., & Restrepo, P. (2018). Low-Skill and High-Skill Automation. https://doi.org/10.1086/697242, 12(2), 204–232. https://doi.org/10.1086/697242
  • [132] Acemoglu, D., & Restrepo, P. (2020). Robots and Jobs: Evidence from US Labor Markets. https://doi.org/10.1086/705716, 128(6), 2188–2244. https://doi.org/10.1086/705716
  • [133] Yun, J. H. J., Won, D. K., Jeong, E. S., Park, K. B., Yang, J. H., & Park, J. Y. (2016). The relationship between technology, business model, and market in autonomous car and intelligent robot industries. Technological Forecasting and Social Change, 103, 142–155. https://doi.org/10.1016/J.TECHFORE.2015.11.016
  • [134] Jung, J. H., & Lim, D. G. (2020). Industrial robots, employment growth, and labor cost: A simultaneous equation analysis. Technological Forecasting and Social Change, 159, 120202. https://doi.org/10.1016/J.TECHFORE.2020.120202
  • [135] Keynes, J. M. (2010). Economic Possibilities for Our Grandchildren. Essays in Persuasion, 321–332. https://doi.org/10.1007/978-1-349-59072-8_25
  • [136] Goos, M., Manning, A., & Salomons, A. (2014). Explaining Job Polarization: Routine-Biased Technological Change and Offshoring. American Economic Review, 104(8), 2509–26. https://doi.org/10.1257/AER.104.8.2509
  • [137] Michaels, G., Natraj, A., & Van Reenen, J. V. (2014). Has ICT Polarized Skill Demand? Evidence from Eleven Countries over Twenty-Five Years. The Review of Economics and Statistics, 96(1), 60–77. https://doi.org/10.1162/REST_A_00366
  • [138] Autor, D. H., & Dorn, D. (2013). The Growth of Low-Skill Service Jobs and the Polarization of the US Labor Market. American Economic Review, 103(5), 1553–97. https://doi.org/10.1257/AER.103.5.1553
  • [139] Herrendorf, B., Rogerson, R., & Valentinyi, Á. (2013). Two Perspectives on Preferences and Structural Transformation. American Economic Review, 103(7), 2752–89. https://doi.org/10.1257/AER.103.7.2752
  • [140] Wang, E. Z., Lee, C. C., & Li, Y. (2022). Assessing the impact of industrial robots on manufacturing energy intensity in 38 countries. Energy Economics, 105, 105748. https://doi.org/10.1016/J.ENECO.2021.105748
  • [141] Meike, D., & Ribickis, L. (2011). Energy efficient use of robotics in the automobile industry. IEEE 15th International Conference on Advanced Robotics: New Boundaries for Robotics, ICAR 2011, 507–511. https://doi.org/10.1109/ICAR.2011.6088567
  • [142] Paryanto, Brossog, M., Bornschlegl, M., & Franke, J. (2015). Reducing the energy consumption of industrial robots in manufacturing systems. International Journal of Advanced Manufacturing Technology, 78(5–8), 1315–1328. https://doi.org/10.1007/S00170-014-6737-Z/METRICS
  • [143] Gadaleta, M., Pellicciari, M., & Berselli, G. (2019). Optimization of the energy consumption of industrial robots for automatic code generation. Robotics and Computer-Integrated Manufacturing, 57, 452–464. https://doi.org/10.1016/J.RCIM.2018.12.020
  • [144] Scalera, L., Boscariol, P., Carabin, G., Vidoni, R., & Gasparetto, A. (2020). Enhancing Energy Efficiency of a 4-DOF Parallel Robot Through Task-Related Analysis. Machines 2020, Vol. 8, Page 10, 8(1), 10. https://doi.org/10.3390/MACHINES8010010
  • [145] Kaya, D., Çanka Kılıç, F., & Öztürk, H. H. (2021). Energy Management and Energy Efficiency in Industry. https://doi.org/10.1007/978-3-030-25995-2
  • [146] Çanka Kılıç, F. (2017). Endüstriyel Kazanlarda Enerji Verimliliği ve Emisyon Azalımı Fırsatları. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 5(2), 147–158. https://dergipark.org.tr/tr/pub/gujsc/issue/49772/638531
  • [147] Yildiz Töre, G., & Elitaş, G. (2022). Industrial Energy Efficiency Technologies and Management Applications in Turkey. European Journal of Engineering and Applied Sciences, 5(2), 55–72. https://doi.org/10.55581/EJEAS.1217357
  • [148] Yıldız, A., Akgül, S., & Güverci̇n, S. (2018). Enerji Verimliliği ve Sanayideki Uygulamaları. İleri Teknoloji Bilimleri Dergisi, 7(1), 16–22. https://dergipark.org.tr/tr/pub/duzceitbd/issue/37903/362117
  • [149] Terrell, R. E. (2012). Improving Compressed Air System Efficiency—Know What You Really Need. http://dx.doi.org/10.1080/01998595.1999.10530444, 96(1), 7–15. https://doi.org/10.1080/01998595.1999.10530444
  • [150] Rusen, S. E., Topcu, M. A., Celtek, S. A., Celep, G. K., & Rusen, A. (2018). Investigation of energy saving potentials of a food factory by energy audit. Journal of Engineering Research and Applied Science, 7(1), 848–860. https://www.journaleras.com/index.php/jeras/article/view/116
  • [151] Sousa Santos, V., Cabello Eras, J. J., Sagastume Gutierrez, A., & Cabello Ulloa, M. J. (2019). Assessment of the energy efficiency estimation methods on induction motors considering real-time monitoring. Measurement, 136, 237–247. https://doi.org/10.1016/J.MEASUREMENT.2018.12.080
  • [152] Chuang, H. C., Li, G. De, & Lee, C. T. (2019). The efficiency improvement of AC induction motor with constant frequency technology. Energy, 174, 805–813. https://doi.org/10.1016/J.ENERGY.2019.03.019
  • [153] Ahmed, A. A., Moharam, B. A., & Rashad, E. E. (2022). Improving energy efficiency and economics of motor-pump-system using electric variable-speed drives for automatic transition of working points. Computers & Electrical Engineering, 97, 107607. https://doi.org/10.1016/J.COMPELECENG.2021.107607
  • [154] John, N., Mohandas, R., Rajappan, S. C., & Shakthi, S. (2013). Energy Saving Mechanism Using Variable Frequency Drives.
  • [155] Bakman, I., Gevorkov, L., & Vodovozov, V. (2014). Predictive control of a variable-speed multi-pump motor drive. IEEE International Symposium on Industrial Electronics, 1409–1414. https://doi.org/10.1109/ISIE.2014.6864820
  • [156] Bakman, I., & Gevorkov, L. (2015). Speed control strategy selection for multi-pump systems. 2015 56th International Scientific Conference on Power and Electrical Engineering of Riga Technical University, RTUCON 2015. https://doi.org/10.1109/RTUCON.2015.7343174
  • [157] Vodovozov, V., Lehtla, T., Bakman, I., Raud, Z., & Gevorkov, L. (2016). Energy-efficient predictive control of centrifugal multi-pump stations. 10th International Conference - 2016 Electric Power Quality and Supply Reliability, PQ 2016, Proceedings, 233–238. https://doi.org/10.1109/PQ.2016.7724119
  • [158] Vodovozov, V., & Raud, Z. (2017). Predictive control of multi-pump stations with variable-speed drives. IET Electric Power Applications, 11(5), 911–917. https://doi.org/10.1049/IET-EPA.2016.0361
  • [159] Akhan, H. (2022). Sanayide enerji yönetimi: Pompa ve fan sistemlerinde verimlilik artırıcı uygulamalar. Trakya Üniversitesi Mühendislik Bilimleri Dergisi, 23(1), 11–23. https://dergipark.org.tr/tr/pub/tujes/issue/70957/1039319
  • [160] Sen, P. K. (1997). Reducing power consumption for axial flow mine ventilation fans. Journal of Mines, Metals and Fuels, 45(9–10), 301–303. https://www.informaticsjournals.com/index.php/jmmf/issue/archive/5
  • [161] De Souza, E. (2015). Improving the energy efficiency of mine fan assemblages. Applied Thermal Engineering, 90, 1092–1097. https://doi.org/10.1016/J.APPLTHERMALENG.2015.04.048
  • [162] Panigrahi, D. C., & Mishra, D. P. (2014). CFD Simulations for the Selection of an Appropriate Blade Profile for Improving Energy Efficiency in Axial Flow Mine Ventilation Fans. Journal of Sustainable Mining, 13(1), 15–21. https://doi.org/10.7424/JSM140104
  • [163] Okochi, G. S., & Yao, Y. (2016). A review of recent developments and technological advancements of variable-air-volume (VAV) air-conditioning systems. Renewable and Sustainable Energy Reviews, 59, 784–817. https://doi.org/10.1016/J.RSER.2015.12.328
  • [164] Andersson, E., & Thollander, P. (2019). Key performance indicators for energy management in the Swedish pulp and paper industry. Energy Strategy Reviews, 24, 229–235. https://doi.org/10.1016/J.ESR.2019.03.004
  • [165] Dünya Bankası. (2011). Türkiye’de Enerji Tasarrufu Potansiyelini Kullanmak. https://documents1.worldbank.org/curated/pt/521081468318313907/pdf/522100Energy0S0ential0Energy0Turkey.pdf
  • [166] Kaya, D. (2019). Demir Çelik Sektöründe Enerji Verimliliği. Bayburt Üniversitesi Fen Bilimleri Dergisi, 2(2), 201–204. https://dergipark.org.tr/tr/pub/bufbd/issue/50962/650393
  • [167] Chisalita, D. A., Petrescu, L., Cobden, P., van Dijk, H. A. J. (Eric), Cormos, A. M., & Cormos, C. C. (2019). Assessing the environmental impact of an integrated steel mill with post-combustion CO2 capture and storage using the LCA methodology. Journal of Cleaner Production, 211, 1015–1025. https://doi.org/10.1016/J.JCLEPRO.2018.11.256
  • [168] Luh, S., Budinis, S., Giarola, S., Schmidt, T. J., & Hawkes, A. (2020). Long-term development of the industrial sector – Case study about electrification, fuel switching, and CCS in the USA. Computers & Chemical Engineering, 133, 106602. https://doi.org/10.1016/J.COMPCHEMENG.2019.106602
  • [169] Ünlü, O. (2009). Sanayide Enerji Tasarrufu Çalışmalarının Önemi ve Buhar Sistemleri İle İlgili Uygulama Örnekleri. TMMOB Makina Mühendisleri Odası. https://mmo.org.tr/tesisat-muhendisligi-111/makale/sanayide-enerji-tasarrufu-calismalarinin-onemi-ve-buhar-sistemleri
  • [170] Amran, M., Makul, N., Fediuk, R., Lee, Y. H., Vatin, N. I., Lee, Y. Y., & Mohammed, K. (2022). Global carbon recoverability experiences from the cement industry. Case Studies in Construction Materials, 17, e01439. https://doi.org/10.1016/J.CSCM.2022.E01439
  • [171] Belaïd, F. (2022). How does concrete and cement industry transformation contribute to mitigating climate change challenges? Resources, Conservation & Recycling Advances, 15, 200084. https://doi.org/10.1016/J.RCRADV.2022.200084
  • [172] Miller, S. A., Habert, G., Myers, R. J., & Harvey, J. T. (2021). Achieving net zero greenhouse gas emissions in the cement industry via value chain mitigation strategies. One Earth, 4(10), 1398–1411. https://doi.org/10.1016/J.ONEEAR.2021.09.011
  • [173] Cao, Z., Myers, R. J., Lupton, R. C., Duan, H., Sacchi, R., Zhou, N., … Liu, G. (2020). The sponge effect and carbon emission mitigation potentials of the global cement cycle. Nature Communications 2020 11:1, 11(1), 1–9. https://doi.org/10.1038/s41467-020-17583-w
  • [174] Van Ruijven, B. J., Van Vuuren, D. P., Boskaljon, W., Neelis, M. L., Saygin, D., & Patel, M. K. (2016). Long-term model-based projections of energy use and CO2 emissions from the global steel and cement industries. Resources, Conservation and Recycling, 112, 15–36. https://doi.org/10.1016/J.RESCONREC.2016.04.016
  • [175] National Bureau of Statistics. (2021). China Environment Statistics Yearbook. China Statistics Press. Beijing. http://www.stats.gov.cn/sj/ndsj/2021/indexeh.htm
  • [176] Tavman, İ. (2016). Türkiye’nin Elektrik Üretimi ve Tüketimi, Çimento Sanayinde Enerji Geri Kazanımı. In Enerji Stratejileri: İzmir Sempozyumu. Buca: Dokuz Eylül University. https://www.researchgate.net/publication/303033772_Turkiye’nin_Elektrik_Uretimi_ve_Tuketimi_-Cimento_Sanayinde_Enerji_Geri_Kazanimi
  • [177] Leeson, D., Mac Dowell, N., Shah, N., Petit, C., & Fennell, P. S. (2017). A Techno-economic analysis and systematic review of carbon capture and storage (CCS) applied to the iron and steel, cement, oil refining and pulp and paper industries, as well as other high purity sources. International Journal of Greenhouse Gas Control, 61, 71–84. https://doi.org/10.1016/J.IJGGC.2017.03.020
  • [178] Psarras, P. C., Comello, S., Bains, P., Charoensawadpong, P., Reichelstein, S., & Wilcox, J. (2017). Carbon Capture and Utilization in the Industrial Sector. Environmental Science and Technology, 51(19), 11440–11449. https://doi.org/10.1021/ACS.EST.7B01723/SUPPL_FILE/ES7B01723_SI_006.XLSX
  • [179] Tomatis, M., Jeswani, H. K., Stamford, L., & Azapagic, A. (2020). Assessing the environmental sustainability of an emerging energy technology: Solar thermal calcination for cement production. Science of The Total Environment, 742, 140510. https://doi.org/10.1016/J.SCITOTENV.2020.140510
  • [180] Bundela, P. S., & Chawla, V. (2010). Sustainable Development through Waste Heat Recovery. American Journal of Environmental Sciences, 6(1), 83–89. https://doi.org/10.3844/AJESSP.2010.83.89
  • [181] Wang, J., Dai, Y., & Gao, L. (2009). Exergy analyses and parametric optimizations for different cogeneration power plants in cement industry. Applied Energy, 86(6), 941–948. https://doi.org/10.1016/J.APENERGY.2008.09.001
  • [182] Thirugnanasambandam, M., Hasanuzzaman, M., Saidur, R., Ali, M. B., Rajakarunakaran, S., Devaraj, D., & Rahim, N. A. (2011). Analysis of electrical motors load factors and energy savings in an Indian cement industry. Energy, 36(7), 4307–4314. https://doi.org/10.1016/J.ENERGY.2011.04.011
  • [183] Polat, B., Seval Bayram, N., Polat, A., Üniversitesi, M., Meslek Yüksekokulu, T., Teknolojisi Programı, İ., … Mühendisliği Bölümü, İ. (2017). Güneydoğu Anadolu Bölgesi için İnşaat Sektöründeki İş Güvenliği Koşullarının İncelenmesi. International Journal of Pure and Applied Sciences, 3(2), 68–78. https://doi.org/10.29132/IJPAS.341909
  • [184] Mezinska, I., & Strode, S. (2015). Emerging Horizons of Environmental Management in Food Sector Companies. Procedia - Social and Behavioral Sciences, 213, 527–532. https://doi.org/10.1016/J.SBSPRO.2015.11.445
  • [185] Corsini, A., Bonacina, F., Feudo, S., Lucchetta, F., & Marchegiani, A. (2016). Multivariate KPI for Energy Management of Cooling Systems in Food Industry. Energy Procedia, 101, 297–304. https://doi.org/10.1016/J.EGYPRO.2016.11.038
  • [186] Jovanović, B., Filipović, J., & Bakić, V. (2017). Energy management system implementation in Serbian manufacturing – Plan-Do-Check-Act cycle approach. Journal of Cleaner Production, 162, 1144–1156. https://doi.org/10.1016/J.JCLEPRO.2017.06.140
  • [187] Pradella, A. M., de Freitas Rocha Loures, E., da Costa, S. E. G., & de Lima, E. P. (2019). Energy Efficiency in the Food Industry: A Systematic Literature Review. Brazilian Archives of Biology and Technology, 62(specialissue), e19190002. https://doi.org/10.1590/1678-4324-SMART-2019190002
  • [188] Jagtap, S., Rahimifard, S., & Duong, L. N. K. (2022). Real-time data collection to improve energy efficiency: A case study of food manufacturer. Journal of Food Processing and Preservation, 46(8), e14338. https://doi.org/10.1111/JFPP.14338
  • [189] Rüşen, S. E., & Çevik, M. S. (2020). Bir Gıda Fabrikasında Enerji Verimliliğinin İyileştirilmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(3), 539–552. https://doi.org/10.19113/SDUFENBED.498966
  • [190] Bahattin Kıyılmaz, M., Keçebaş, A., Ertürk, M., Sıtkı Koçman Üniversitesi, M., Bilimleri Enstitüsü, F., Sistemleri Mühendisliği, E., … Mühendisliği Bölümü, M. (2021). Sanayide Enerji Yönetimi Sistemi için Bir Gıda Tesisinin Enerji Verimliliğinin İyileştirilmesi. International Journal of Pure and Applied Sciences, 7(1), 51–62. https://doi.org/10.29132/IJPAS.815077
  • [191] Kaya, M. (2012). Sanayide Enerji Verimliliği Potansiyeli ve Basınçlı Hava Sistemlerinde Verimlilik. İstanbul Teknik Üniversitesi, İstanbul. https://polen.itu.edu.tr/items/e19c0c7e-1a95-40f2-a756-5dcdc65acbe9
  • [192] AKBAŞ, B., KAYA, D., & EYİDOĞAN, M. (2018). Bir Otomobil Montaj Fabrikasının Enerji Tüketim Analizi ve Enerji Tasarrufu Potansiyelinin Değerlendirilmesi. Mühendis ve Makina, 59(691), 85–100. https://dergipark.org.tr/tr/pub/muhendismakina/issue/48796/621082
  • [193] Rivera, J. L., & Reyes-Carrillo, T. (2014). A Framework for Environmental and Energy Analysis of the Automobile Painting Process. Procedia CIRP, 15, 171–175. https://doi.org/10.1016/J.PROCIR.2014.06.022
  • [194] Çanka Kiliç, F., Eyidoğan, M., & Sapmaz, S. (2018). Bir otomobil montaj işletmesinde enerji verimliliği artırıcı çözümlerin irdelenmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 6(1), 149–162. https://doi.org/10.29109/HTTP-GUJSC-GAZI-EDU-TR.331104
  • [195] Uylukçuoglu, Ö. E. (2017). Otomativ Sanayinde Enerji Verimliliği Ve Enerji Tasarruf Olanaklarının Belirlenmesi. İstanbul Teknik Üniversitesi, İstanbul. http://hdl.handle.net/11527/12789
  • [196] Capehart, B. L. (Barney L. ), Turner, W. C., & Kennedy, W. J. (2016). Guide to Energy Management. The Fairmont Press, Inc. https://www.routledge.com/Guide-to-Energy-Management-Eighth-Edition/Capehart-PhD-CEM-Turner-PhD-PE-CEM-Kennedy-PhD-PE/p/book/9781498759335
  • [197] Uzun, A., & Değirmen, M. (2018). Endüstriyel İşletmelerde Enerji Verimliliği ve Enerji Yönetimi. Uluslararası Ekonomik Araştırmalar Dergisi, 4(2), 83–97. https://dergipark.org.tr/tr/pub/ead/issue/48247/610769
  • [198] Prashanth, M. S., Eshwar, R., Patel, V. K., Selvaraj, J., Rohit, R., Rahul, R., & Menon, G. K. (2014). A multi faceted approach to energy conservation in foundries. Procedia Engineering, 97, 1815–1824. https://doi.org/10.1016/j.proeng.2014.12.335
  • [199] Lee, S. K., Teng, M. C., Fan, K. S., Yang, K. H., & Horng, R. S. (2011). Application of an energy management system in combination with FMCS to high energy consuming IT industries of Taiwan. Energy Conversion and Management, 52(8–9), 3060–3070. https://doi.org/10.1016/J.ENCONMAN.2010.12.031
  • [200] Moya, D., Torres, R., & Stegen, S. (2016). Analysis of the Ecuadorian energy audit practices: A review of energy efficiency promotion. Renewable and Sustainable Energy Reviews, 62, 289–296. https://doi.org/10.1016/J.RSER.2016.04.052
  • [201] Bunse, K., Vodicka, M., Schönsleben, P., Brülhart, M., & Ernst, F. O. (2011). Integrating energy efficiency performance in production management – gap analysis between industrial needs and scientific literature. Journal of Cleaner Production, 19(6–7), 667–679. https://doi.org/10.1016/J.JCLEPRO.2010.11.011
  • [202] Schulze, M., Nehler, H., Ottosson, M., & Thollander, P. (2016). Energy management in industry – a systematic review of previous findings and an integrative conceptual framework. Journal of Cleaner Production, 112, 3692–3708. https://doi.org/10.1016/J.JCLEPRO.2015.06.060
  • [203] McLaughlin, E., Choi, J. K., & Kissock, K. (2022). Techno-Economic Impact Assessments of Energy Efficiency Improvements in the Industrial Combustion Systems. Journal of Energy Resources Technology, Transactions of the ASME, 144(8). https://doi.org/10.1115/1.4053137/1128944
  • [204] Cagno, E., Franzò, S., Storoni, E., & Trianni, A. (2022). A characterisation framework of energy services offered by energy service companies. Applied Energy, 324, 119674. https://doi.org/10.1016/J.APENERGY.2022.119674
  • [205] Thollander, P., & Palm, J. (2015). Industrial Energy Management Decision Making for Improved Energy Efficiency—Strategic System Perspectives and Situated Action in Combination. Energies 2015, Vol. 8, Pages 5694-5703, 8(6), 5694–5703. https://doi.org/10.3390/EN8065694
  • [206] Bertoldi P, Diluiso F, Castellazzi L, N., L., & T., S. (2018). Energy Consumption and Energy Efficiency Trends in the EU-28 2000-2015. European Commission, JRC Science for Policy Report. https://ec.europa.eu/jrc%0Ahttps://ec.europa.eu/jrc%0Ahttp://publications.jrc.ec.europa.eu/repository/bitstream/JRC110326/efficiency_trends_2017__final_lr.pdf
  • [207] Andrei, M., Thollander, P., Pierre, I., Gindroz, B., & Rohdin, P. (2021). Decarbonization of industry: Guidelines towards a harmonized energy efficiency policy program impact evaluation methodology. Energy Reports, 7, 1385–1395. https://doi.org/10.1016/J.EGYR.2021.02.067
  • [208] Backlund, S., & Thollander, P. (2015). Impact after three years of the Swedish energy audit program. Energy, 82, 54–60. https://doi.org/10.1016/J.ENERGY.2014.12.068
  • [209] Andersson, E., Arfwidsson, O., Bergstrand, V., & Thollander, P. (2017). A study of the comparability of energy audit program evaluations. Journal of Cleaner Production, 142, 2133–2139. https://doi.org/10.1016/J.JCLEPRO.2016.11.070
  • [210] Abdel-Hadi, A., Salem, A. R., Abbas, A. I., Qandil, M., & Amano, R. S. (2021). Study of energy saving analysis for different industries. Journal of Energy Resources Technology, Transactions of the ASME, 143(5). https://doi.org/10.1115/1.4048249/1086572
  • [211] Kluczek, A., & Olszewski, P. (2017). Energy audits in industrial processes. Journal of Cleaner Production, 142, 3437–3453. https://doi.org/10.1016/J.JCLEPRO.2016.10.123
  • [212] Worrell, E., Laitner, J. A., Ruth, M., & Finman, H. (2003). Productivity benefits of industrial energy efficiency measures. Energy, 28(11), 1081–1098. https://doi.org/10.1016/S0360-5442(03)00091-4
  • [213] Pye, M., & McKane, A. (2000). Making a stronger case for industrial energy efficiency by quantifying non-energy benefits. Resources, Conservation and Recycling, 28(3–4), 171–183. https://doi.org/10.1016/S0921-3449(99)00042-7
  • [214] Nehler, T., & Rasmussen, J. (2016). How do firms consider non-energy benefits? Empirical findings on energy-efficiency investments in Swedish industry. Journal of Cleaner Production, 113, 472–482. https://doi.org/10.1016/J.JCLEPRO.2015.11.070
  • [215] Zuberi, M. J. S., Tijdink, A., & Patel, M. K. (2017). Techno-economic analysis of energy efficiency improvement in electric motor driven systems in Swiss industry. Applied Energy, 205, 85–104. https://doi.org/10.1016/J.APENERGY.2017.07.121
  • [216] Kapp, S., Choi, J. K., & Kissock, K. (2022). Toward energy-efficient industrial thermal systems for regional manufacturing facilities. Energy Reports, 8, 1377–1387. https://doi.org/10.1016/J.EGYR.2021.12.060
  • [217] Bosu, I., Mahmoud, H., & Hassan, H. (2023). Energy audit and management of an industrial site based on energy efficiency, economic, and environmental analysis. Applied Energy, 333, 120619. https://doi.org/10.1016/J.APENERGY.2022.120619
  • [218] Martin, R., Muûls, M., De Preux, L. B., & Wagner, U. J. (2012). Anatomy of a paradox: Management practices, organizational structure and energy efficiency. Journal of Environmental Economics and Management, 63(2), 208–223. https://doi.org/10.1016/J.JEEM.2011.08.003
  • [219] Tiller, S. R. (2011). Organizational Structure and Management Systems. Leadership and Management in Engineering, 12(1), 20–23. https://doi.org/10.1061/(ASCE)LM.1943-5630.0000160
  • [220] Sola, A. V. H., & Mota, C. M. M. (2020). Influencing factors on energy management in industries. Journal of Cleaner Production, 248, 119263. https://doi.org/10.1016/J.JCLEPRO.2019.119263
  • [221] Otsuka, A. (2023). Industrial electricity consumption efficiency and energy policy in Japan. Utilities Policy, 81, 101519. https://doi.org/10.1016/J.JUP.2023.101519
  • [222] Neves, F. de O., Salgado, E. G., & Beijo, L. A. (2017). Analysis of the Environmental Management System based on ISO 14001 on the American continent. Journal of environmental management, 199, 251–262. https://doi.org/10.1016/J.JENVMAN.2017.05.049
  • [223] Marimon, F., & Casadesús, M. (2017). Reasons to Adopt ISO 50001 Energy Management System. Sustainability 2017, Vol. 9, Page 1740, 9(10), 1740. https://doi.org/10.3390/SU9101740
  • [224] Ferland, K., Brown, J., Meffert, B., Hake, D., Krawczyk, M., Mazza, M., & Waz, P. (2009). Results from the Texas Pilot Project on Manufacturing Plant Energy Efficiency Certification. https://www.eceee.org/library/conference_proceedings/ACEEE_industry/2009/Panel_3/3.59/
  • [225] Zhou, X., Zhang, H., Rong, Y., Song, J., Fang, S., Xu, Z., … Markides, C. N. (2022). Comparative study for air compression heat recovery based on organic Rankine cycle (ORC) in cryogenic air separation units. Energy, 255, 124514. https://doi.org/10.1016/J.ENERGY.2022.124514
  • [226] Song, J., Li, X., Wang, K., & Markides, C. N. (2020). Parametric optimisation of a combined supercritical CO2 (S-CO2) cycle and organic Rankine cycle (ORC) system for internal combustion engine (ICE) waste-heat recovery. Energy Conversion and Management, 218, 112999. https://doi.org/10.1016/J.ENCONMAN.2020.112999
  • [227] Markides, C. N. (2013). The role of pumped and waste heat technologies in a high-efficiency sustainable energy future for the UK. Applied Thermal Engineering, 53(2), 197–209. https://doi.org/10.1016/J.APPLTHERMALENG.2012.02.037
  • [228] Gangar, N., Macchietto, S., & Markides, C. N. (2020). Recovery and Utilization of Low-Grade Waste Heat in the Oil-Refining Industry Using Heat Engines and Heat Pumps: An International Technoeconomic Comparison. Energies 2020, Vol. 13, Page 2560, 13(10), 2560. https://doi.org/10.3390/EN13102560
  • [229] European Commission. (2016). EU Strategy on Heating and Cooling. https://www.europarl.europa.eu/legislative-train/package-energy-efficiency/file-eu-strategy-on-heating-and-cooling
  • [230] Jouhara, H., & Olabi, A. G. (2018). Editorial: Industrial waste heat recovery. Energy, 160, 1–2. https://doi.org/10.1016/J.ENERGY.2018.07.013
  • [231] Jouhara, H., Chauhan, A., Nannou, T., Almahmoud, S., Delpech, B., & Wrobel, L. C. (2017). Heat pipe based systems - Advances and applications. Energy, 128, 729–754. https://doi.org/10.1016/J.ENERGY.2017.04.028
  • [232] Cura, Ö., & Öğüt, E. (2022). Bir İşletmeye Ait Yardımcı Tesislerin Enerji Tüketimi ve Verimliliğinin İncelenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 10(4), 1910–1925. https://doi.org/10.29130/DUBITED.878810
  • [233] Fitó, J., Hodencq, S., Ramousse, J., Wurtz, F., Stutz, B., Debray, F., & Vincent, B. (2020). Energy- and exergy-based optimal designs of a low-temperature industrial waste heat recovery system in district heating. Energy Conversion and Management, 211, 112753. https://doi.org/10.1016/J.ENCONMAN.2020.112753
  • [234] Maouris, G., Sarabia Escriva, E. J., Acha, S., Shah, N., & Markides, C. N. (2020). CO2 refrigeration system heat recovery and thermal storage modelling for space heating provision in supermarkets: An integrated approach. Applied Energy, 264, 114722. https://doi.org/10.1016/J.APENERGY.2020.114722
  • [235] Liang, Y., Yu, Z., & Li, W. (2019). A Waste Heat-Driven Cooling System Based on Combined Organic Rankine and Vapour Compression Refrigeration Cycles. Applied Sciences 2019, Vol. 9, Page 4242, 9(20), 4242. https://doi.org/10.3390/APP9204242
  • [236] Lecompte, S., Oyewunmi, O. A., Markides, C. N., Lazova, M., Kaya, A., Van Den Broek, M., & De Paepe, M. (2017). Case Study of an Organic Rankine Cycle (ORC) for Waste Heat Recovery from an Electric Arc Furnace (EAF). Energies 2017, Vol. 10, Page 649, 10(5), 649. https://doi.org/10.3390/EN10050649
  • [237] Fatigati, F., Vittorini, D., Wang, Y., Song, J., Markides, C. N., & Cipollone, R. (2020). Design and Operational Control Strategy for Optimum Off-Design Performance of an ORC Plant for Low-Grade Waste Heat Recovery. Energies 2020, Vol. 13, Page 5846, 13(21), 5846. https://doi.org/10.3390/EN13215846
  • [238] Ishaq, H., Dincer, I., & Naterer, G. F. (2018). New trigeneration system integrated with desalination and industrial waste heat recovery for hydrogen production. Applied Thermal Engineering, 142, 767–778. https://doi.org/10.1016/J.APPLTHERMALENG.2018.07.019
  • [239] Wang, F., Wang, L., Zhang, H., Xia, L., Miao, H., & Yuan, J. (2021). Design and optimization of hydrogen production by solid oxide electrolyzer with marine engine waste heat recovery and ORC cycle. Energy Conversion and Management, 229, 113775. https://doi.org/10.1016/J.ENCONMAN.2020.113775
  • [240] Bühler, F., Petrović, S., Holm, F. M., Karlsson, K., & Elmegaard, B. (2018). Spatiotemporal and economic analysis of industrial excess heat as a resource for district heating. Energy, 151, 715–728. https://doi.org/10.1016/J.ENERGY.2018.03.059
  • [241] Pettersson, K., Axelsson, E., Eriksson, L., Svensson, E., Berntsson, T., & Harvey, S. (2020). Holistic methodological framework for assessing the benefits of delivering industrial excess heat to a district heating network. International Journal of Energy Research, 44(4), 2634–2651. https://doi.org/10.1002/ER.5005
  • [242] Rastegarpour, S., Mariotti, A., Ferrarini, L., & Aminyavari, M. (2023). Energy efficiency improvement for industrial boilers through a flue-gas condensing heat recovery system with nonlinear MPC approach. Applied Thermal Engineering, 229, 120554. https://doi.org/10.1016/J.APPLTHERMALENG.2023.120554
  • [243] Johnson, I., Choate, W. T., & Davidson, A. (2008). Waste Heat Recovery. Technology and Opportunities in U.S. Industry. https://doi.org/10.2172/1218716
  • [244] Firth, A., Zhang, B., & Yang, A. (2019). Quantification of global waste heat and its environmental effects. Applied Energy, 235, 1314–1334. https://doi.org/10.1016/J.APENERGY.2018.10.102
  • [245] Forman, C., Muritala, I. K., Pardemann, R., & Meyer, B. (2016). Estimating the global waste heat potential. Renewable and Sustainable Energy Reviews, 57, 1568–1579. https://doi.org/10.1016/J.RSER.2015.12.192
  • [246] Jouhara, H., Khordehgah, N., Almahmoud, S., Delpech, B., Chauhan, A., & Tassou, S. A. (2018). Waste heat recovery technologies and applications. Thermal Science and Engineering Progress, 6, 268–289. https://doi.org/10.1016/J.TSEP.2018.04.017
  • [247] Christodoulides, P., Agathokleous, R., Aresti, L., Kalogirou, S. A., Tassou, S. A., & Florides, G. A. (2022). Waste Heat Recovery Technologies Revisited with Emphasis on New Solutions, Including Heat Pipes, and Case Studies. Energies 2022, Vol. 15, Page 384, 15(1), 384. https://doi.org/10.3390/EN15010384
  • [248] Yan, S. R., Fazilati, M. A., Samani, N., Ghasemi, H., Toghraie, D., Nguyen, Q., & Karimipour, A. (2020). Energy efficiency optimization of the waste heat recovery system with embedded phase change materials in greenhouses: A thermo-economic-environmental study. Journal of Energy Storage, 30, 101445. https://doi.org/10.1016/J.EST.2020.101445
  • [249] Remeli, M. F., Tan, L., Date, A., Singh, B., & Akbarzadeh, A. (2015). Simultaneous power generation and heat recovery using a heat pipe assisted thermoelectric generator system. Energy Conversion and Management, 91, 110–119. https://doi.org/10.1016/J.ENCONMAN.2014.12.001
  • [250] Jouhara, H., Almahmoud, S., Chauhan, A., Delpech, B., Bianchi, G., Tassou, S. A., … Arribas, J. J. (2017). Experimental and theoretical investigation of a flat heat pipe heat exchanger for waste heat recovery in the steel industry. Energy, 141, 1928–1939. https://doi.org/10.1016/J.ENERGY.2017.10.142
  • [251] Oğulata, R. T., Doba, F., & Yilmaz, T. (1999). Second-law and experimental analysis of a cross-flow heat exchanger. HEAT TRANSFER ENGINEERING, 20(2), 20–27. https://doi.org/10.1080/014576399271547
  • [252] Farshi, L. G., Khalili, S., & Mosaffa, A. H. (2018). Thermodynamic analysis of a cascaded compression – Absorption heat pump and comparison with three classes of conventional heat pumps for the waste heat recovery. Applied Thermal Engineering, 128, 282–296. https://doi.org/10.1016/J.APPLTHERMALENG.2017.09.032
  • [253] Gibbs, B. M. (1987). Boiler fuel savings by heat recovery and reduced standby losses. Heat Recovery Systems and CHP, 7(2), 151–157. https://doi.org/10.1016/0890-4332(87)90079-2
  • [254] Butcher, T. A., & Litzke, W. (1994). Condensing economizers for small coal-fired boilers and furnaces. https://doi.org/10.2172/296650
  • [255] Wang, C., He, B., Yan, L., Pei, X., & Chen, S. (2014). Thermodynamic analysis of a low-pressure economizer based waste heat recovery system for a coal-fired power plant. Energy, 65, 80–90. https://doi.org/10.1016/J.ENERGY.2013.11.084
  • [256] Willems, D. (2018). Advanced System Controls and Energy Savings for Industrial Boilers. ASME 2006 Citrus Engineering Conference, CEC 2006, 11–22. https://doi.org/10.1115/CEC2006-5202
  • [257] Wang, D., Bao, A., Kunc, W., & Liss, W. (2012). Coal power plant flue gas waste heat and water recovery. Applied Energy, 91(1), 341–348. https://doi.org/10.1016/J.APENERGY.2011.10.003
  • [258] Peris, B., Navarro-Esbrí, J., Molés, F., & Mota-Babiloni, A. (2015). Experimental study of an ORC (organic Rankine cycle) for low grade waste heat recovery in a ceramic industry. Energy, 85, 534–542. https://doi.org/10.1016/J.ENERGY.2015.03.065
  • [259] Ramirez, M., Epelde, M., De Arteche, M. G., Panizza, A., Hammerschmid, A., Baresi, M., & Monti, N. (2017). Performance evaluation of an ORC unit integrated to a waste heat recovery system in a steel mill. Energy Procedia, 129, 535–542. https://doi.org/10.1016/J.EGYPRO.2017.09.183
  • [260] Cao, S. J., Kong, X. R., Deng, Y., Zhang, W., Yang, L., & Ye, Z. P. (2017). Investigation on thermal performance of steel heat exchanger for ground source heat pump systems using full-scale experiments and numerical simulations. Applied Thermal Engineering, 115, 91–98. https://doi.org/10.1016/J.APPLTHERMALENG.2016.12.098
  • [261] Jouhara, H., Almahmoud, S., Chauhan, A., Delpech, B., Nannou, T., Tassou, S. A., … Arribas, J. J. (2017). Experimental investigation on a flat heat pipe heat exchanger for waste heat recovery in steel industry. Energy Procedia, 123, 329–334. https://doi.org/10.1016/J.EGYPRO.2017.07.262
  • [262] Qin, S., & Chang, S. (2017). Modeling, thermodynamic and techno-economic analysis of coke production process with waste heat recovery. Energy, 141, 435–450. https://doi.org/10.1016/J.ENERGY.2017.09.105
  • [263] Naeimi, A., Bidi, M., Ahmadi, M. H., Kumar, R., Sadeghzadeh, M., & Alhuyi Nazari, M. (2019). Design and exergy analysis of waste heat recovery system and gas engine for power generation in Tehran cement factory. Thermal Science and Engineering Progress, 9, 299–307. https://doi.org/10.1016/J.TSEP.2018.12.007
  • [264] Rüstem Çalapkulu, S. (2020). Kojenerasyon Sistemleri ve Trijenerasyon Sistemleri. Mühendis ve Makine, 5. https://www.mmo.org.tr/sites/default/files/14_9.pdf
  • [265] Özturk, H., & Kaya, D. (2012). Biyoyakıt Üretimi ve Kullanımı. Ankara: TMMOB Makina Mühendisleri Odası. https://kitap.mmo.org.tr/biyoyakit-uretimi-ve-kullanimi
  • [266] Elektrikport. (2015, April 28). Kojenerasyon Sistemi. 2023, https://www.elektrikport.com/universite/kojenerasyon-sistemi/4286#ad-image-0
  • [267] Ritchie, H. (2020). Sector by sector: where do global greenhouse gas emissions come from? https://ourworldindata.org/ghg-emissions-by-sector
  • [268] Turgut, O., Bjerketvedt, V. S., Tomasgard, A., & Roussanaly, S. (2021). An integrated analysis of carbon capture and storage strategies for power and industry in Europe. Journal of Cleaner Production, 329, 129427. https://doi.org/10.1016/J.JCLEPRO.2021.129427
  • [269] IC Change. (2014). Mitigation of climate change. keneamazon.net. https://keneamazon.net/Documents/Publications/Virtual-Library/Impacto/157.pdf
  • [270] Knopf, B., Chen, Y. H. H., De Cian, E., Förster, H., Kanudia, A., Karkatsouli, I., … Van Vuuren, D. P. (2013). Beyond 2020-Strategies and Costs for Transforming The European Energy System. Climate Change Economics, 4(supp01). https://doi.org/10.1142/S2010007813400010
  • [271] Vangkilde-Pedersen, T., Anthonsen, K. L., Smith, N., Kirk, K., neele, F., van der Meer, B., … Peter Christensen, N. (2009). Assessing European capacity for geological storage of carbon dioxide–the EU GeoCapacity project. Energy Procedia, 1(1), 2663–2670. https://doi.org/10.1016/J.EGYPRO.2009.02.034
  • [272] Mirza, N., & Kearns, D. ,. (2022). State Of The Art: Ccs Technologıes 2022. Global CSS Institute.
  • [273] Mostafa, M., Antonicelli, C., Varela, C., Barletta, D., & Zondervan, E. (2022). Capturing CO2 from the atmosphere: Design and analysis of a large-scale DAC facility. Carbon Capture Science & Technology, 4, 100060. https://doi.org/10.1016/J.CCST.2022.100060
  • [274] Arning, K., Offermann-van Heek, J., Linzenich, A., Kaetelhoen, A., Sternberg, A., Bardow, A., & Ziefle, M. (2019). Same or different? Insights on public perception and acceptance of carbon capture and storage or utilization in Germany. Energy Policy, 125, 235–249. https://doi.org/10.1016/J.ENPOL.2018.10.039
  • [275] Ahmed, M., Bashar, I., Alam, S. T., Wasi, A. I., Jerin, I., Khatun, S., & Rahman, M. (2021). An overview of Asian cement industry: Environmental impacts, research methodologies and mitigation measures. Sustainable Production and Consumption, 28, 1018–1039. https://doi.org/10.1016/J.SPC.2021.07.024
  • [276] Fennell, P. S., Davis, S. J., & Mohammed, A. (2021). Decarbonizing cement production. Joule, 5(6), 1305–1311. https://doi.org/10.1016/j.joule.2021.04.011
  • [277] Tapia, J. F. D., Lee, J. Y., Ooi, R. E. H., Foo, D. C. Y., & Tan, R. R. (2018). A review of optimization and decision-making models for the planning of CO2 capture, utilization and storage (CCUS) systems. Sustainable Production and Consumption, 13, 1–15. https://doi.org/10.1016/J.SPC.2017.10.001
  • [278] Anthony, E. J., & Clough, P. T. (2019). Post-Combustion Carbon Capture and Storage in Industry. Energy, Environment, and Sustainability, 39–53. https://doi.org/10.1007/978-981-13-3296-8_4/COVER
  • [279] Bataille, C., Åhman, M., Neuhoff, K., Nilsson, L. J., Fischedick, M., Lechtenböhmer, S., … Rahbar, S. (2018). A review of technology and policy deep decarbonization pathway options for making energy-intensive industry production consistent with the Paris Agreement. Journal of Cleaner Production, 187, 960–973. https://doi.org/10.1016/J.JCLEPRO.2018.03.107
  • [280] Roussanaly, S., Berghout, N., Fout, T., Garcia, M., Gardarsdottir, S., Nazir, S. M., … Rubin, E. S. (2021). Towards improved cost evaluation of Carbon Capture and Storage from industry. International Journal of Greenhouse Gas Control, 106, 103263. https://doi.org/10.1016/J.IJGGC.2021.103263
  • [281] Anika, O. C., Nnabuife, S. G., Bello, A., Okoroafor, E. R., Kuang, B., & Villa, R. (2022). Prospects of low and zero-carbon renewable fuels in 1.5-degree net zero emission actualisation by 2050: A critical review. Carbon Capture Science & Technology, 5, 100072. https://doi.org/10.1016/J.CCST.2022.100072
  • [282] IEA. (2020). Global Energy Review 2020. https://www.iea.org/reports/global-energy-review-2020
  • [283] IPCC. (2022). Climate Change 2022: Mitigation of Climate Change. https://www.ipcc.ch/report/ar6/wg3/
  • [284] Cachola, C. da S., Ciotta, M., Azevedo dos Santos, A., & Peyerl, D. (2023). Deploying of the carbon capture technologies for CO2 emission mitigation in the industrial sectors. Carbon Capture Science & Technology, 7, 100102. https://doi.org/10.1016/J.CCST.2023.100102
  • [285] Gough, C., & Mander, S. (2019). Beyond Social Acceptability: Applying Lessons from CCS Social Science to Support Deployment of BECCS. Current Sustainable/Renewable Energy Reports, 6(4), 116–123. https://doi.org/10.1007/S40518-019-00137-0/METRICS
  • [286] Roussanaly, S., Jakobsen, J. P., Hognes, E. H., & Brunsvold, A. L. (2013). Benchmarking of CO2 transport technologies: Part I—Onshore pipeline and shipping between two onshore areas. International Journal of Greenhouse Gas Control, 19, 584–594. https://doi.org/10.1016/J.IJGGC.2013.05.031
  • [287] Roussanaly, S., Brunsvold, A. L., & Hognes, E. S. (2014). Benchmarking of CO2 transport technologies: Part II – Offshore pipeline and shipping to an offshore site. International Journal of Greenhouse Gas Control, 28, 283–299. https://doi.org/10.1016/J.IJGGC.2014.06.019
  • [288] Global CCS Institute. (2023). Global Status of CCS 2023. https://status23.globalccsinstitute.com/
  • [289] Shaw, R., & Mukherjee, S. (2022). The development of carbon capture and storage (CCS) in India: A critical review. Carbon Capture Science & Technology, 2, 100036. https://doi.org/10.1016/J.CCST.2022.100036
  • [290] Cormos, A. M., Dragan, S., Petrescu, L., Chisalita, D. A., Szima, S., Sandu, V. C., & Cormos, C. C. (2019). Reducing Carbon Footprint of Energy-Intensive Applications by CO2 Capture Technologies: An Integrated Technical and Environmental Assessment. Chemical Engineering Transactions, 76, 1033–1038. https://doi.org/10.3303/CET1976173
  • [291] Hanak, D. P., Erans, M., Nabavi, S. A., Jeremias, M., Romeo, L. M., & Manovic, V. (2018). Technical and economic feasibility evaluation of calcium looping with no CO2 recirculation. Chemical Engineering Journal, 335, 763–773. https://doi.org/10.1016/J.CEJ.2017.11.022
  • [292] Alshammari, Y. M. (2021). Scenario analysis for energy transition in the chemical industry: An industrial case study in Saudi Arabia. Energy Policy, 150, 112128. https://doi.org/10.1016/J.ENPOL.2020.112128
  • [293] Griffin, P. W., Hammond, G. P., & Norman, J. B. (2018). Industrial energy use and carbon emissions reduction in the chemicals sector: A UK perspective. Applied Energy, 227, 587–602. https://doi.org/10.1016/J.APENERGY.2017.08.010
  • [294] Koşaroğlu, Ş. M., & Şengönül, A. (2018). Elektrik Tüketimi ve Ekonomik Büyüme Arasındaki İlişki: BRICS Ülkeleri İçin Bir Uygulama. Cumhuriyet Üniversitesi İktisadi ve İdari Bilimler Dergisi, 19(2), 431–447. http://esjournal.cumhuriyet.edu.tr/tr/pub/cumuiibf/issue/40744/455123
  • [295] Ergül, M., & Soylu, Ö. B. (2022). Türkiye’de Ticari Açıklık Ve Sanayide Enerji Tüketimi İlişkisi. Dicle Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 12(24), 34–48. https://doi.org/10.53092/DUIIBFD.1125920
  • [296] EİGM. (2022). Türkiye Ulusal Enerji Planı. https://enerji.gov.tr//Media/Dizin/EIGM/tr/Raporlar/TUEP/Türkiye_Ulusal_Enerji_Planı.pdf
  • [297] EPDK. (2023). 2022 Yılı Elektrik Piyasası Gelişim Raporu. https://epdk.gov.tr/detay/icerik/3-0-0-102/yillik-rapor-elektrik-piyasasi-gelisim-raporlari
  • [298] ETKB. (2023, March 16). Elektrik . T.C. Enerji ve Tabii Kaynaklar Bakanlığı. 2023, https://enerji.gov.tr/bilgi-merkezi-enerji-elektrik
  • [299] ETKB. (2022). 2021 Ulusal Enerji Denge Tablosu - Orijinal Birimler / Bin TEP. https://enerji.gov.tr/eigm-raporlari
  • [300] IICEC. (2020). Turkey Energy Outlook 2020 . https://iicec.sabanciuniv.edu/tr/teo
  • [301] TÜİK. (2023). Sera Gazı Emisyon İstatistikleri, 1990-2021. https://data.tuik.gov.tr/Bulten/Index?p=Sera-Gazi-Emisyon-Istatistikleri-1990-2021-49672
  • [302] Subramanian, S., Bastian, H., Hoffmeister, A., Jennings, B., Tolentino, C., Vaidyanathan, S., & Nadel, S. (2022). 2022 International Energy Efficiency Scorecard. Washington. https://www.aceee.org/research-report/i2201
  • [303] TMMOB Makina Mühendisleri Odası. (2012). Dünya’da ve Türkiye’de Enerji Verimliliği. https://www.mmo.org.tr/kitaplar/dunyada-ve-turkiyede-enerji-verimliligi-0
  • [304] ETKB. (2022). Ulusal Enerji Verimliliği Eylem Planı 2022 Gelişim Raporu. https://enerji.gov.tr/evced-enerji-verimliligi-uevep
  • [305] TÜİK. (2024). Adrese Dayalı Nüfus Kayıt Sistemi Sonuçları, 2023. https://data.tuik.gov.tr/Bulten/Index?p=Adrese-Dayali-Nufus-Kayit-Sistemi-Sonuclari-2023-49684 [306] TÜİK. (2023). Sektör Bilançoları, 2022. https://data.tuik.gov.tr/Bulten/Index?p=Sektor-Bilancolari-2022-49677
  • [307] TÜİK. (2023). Yıllık Sanayi ve Hizmet İstatistikleri, 2022. https://data.tuik.gov.tr/Bulten/Index?p=Yillik-Sanayi-ve-Hizmet-Istatistikleri-2022-49569
  • [308] TÜİK. (2024). Ücretli Çalışan İstatistikleri, Aralık 2023. https://data.tuik.gov.tr/Bulten/Index?p=Paid-Employee-Statistics-December-2023-49368
  • [309] IEA. (2023). World Energy Statistics and Balances. https://www.iea.org/data-and-statistics/data-product/world-energy-statistics-and-balances
  • [310] Köse, Z. (2016). Türkiye Ekonomisinde 2003-2014 Döneminde Ekonomik Büyüme İşsizlik ve Enflasyon İlişkisi. Türk Sosyal Bilimler Araştırmaları Dergisi, 1(1), 54–71. http://tursbad.hku.edu.tr/tr/pub/tursbad/issue/31330/341770
  • [311] Greenaway, D., Morgan, W., & Wright, P. (1997). Trade liberalization and growth in developing countries: Some new evidence. World Development, 25(11), 1885–1892. https://doi.org/10.1016/S0305-750X(97)00072-7
  • [312] Sadorsky, P. (2012). Energy consumption, output and trade in South America. Energy Economics, 34(2), 476–488. https://doi.org/10.1016/J.ENECO.2011.12.008
  • [313] Aydin, M. (2018). Enerji Tüketimi İle Ekonomik Büyüme Arasındaki İlişki: Düşük ve Orta Gelirli Ülkeler Örneği. Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 36(1), 1–15. https://doi.org/10.17065/HUNIIBF.411122
  • [314] Solow, R. (1956). A Contribution to the Theory of Economic Growth. The Quarterly Journal of Economics, 70(1), 65–94. https://doi.org/10.2307/1884513
  • [315] Swan, T. W. (1956). Economic Growth and Capital Accumulation. Economic Record, 32(2), 334–361. https://doi.org/10.1111/J.1475-4932.1956.TB00434.X
  • [316] Romer, P. (1986). Increasing Returns and Long-run Growth. Journal of Political Economy, 94(5), 1002–37. https://doi.org/10.1086/261420
  • [317] Paul, S., & Bhattacharya, R. N. (2004). Causality between energy consumption and economic growth in India: a note on conflicting results. Energy Economics, 26(6), 977–983. https://doi.org/10.1016/J.ENECO.2004.07.002
  • [318] Akinlo, A. E. (2008). Energy consumption and economic growth: Evidence from 11 Sub-Sahara African countries. Energy Economics, 30(5), 2391–2400. https://doi.org/10.1016/J.ENECO.2008.01.008
  • [319] Wolde-Rufael, Y. (2009). Energy consumption and economic growth: The experience of African countries revisited. Energy Economics, 31(2), 217–224. https://doi.org/10.1016/J.ENECO.2008.11.005
  • [320] Wang, S. S., Zhou, D. Q., Zhou, P., & Wang, Q. W. (2011). CO2 emissions, energy consumption and economic growth in China: A panel data analysis. Energy Policy, 39(9), 4870–4875. https://doi.org/10.1016/J.ENPOL.2011.06.032
  • [321] Belke, A., Dobnik, F., & Dreger, C. (2011). Energy consumption and economic growth: New insights into the cointegration relationship. Energy Economics, 33(5), 782–789. https://doi.org/10.1016/J.ENECO.2011.02.005
  • [322] Kraft, J., & Kraft, A. (1978). On the Relationship Between Energy and GNP. The Journal of Energy and Development, 3(2), 401–403.
  • [323] Yu, E. S. H., & Choi, J.-Y. (1985). Causal relationship between energy and GNP. The Journal of Energy and Development, 10(2), 249–272. https://www.jstor.org/stable/24807818
  • [324] Masih, A. M. M., & Masih, R. (1996). Energy consumption, real income and temporal causality: results from a multi-country study based on cointegration and error-correction modelling techniques. Energy Economics, 18(3), 165–183. https://doi.org/10.1016/0140-9883(96)00009-6
  • [325] Mehrara, M. (2007). Energy consumption and economic growth: The case of oil exporting countries. Energy Policy, 35(5), 2939–2945. https://doi.org/10.1016/J.ENPOL.2006.10.018
  • [326] Karadaş, H. A., Koşaroğlu, Ş. M., & Salihoğlu, E. (2017). Enerji Tüketimi ve Ekonomik Büyüme. Cumhuriyet Üniversitesi İktisadi ve İdari Bilimler Dergisi, 18(1), 129–141. http://esjournal.cumhuriyet.edu.tr/tr/pub/cumuiibf/issue/32216/357734
  • [327] Altıner, A. (2019). MINT Ülkelerinde Enerji Tüketimi ve Ekonomik Büyüme İlişkisi: Panel Nedensellik Analizi. Gümüşhane Üniversitesi Sosyal Bilimler Dergisi, 10(2), 369–378. https://dergipark.org.tr/tr/pub/gumus/issue/47286/454031
  • [328] Terzi, H. (1998). Türkiye’’de Elektrik Tüketimi Ve Ekonomik Büyüme İlişkisi: Sektörel Bir Karşılaştırma. İktisat İşletme ve Finans, 13(144), 62–71. https://doi.org/10.3848/IIF.1998.144.4020
  • [329] Mucuk, M., & Uysal, D. (2009). Türkiye ekonomisinde enerji tüketimi ve ekonomik büyüme. Maliye Dergisi, 0(157), 105–115. http://search/yayin/detay/97762
  • [330] Başar, S., Tosun, B., & Bartık, A. (2020). Türkiye’de Büyüme ve Sektörel Bazda Elektrik Tüketimi Arasındaki İlişki. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 34(3), 1089–1109. https://doi.org/10.16951/ATAUNIIIBD.724638
  • [331] Öznur, A., & Özet, Ü. . (2016). Türkiye’de Ticari Açıklık, Finansal Açıklık ve Ekonomik Büyüme Arasındaki İlişkiler: Sınır Testi Yaklaşımı. Niğde Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 9(1), 255–272. https://dergipark.org.tr/tr/pub/niguiibfd/issue/19761/211636
  • [332] İlter, Ş., & Burtan Doğan, B. (2018). Ticari ve Finansal Dışa Açıklık Oranı İle Ekonomik Büyüme Arasındaki Nedensellik İlişkisi: Türkiye Örneği. Dicle Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 8(15), 89–115. https://dergipark.org.tr/tr/pub/duiibfd/issue/37998/438742
  • [333] Güngör, B. (2022). Türkiye’de Ticari Açıklık ve Doğrudan Yabancı Yatırım İlişkisi. Artuklu Kaime Uluslararası İktisadi ve İdari Araştırmalar Dergisi, 1–15. https://doi.org/10.55119/ARTUKLU.1056193
  • [334] Korkmaz, Ö. (2018). Enerji Tüketimi İle Finansal Açıklık, Ticari Açıklık Ve Finansal Gelişme Arasındaki İlişkinin Karşılaştırmalı Analizi: Türkiye ve İtalya Örneği. Uluslararası İktisadi ve İdari İncelemeler Dergisi, 83–100. https://doi.org/10.18092/ULIKIDINCE.441281
  • [335] Özyıldız, T., & Diner, , Eda. (2022). Finansal Dışa Açıklık Ve Ekonomik Büyüme Arasındaki İlişki: Gelişmekte Olan Ülkeler İçin Bir Panel Veri Analizi. EKEV Akademi Dergisi, (90), 441–458. https://dergipark.org.tr/tr/pub/sosekev/issue/71356/1147208
  • [336] Saçık, S. Y. (2009). Büyümenin Bir Kaynağı Olarak Ticari Dışa Açıklık. Sosyal Ekonomik Araştırmalar Dergisi, 9(17), 525–548. https://dergipark.org.tr/tr/pub/susead/issue/28418/302603
  • [337] Özata, E. (2015). Türkiye’de Enerji Tüketimi ve Ekonomik Büyüme Arasındaki İlişkilerin Ekonometrik İncelemesi. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, (26). https://dergipark.org.tr/tr/pub/dpusbe/issue/4768/65577
  • [338] Barut, M. E., & Çelik, E. (2021). Türkiye’de Sanayide Tüketilen Elektrik Enerjisi İle Ekonomik Büyüme Arasındaki İlişki: Granger Nedensellik Analizi. Nicel Bilimler Dergisi, 3(1), 43–58. https://doi.org/10.51541/NICEL.900484
  • [339] Caffal, C. (1995). Learning from experiences with energy management in industry. (S. Hodgson, Ed.). Sittard: Centre for Analysis and Dissemination of Demonstrated Energy Technologies (CADDET analyes series, ISSN 0925-0085; no.17).
  • [340] Larsen, A., & Jensen, M. (1999). Evaluations of energy audits and the regulator. Energy Policy, 27(9), 557–564. https://doi.org/10.1016/S0301-4215(99)00033-6
  • [341] Bertoldi, P., & Rezessy, S. (2007). Voluntary Agreements for Energy Efficiency: Review and Results of European Experiences. http://dx.doi.org/10.1260/095830507780157258, 18(1), 37–73. https://doi.org/10.1260/095830507780157258
  • [342] Bjørner, T. B., & Jensen, H. H. (2002). Energy taxes, voluntary agreements and investment subsidies—a micro-panel analysis of the effect on Danish industrial companies’ energy demand. Resource and Energy Economics, 24(3), 229–249. https://doi.org/10.1016/S0928-7655(01)00049-5
  • [343] Christoffersen, L. B., Larsen, A., & Togeby, M. (2006). Empirical analysis of energy management in Danish industry. Journal of Cleaner Production, 14(5), 516–526. https://doi.org/10.1016/J.JCLEPRO.2005.03.017
  • [344] Kaya, D., & Öztürk, H. H. (2014). Sanayide Enerji Yönetimi ve Enerji Verimliliği:Uygulamalı Örneklerle. Uniwersytet śląski. Kocaeli: Umuttepe Yayınevi. https://doi.org/10.2/JQUERY.MIN.JS
  • [345] T.C. Ticaret Bakanlığı İhracat Genel Müdürlüğü. (2022). Tekstil ve Hammaddeleri Raporu 2022. https://ticaret.gov.tr/data/5b87000813b8761450e18d7b/Tekstil%20ve%20Hammaddeleri%20Raporu%202022.pdf
  • [346] Deği̇rmen, D., & Eker Şanli, G. (2022). BİR TEKSTİL İŞLETMESİNDE ENERJİ VERİMLİLİĞİ VE EMİSYON AZALTIM OLANAKLARININ ARAŞTIRILMASI: HAVLU ÜRETİM TESİSİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 27(1), 71–88. https://doi.org/10.17482/UUMFD.1022661
  • [347] Gelir, B. Ç. (2017). Tekstil Sektöründe Kullanılan Ramöz Makinelerinde Isı Geri Kazanımı ile Enerji Tasarrufu. Namık Kemal Üniversitesi. http://acikerisim.nku.edu.tr/xmlui/handle/20.500.11776/2424
  • [348] Tunc, M., Kaplan, K., Sisbot, S., & Camdali, U. (2016). Energy management and optimization: Case study of a textile plant in Istanbul, Turkey. World Journal of Engineering, 13(4), 348–355. https://doi.org/10.1108/WJE-08-2016-046/FULL/XML
  • [349] Pulat, E., Etemoglu, A. B., & Can, M. (2009). Waste-heat recovery potential in Turkish textile industry: Case study for city of Bursa. Renewable and Sustainable Energy Reviews, 13(3), 663–672. https://doi.org/10.1016/J.RSER.2007.10.002
  • [350] Koçlu, A. (2011). Tekstil endüstrisinde plakalı ısı değiştiricilerle atık ısı geri kazanım sistemi ve performansının değerlendirilmesi. https://acikbilim.yok.gov.tr/handle/20.500.12812/688933
  • [351] Kaşka, Ö. (2014). Energy and exergy analysis of an organic Rankine for power generation from waste heat recovery in steel industry. Energy Conversion and Management, 77, 108–117. https://doi.org/10.1016/J.ENCONMAN.2013.09.026
  • [352] TÜTÜNCÜ, G., & ÖZGENER, Ö. (2016). ÇİMENTO SEKTÖRÜNDE ATIK ISI GERİ KAZANIM SİSTEMİNİN TERMODİNAMİK İNCELEMESİ. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 18(53), 205–223. https://doi.org/10.21205/deufmd.20165318382
  • [353] Eyi̇doğan, M., Kaya, D., Dursun, Ş., & Taylan, O. (2014). Endüstriyel Tav Fırınlarında Enerji Tasarrufu ve Emisyon Azaltım Fırsatları. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 29(4), 735–743. https://doi.org/10.17341/GUMMFD.76579
  • [354] İbrahim TOPAL, H., Kopaç, M., & Mustafa EYRİBOYUN, ve. (2017). Çatalağzı Termik Elektrik Santrali ile Bölgesel Isıtma Yapılabilirliğin Enerji Analizi. Isı Bilimi ve Tekniği Dergisi, 37(1), 139–146. https://dergipark.org.tr/tr/pub/isibted/issue/33976/376112
  • [355] Isı, A., Kazanım, G., Yönelik, S., Araştırması, L., Örnek, S., İncelemesi, V., … Özgün, Ö. (2019). Atık Isı Geri Kazanım Sistemlerine Yönelik Literatür Araştırması ve Sanayiden Örnek Vaka İncelemesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 34(2), 57–72. https://doi.org/10.21605/CUKUROVAUMMFD.608955
  • [356] Tokgöz, N., & Özgün, Ö. (2019). Atık Isı Geri Kazanım Sistemlerine Yönelik Literatür Araştırması ve Sanayiden Örnek Vaka İncelemesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 34(2), 57–72. https://doi.org/10.21605/CUKUROVAUMMFD.608955
  • [357] Akhan, H. (2023). Energy Management Practices for Improving Energy Efficiency in Industries: Furnace, Steam Boiler, HVAC, and Cooling Systems. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 38(1), 195–210. https://doi.org/10.21605/CUKUROVAUMFD.1273782
  • [358] T.C. Ticaret Bakanlığı İhracat Genel Müdürlüğü. (2022). Otomotiv Sektör Raporu 2022. https://ticaret.gov.tr/data/5b87000813b8761450e18d7b/OTOMOTİV%20SEKTÖR%20RAPORU.pdf
  • [359] SİPAHİ, B. (2019). Otomotiv sanayinde potansiyel enerji verimliliği projeleri. Kocaeli Üniversitesi, Kocaeli. https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=sEsy_Ef8v6QhfewgfYilXg&no=RpCvuO52LGsXsIs2novr-g
  • [360] Ediz, S. B. (2023, July 26). Otomotiv yan sanayisinde parça üretim faaliyetlerinden kaynaklanan karbon emisyonları, karbon ayak izi hesaplamaları ve enerji verimliliği uygulama önerileri. Uludağ Üniversitesi, Bursa. http://hdl.handle.net/11452/33953
  • [361] Arif Göçer, D., & Yiğit, Ö. (2020). Hava Kompresörü Verimliliğine Basınç Yükseltici Kullanımının Etkisinin İncelenmesi. Avrupa Bilim ve Teknoloji Dergisi, 136–141. https://doi.org/10.31590/EJOSAT.801905
  • [362] SAPMAZ, S., & KAYA, D. (2017). Basınçlı Hava Sistemlerinde Enerji Verimliliği ve Emisyon Azaltım Fırsatlarının İncelenmesi. Mühendis ve Makina, 58(689), 23–36. https://dergipark.org.tr/en/pub/muhendismakina/issue/48819/621632
  • [363] DEĞİRMEN, D., HASDEMİR, I., & ŞANLI, G. E. (2023). OTOMOTİV VE GIDA SEKTÖRLERİNDE ENERJİ VERİMLİLİĞİ VE KARBON EMİSYONUNUN AZALTIMI İLE İLGİLİ BİR ÇALIŞMA. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 28(3), 937–956. https://doi.org/10.17482/UUMFD.1340246
  • [364] Ener Ruşen, S. (2019). Elektrik Motorlarının Verimlilik ve CO2 Emisyon Analizi; Bir Gıda Fabrikası Örneği. Avrupa Bilim ve Teknoloji Dergisi, (17), 564–569. https://doi.org/10.31590/EJOSAT.622573
  • [365] Dubnička, R., Lipnický, L., Barčik, M., & Gašparovský, D. (2016). Comprehensive view of LED products in luminaires. Proceedings of International Conference DEMISEE 2016: Diagnostic of Electrical Machines and Insulating Systems in Electrical Engineering, 66–70. https://doi.org/10.1109/DEMISEE.2016.7530467
  • [366] PERDAHÇI, C. (2018). Metal İşleme Tesis Aydınlatmasında Led Lamba Ve Floresan Lamba Karşılaştırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 30(3), 105–113. https://dergipark.org.tr/tr/pub/fumbd/issue/39229/461985
  • [367] YILDIZ, C., & AKGÜL, A. (2023). Türkiye’nin Akdeniz kıyılarında açık deniz güneş ve rüzgâr enerjisi üretiminin verim bazlı karşılaştırılması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(1), 122–136. https://doi.org/10.25092/BAUNFBED.1149532
  • [368] YILDIZ, C. (2020, September). Offshore Solar Plants: A Design Study. Graduate School of Natural and Applied Sciences, İSTANBUL. https://www.researchgate.net/publication/361536147_Offshore_Solar_Plants_A_Design_Study
  • [369] Alshammari, Y. M. (2021). Scenario analysis for energy transition in the chemical industry: An industrial case study in Saudi Arabia. Energy Policy, 150, 112128. https://doi.org/10.1016/J.ENPOL.2020.112128
  • [370] An, Y., Zhou, D., Yu, J., Shi, X., & Wang, Q. (2021). Carbon emission reduction characteristics for China’s manufacturing firms: Implications for formulating carbon policies. Journal of Environmental Management, 284, 112055. https://doi.org/10.1016/J.JENVMAN.2021.112055
  • [371] TÜİK. (2024). Dış Ticaret İstatistikleri, Aralık 2023. https://data.tuik.gov.tr/Bulten/Index?p=Dis-Ticaret-Istatistikleri-Aralik-2023-49630
  • [372] Su, Y. W. (2023). The drivers and barriers of energy efficiency. Energy Policy, 178, 113598. https://doi.org/10.1016/J.ENPOL.2023.113598
  • [373] Saçık, S. Y. (2009). Büyümenin Bir Kaynağı Olarak Ticari Dışa Açıklık. Sosyal Ekonomik Araştırmalar Dergisi, 9(17), 525–548. https://dergipark.org.tr/tr/pub/susead/issue/28418/302603
There are 370 citations in total.

Details

Primary Language Turkish
Subjects Environmental Pollution and Prevention, Air Pollution and Gas Cleaning , Energy, Optimization in Manufacturing
Journal Section Tasarım ve Teknoloji
Authors

Cemre Yıldız 0000-0003-2794-5154

Early Pub Date May 14, 2024
Publication Date June 29, 2024
Submission Date February 23, 2024
Acceptance Date April 22, 2024
Published in Issue Year 2024 Volume: 12 Issue: 2

Cite

APA Yıldız, C. (2024). Sanayide Enerji Verimliliğinde Son Gelişmeler: Türkiye Örneği. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 12(2), 494-547. https://doi.org/10.29109/gujsc.1442017

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526