Research Article
BibTex RIS Cite

Aerosil ve Tinkal Parçacık Takviyesinin Yığın Kalıp Bileşiği (BMC) Kompozitlerin Mekanik Özelliklerine Etkisinin İncelenmesi

Year 2024, Volume: 12 Issue: 3, 724 - 733, 30.09.2024
https://doi.org/10.29109/gujsc.1488791

Abstract

Fiber takviyeli plastikler (FRP) olarak bilinen kompozit malzemelerin yüksek dayanım ve düşük ağırlık gibi nitelikli özellikleri sebebi ile endüstride çok geniş kullanım alanları bulunmaktadır. Endüstrideki kullanım yerine göre FRP kompozitlerin birçok üretim yöntemi bulunmaktadır. Bunlardan biri olan yığın kalıp bileşiği (BMC) yöntemi ise belirli ölçülerde kırpılmış fiber takviyelerinin termoset matris malzemeleri ve çeşitli dolgu malzemeleri ile karıştırılarak hamur haline getirilmesi, ardından ısıtmalı metal yapılı kalıplarda şekillendirilmesi şeklinde uygulanmaktadır. Bu çalışmada elektrik panolarının üretildiği bir tesisin halihazırda üretim yaptığı reçetelerine tinkal ve füme silika (aerosil) tozları takviye edilerek son ürünlerin mekanik dayanımlarını artırmak amaçlı deneysel bir çalışma gerçekleştirilmiştir. BMC hamurların hazırlıkları aşamasında bu tozların literatürde yer alan kullanım oranları dikkate alınarak tinkal tozlarından kütlece %1 ve %2, aerosil tozlarından ise %1 ve %3 oranlarında katkı yapılmıştır. Elde edilen karışımlar FRP kompozitler için çekme ve eğme test standartlarına göre hazırlanmış olan metalik kalıplara dökülmüş ve 100°C sıcaklıkta 5 dakika süre ile kürlenmiştir. Elde edilen test numuneleri çekme, 3 nokta eğilme ve FTIR analizlerine tabi tutulmuştur. Sonuçlar incelendiğinde kütlece %2 oranında takviye edilen tinkal parçacıklarının çekme gerilmesi değerlerinde sırasıyla %4,9 ve %6,7 oranında iyileştirme sağladığı görülmüştür. Buna karşın aerosil parçacıklarının kompozit yapıyı bir miktar daha kırılgan hale getirdiği görülmüştür. Eğilme dayanımlarında ise eklenen katkıların tümünde belirli oranda iyileştirme gözlemlenirken en yüksek eğilme gerilmesi değeri kütlece %2 oranında takviye edilen aerosil katkılı numunelerde 69,98 MPa olarak not edilmiştir. Bu bulgular, tinkal ve aerosil'in BMC kompozitlerin performansını artırabilecek potansiyel katkı maddeleri olduğunu göstermektedir.

References

  • [1] Xu J, Mkaddem A, El Mansori M. Recent advances in drilling hybrid FRP/Ti composite: A state-of-the-art review. Compos Struct 2016;135:316–38. https://doi.org/10.1016/j.compstruct.2015.09.028.
  • [2] Frigione M, Lettieri M. Durability issues and challenges for material advancements in FRP employed in the construction industry. Polymers (Basel)2018;10.https://doi.org/10.3390/polym10030247.
  • [3] Haripriya V, Kumbha S, Manickam S, Arul Jeevan TS. Study the materials behavior for kevlar chopped mate with kenef fiber composites by hand layup technique. Mater Today Proc 2022;69:650–3. https://doi.org/10.1016/j.matpr.2022.06.545.
  • [4] Urtekin L., Gunes D., Yılan F., Çanlı M., The Effect of Layers on the Unidirectional Carbon Fibers of the Reinforced Polyester Resin Matrix Composite Material Gazi University Journal of Science Part C: Design and Technology, 10 (2022) 495–503.
  • [5] Harati Khalilabad E, Ruiz Emparanza A, De Caso F, Roghani H, Khodadadi N, Nanni A. Characterization Specifications for FRP Pultruded Materials: From Constituents to Pultruded Profiles. Fibers2023;11.https://doi.org/10.3390/fib11110093.
  • [6] Mendikute J, Plazaola J, Baskaran M, Zugasti E, Aretxabaleta L, Aurrekoetxea J. Impregnation quality diagnosis in Resin Transfer Moulding by machine learning. Composite Part B Eng 2021;221. https://doi.org/10.1016/j.compositesb.2021.10897.
  • [7] Lionetto F, Moscatello A, Totaro G, Raffone M, Maffezzoli A. Experimental and numerical study of vacuum resin infusion of stiffened carbon fiber reinforced panels. Materials 2020;13:1–17. https://doi.org/10.3390/ma13214800.
  • [8] Joshi SJ, Patel KS, Shah DB, Patel KM, Mawandiya BK. Development and performance analysis of out-of-autoclave curing process for CFRP composites. Advances in Materials and Processing Technologies 2022;8:1593–603. https://doi.org/10.1080/2374068X.2021.1946754.
  • [9] Gortner F, Schüffler A, Fischer-Schuch J, Mitschang P. Use of bio-based and renewable materials for sheet molding compounds (SMC) – Mechanical properties and susceptibility to fungal decay. Composites Part C: Open Access 2022;7. https://doi.org/10.1016/j.jcomc.2022.100242.
  • [10] Lafranche E, Cilleruelo L, Ryckebusch M, Krawczak P. A Novel Adaptive Process Control for Injection Moulding Of BMC And CIC Polyester Compounds. vol. 14. 2005.
  • [11] Rajaee P, Ashenai Ghasemi F, Fasihi M, Saberian M. Effect of styrene-butadiene rubber and fumed silica nano-filler on the microstructure and mechanical properties of glass fiber reinforced unsaturated polyester resin. Compos B Eng 2019;173. https://doi.org/10.1016/j.compositesb.2019.05.014.
  • [12] Faudree MC, Nishi Y, Salvia M. Increasing Impact Strength of a Short Glass Fiber Compression Molded BMC by Shortening Fibers without Change in Equipment. Materials 2022;15. https://doi.org/10.3390/ma15031145.
  • [13] Faudree MC, Nishi Y. Tensile strength enhancement by shortening glass fibers with sub-millimeter length in bulk molding polymer compound. Mater Trans 2010;51. https://doi.org/10.2320/matertrans.M2010121.
  • [14] Faulkner M, Zhao LS, Barrett S, Liu LN. Self-Assembly Stability and Variability of Bacterial Microcompartment Shell Proteins in Response to the Environmental Change. Nanoscale Res Lett 2019;14. https://doi.org/10.1186/s11671-019-2884-3.
  • [15] Ferreira F V., Lona LMF, Pinheiro IF, de Souza SF, Mei LHI. Polymer composites reinforced with natural fibers and nanocellulose in the automotive industry: A short review. Journal of Composites Science2019;3. https://doi.org/10.3390/jcs3020051.
  • [16] Cao Y, Fukumoto I. Evaluation of Mechanical Properties of Injection Molding Composites Reinforced by Bagasse Fiber. Journal of Solid Mechanics and Materials Engineering 2007;1. https://doi.org/10.1299/jmmp.1.1209.
  • [17] Ahmad Fauzi AA, Osman AF, Alrashdi AA, Mustafa Z, Abdul Halim KA. On the Use of Dolomite as a Mineral Filler and Co-Filler in the Field of Polymer Composites: A Review. Polymers (Basel) 2022;14. https://doi.org/10.3390/polym14142843.
  • [18] Marinkovic A, Radoman T, Dzunuzovic E, Dzunuzovic J, Spasojevic P, Isailovic B, et al. Mechanical properties of composites based on unsaturated polyester resins obtained by chemical recycling of poly(ethylene terephthalate). Hem Ind 2013;67. https://doi.org/10.2298/hemind130930077m.
  • [19] Morote-Martínez V, Pascual-Sánchez V, Martín-Martínez JM. Improvement in mechanical and structural integrity of natural stone by applying unsaturated polyester resin-nanosilica hybrid thin coating. Eur Polym J 2008;44. https://doi.org/10.1016/j.eurpolymj.2008.07.027.
  • [20] Mirabedini SM, Kiamanesh A. The effect of micro and nano-sized particles on mechanical and adhesion properties of a clear polyester powder coating. Prog Org Coat 2013;76. https://doi.org/10.1016/j.porgcoat.2013.07.009.
  • [21] Kabakçı G, Kılınçel M, Tezel GB. Nanofiller Effects on the Isothermal Curing Kinetics of Epoxy Resin. Theoretical Foundations of Chemical Engineering 2023;57:1490–502. https://doi.org/10.1134/S004057952306009X.
  • [22] Kabakçı G, Kılınçel M, Tezel GB. Thermo-mechanical behaviours investigation of Nano-Sized Al2O3, TiO2, and Graphene Nanoplatelet Reinforced Epoxy Composites. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 2024;12:1201–16. https://doi.org/10.29130/dubited.1422620.
  • [23] Saenko E V., Huo Y, Shamsutdinov AS, Kondrashova NB, Valtsifer I V., Valtsifer VA. Mesoporous Hydrophobic Silica Nanoparticles as Flow-Enhancing Additives for Fire and Explosion Suppression Formulations. ACS Appl Nano Mater 2020;3. https://doi.org/10.1021/acsanm.9b02309.
  • [24] Sharma D, Iannacchione G. Kinetics of induced crystallization of the LC1-xSilx system. Journal of Physical Chemistry B 2007;111. https://doi.org/10.1021/jp067736o.
  • [25] Kim KM, Kim H, Kim HJ. Enhancing thermo-mechanical properties of epoxy composites using fumed silica with different surface treatment. Polymers (Basel) 2021;13. https://doi.org/10.3390/polym13162691.
  • [26] Rajaee P, Ashenai Ghasemi F, Fasihi M, Saberian M. Effect of styrene-butadiene rubber and fumed silica nano-filler on the microstructure and mechanical properties of glass fiber reinforced unsaturated polyester resin. Compos B Eng 2019;173. https://doi.org/10.1016/j.compositesb.2019.05.014.
  • [27] Yilmaz E, Aydoğmuş E, Demir A. Life cycle assessment and characterization of tincal ore reinforced polyester and vinylester composites. Journal of the Turkish Chemical Society Section B: Chemical Engineering 2022;5:183–94.
  • [28] Yung KC, Liem H. Enhanced thermal conductivity of boron nitride epoxy-matrix composite through multi-modal particle size mixing. J Appl Polym Sci 2007;106. https://doi.org/10.1002/app.27027.
  • [29] Wang S, Jing X, Wang Y, Si J. Synthesis and characterization of novel phenolic resins containing aryl-boron backbone and their utilization in polymeric composites with improved thermal and mechanical properties. Polym Adv Technol 2014;25. https://doi.org/10.1002/pat.3216.
  • [30] Chai Y, Liu J, Zhao Y, Yan N. Characterization of Modified Phenol Formaldehyde Resole Resins Synthesized in Situ with Various Boron Compounds. Ind Eng Chem Res 2016;55. https://doi.org/10.1021/acs.iecr.6b02156.
  • [31] Uygunoglu T, Gunes I, Brostow W. Physical and mechanical properties of polymer composites with high content of wastes incluDing boron. Materials Research 2015;18. https://doi.org/10.1590/1516-1439.009815.

Investigation of the Effects of Aerosil and Tincal Particle Reinforcement on the Mechanical Properties of Bulk Moulding Compound (BMC) Composites

Year 2024, Volume: 12 Issue: 3, 724 - 733, 30.09.2024
https://doi.org/10.29109/gujsc.1488791

Abstract

Fiber Reinforced Plastic (FRP) composites find wide applications in various industries due to their high strength and low weight properties. Depending on the application in the industry, there are several manufacturing methods for FRP composites. One of these methods, Bulk Moulding Compound (BMC), involves mixing chopped fibre reinforcements with thermoset matrix and various fillers to form a dough, which is then shaped in heated metal molds. In this study, an experimental investigation was conducted with the aim of enhancing the mechanical properties of the final products by reinforcing talc and fumed silica (aerosil) powders into the recipes of a facility producing electrical panels. During the preparation stage of BMC dough, tinkal powders were added at mass ratios of 1% and 2%, and aerosil powders were added at ratios of 1% and 3%, considering the usage rates reported in the literature. After this step mixtures were poured into metallic molds which prepared according to tensile and flexural testing standards for FRP composites and cured at 100°C for 5 minutes. The obtained test specimens were subjected to tensile, three-point bending, and FTIR analyses. Upon examination of the results, it was observed that tinkal particles reinforced at a mass ratio of 2% provided the highest improvement in tensile strength (5-10%). However, aerosil particles made the composite structure somewhat more brittle. In terms of flexural strength, while improvements were observed with all reinforced additives, the highest flexural stress value was noted as 69.98 MPa in the samples reinforced with 2% aerosil by weight. These findings suggest that Tincal and Aerosil could be potential additives to enhance the performance of BMC composites

Ethical Statement

Etik kurul belgesi gerekli değildir.

Thanks

Federal Elektrik A.Ş.

References

  • [1] Xu J, Mkaddem A, El Mansori M. Recent advances in drilling hybrid FRP/Ti composite: A state-of-the-art review. Compos Struct 2016;135:316–38. https://doi.org/10.1016/j.compstruct.2015.09.028.
  • [2] Frigione M, Lettieri M. Durability issues and challenges for material advancements in FRP employed in the construction industry. Polymers (Basel)2018;10.https://doi.org/10.3390/polym10030247.
  • [3] Haripriya V, Kumbha S, Manickam S, Arul Jeevan TS. Study the materials behavior for kevlar chopped mate with kenef fiber composites by hand layup technique. Mater Today Proc 2022;69:650–3. https://doi.org/10.1016/j.matpr.2022.06.545.
  • [4] Urtekin L., Gunes D., Yılan F., Çanlı M., The Effect of Layers on the Unidirectional Carbon Fibers of the Reinforced Polyester Resin Matrix Composite Material Gazi University Journal of Science Part C: Design and Technology, 10 (2022) 495–503.
  • [5] Harati Khalilabad E, Ruiz Emparanza A, De Caso F, Roghani H, Khodadadi N, Nanni A. Characterization Specifications for FRP Pultruded Materials: From Constituents to Pultruded Profiles. Fibers2023;11.https://doi.org/10.3390/fib11110093.
  • [6] Mendikute J, Plazaola J, Baskaran M, Zugasti E, Aretxabaleta L, Aurrekoetxea J. Impregnation quality diagnosis in Resin Transfer Moulding by machine learning. Composite Part B Eng 2021;221. https://doi.org/10.1016/j.compositesb.2021.10897.
  • [7] Lionetto F, Moscatello A, Totaro G, Raffone M, Maffezzoli A. Experimental and numerical study of vacuum resin infusion of stiffened carbon fiber reinforced panels. Materials 2020;13:1–17. https://doi.org/10.3390/ma13214800.
  • [8] Joshi SJ, Patel KS, Shah DB, Patel KM, Mawandiya BK. Development and performance analysis of out-of-autoclave curing process for CFRP composites. Advances in Materials and Processing Technologies 2022;8:1593–603. https://doi.org/10.1080/2374068X.2021.1946754.
  • [9] Gortner F, Schüffler A, Fischer-Schuch J, Mitschang P. Use of bio-based and renewable materials for sheet molding compounds (SMC) – Mechanical properties and susceptibility to fungal decay. Composites Part C: Open Access 2022;7. https://doi.org/10.1016/j.jcomc.2022.100242.
  • [10] Lafranche E, Cilleruelo L, Ryckebusch M, Krawczak P. A Novel Adaptive Process Control for Injection Moulding Of BMC And CIC Polyester Compounds. vol. 14. 2005.
  • [11] Rajaee P, Ashenai Ghasemi F, Fasihi M, Saberian M. Effect of styrene-butadiene rubber and fumed silica nano-filler on the microstructure and mechanical properties of glass fiber reinforced unsaturated polyester resin. Compos B Eng 2019;173. https://doi.org/10.1016/j.compositesb.2019.05.014.
  • [12] Faudree MC, Nishi Y, Salvia M. Increasing Impact Strength of a Short Glass Fiber Compression Molded BMC by Shortening Fibers without Change in Equipment. Materials 2022;15. https://doi.org/10.3390/ma15031145.
  • [13] Faudree MC, Nishi Y. Tensile strength enhancement by shortening glass fibers with sub-millimeter length in bulk molding polymer compound. Mater Trans 2010;51. https://doi.org/10.2320/matertrans.M2010121.
  • [14] Faulkner M, Zhao LS, Barrett S, Liu LN. Self-Assembly Stability and Variability of Bacterial Microcompartment Shell Proteins in Response to the Environmental Change. Nanoscale Res Lett 2019;14. https://doi.org/10.1186/s11671-019-2884-3.
  • [15] Ferreira F V., Lona LMF, Pinheiro IF, de Souza SF, Mei LHI. Polymer composites reinforced with natural fibers and nanocellulose in the automotive industry: A short review. Journal of Composites Science2019;3. https://doi.org/10.3390/jcs3020051.
  • [16] Cao Y, Fukumoto I. Evaluation of Mechanical Properties of Injection Molding Composites Reinforced by Bagasse Fiber. Journal of Solid Mechanics and Materials Engineering 2007;1. https://doi.org/10.1299/jmmp.1.1209.
  • [17] Ahmad Fauzi AA, Osman AF, Alrashdi AA, Mustafa Z, Abdul Halim KA. On the Use of Dolomite as a Mineral Filler and Co-Filler in the Field of Polymer Composites: A Review. Polymers (Basel) 2022;14. https://doi.org/10.3390/polym14142843.
  • [18] Marinkovic A, Radoman T, Dzunuzovic E, Dzunuzovic J, Spasojevic P, Isailovic B, et al. Mechanical properties of composites based on unsaturated polyester resins obtained by chemical recycling of poly(ethylene terephthalate). Hem Ind 2013;67. https://doi.org/10.2298/hemind130930077m.
  • [19] Morote-Martínez V, Pascual-Sánchez V, Martín-Martínez JM. Improvement in mechanical and structural integrity of natural stone by applying unsaturated polyester resin-nanosilica hybrid thin coating. Eur Polym J 2008;44. https://doi.org/10.1016/j.eurpolymj.2008.07.027.
  • [20] Mirabedini SM, Kiamanesh A. The effect of micro and nano-sized particles on mechanical and adhesion properties of a clear polyester powder coating. Prog Org Coat 2013;76. https://doi.org/10.1016/j.porgcoat.2013.07.009.
  • [21] Kabakçı G, Kılınçel M, Tezel GB. Nanofiller Effects on the Isothermal Curing Kinetics of Epoxy Resin. Theoretical Foundations of Chemical Engineering 2023;57:1490–502. https://doi.org/10.1134/S004057952306009X.
  • [22] Kabakçı G, Kılınçel M, Tezel GB. Thermo-mechanical behaviours investigation of Nano-Sized Al2O3, TiO2, and Graphene Nanoplatelet Reinforced Epoxy Composites. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 2024;12:1201–16. https://doi.org/10.29130/dubited.1422620.
  • [23] Saenko E V., Huo Y, Shamsutdinov AS, Kondrashova NB, Valtsifer I V., Valtsifer VA. Mesoporous Hydrophobic Silica Nanoparticles as Flow-Enhancing Additives for Fire and Explosion Suppression Formulations. ACS Appl Nano Mater 2020;3. https://doi.org/10.1021/acsanm.9b02309.
  • [24] Sharma D, Iannacchione G. Kinetics of induced crystallization of the LC1-xSilx system. Journal of Physical Chemistry B 2007;111. https://doi.org/10.1021/jp067736o.
  • [25] Kim KM, Kim H, Kim HJ. Enhancing thermo-mechanical properties of epoxy composites using fumed silica with different surface treatment. Polymers (Basel) 2021;13. https://doi.org/10.3390/polym13162691.
  • [26] Rajaee P, Ashenai Ghasemi F, Fasihi M, Saberian M. Effect of styrene-butadiene rubber and fumed silica nano-filler on the microstructure and mechanical properties of glass fiber reinforced unsaturated polyester resin. Compos B Eng 2019;173. https://doi.org/10.1016/j.compositesb.2019.05.014.
  • [27] Yilmaz E, Aydoğmuş E, Demir A. Life cycle assessment and characterization of tincal ore reinforced polyester and vinylester composites. Journal of the Turkish Chemical Society Section B: Chemical Engineering 2022;5:183–94.
  • [28] Yung KC, Liem H. Enhanced thermal conductivity of boron nitride epoxy-matrix composite through multi-modal particle size mixing. J Appl Polym Sci 2007;106. https://doi.org/10.1002/app.27027.
  • [29] Wang S, Jing X, Wang Y, Si J. Synthesis and characterization of novel phenolic resins containing aryl-boron backbone and their utilization in polymeric composites with improved thermal and mechanical properties. Polym Adv Technol 2014;25. https://doi.org/10.1002/pat.3216.
  • [30] Chai Y, Liu J, Zhao Y, Yan N. Characterization of Modified Phenol Formaldehyde Resole Resins Synthesized in Situ with Various Boron Compounds. Ind Eng Chem Res 2016;55. https://doi.org/10.1021/acs.iecr.6b02156.
  • [31] Uygunoglu T, Gunes I, Brostow W. Physical and mechanical properties of polymer composites with high content of wastes incluDing boron. Materials Research 2015;18. https://doi.org/10.1590/1516-1439.009815.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Composite and Hybrid Materials
Journal Section Tasarım ve Teknoloji
Authors

Mert Kılınçel 0000-0001-7057-4390

Emrah Yılmaz 0000-0002-9040-3940

Early Pub Date September 27, 2024
Publication Date September 30, 2024
Submission Date May 23, 2024
Acceptance Date July 17, 2024
Published in Issue Year 2024 Volume: 12 Issue: 3

Cite

APA Kılınçel, M., & Yılmaz, E. (2024). Aerosil ve Tinkal Parçacık Takviyesinin Yığın Kalıp Bileşiği (BMC) Kompozitlerin Mekanik Özelliklerine Etkisinin İncelenmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 12(3), 724-733. https://doi.org/10.29109/gujsc.1488791

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526