Research Article
BibTex RIS Cite

Trapez Kesit Yapay Pürüzlü Güneş Destekli Hava Isıtıcının Modellenmesi

Year 2024, Volume: 12 Issue: 3, 570 - 578, 30.09.2024
https://doi.org/10.29109/gujsc.1514466

Abstract

Güneş destekli hava ısıtıcıları yaygın olarak kullanılmasıyla birlikte, ısı transferi verimleri düşüktür. Bu konuda bir dizi araştırma yürütülmektedir. Bu çalışmada ısı transferini arttırmak için trapez kesit yapay pürüzlülük uygulanan güneş destekli hava ısıtıcısının sayısal modellemesi yapılmıştır. Çalışma iki farklı pürüzlülük oranında; iki boyutlu olarak tasarlanmış ve yaygın bir hesaplamalı akışkan dinamiği yazılımı olan ANSYS Fluent ile gerçekleştirilmiştir. Yutucu plaka üzerine 1000 W/m2 sabit ısı akısı uygulanarak 4000 ile 13000 Reynolds sayısı aralığında 10 farklı değer ile türbülanslı akış modellenmiştir. Çalışma sonucunda düz yüzeye göre Nusselt sayısında 1,3 ile 2,3 kat arasında artış gözlemlenmiştir. 1,55 değeri ile maksimum termohidrolik performans parametresi elde edilmiştir. Ayrıca yapay pürüzlülüklerin ısı transferini arttırmada kullanılabilir olduğu vurgulanmıştır.

References

  • [1] Shetty SP, Madhwesh N, Vasudeva Karanth K. Numerical analysis of a solar air heater with circular perforated absorber plate. Sol Energy 2021;215:416–33. https://doi.org/10.1016/j.solener.2020.12.053.
  • [2] Acır A, Emin Canlı M, Ata İ, Erdi Tanürün H. Effects of a circular-shaped turbulator having varying hole numbers on energy and exergy efficiencies of a solar air heater. Int J Ambient Energy 2019;40:739–48. https://doi.org/10.1080/01430750.2017.1423385.
  • [3] Prajapati S, Naik N, V.P. C. Numerical solution of solar air heater with triangular corrugations for indirect solar dryer: Influence of pitch and an optimized pitch of corrugation for enhanced performance. Sol Energy 2022;243:1–12. https://doi.org/10.1016/J.SOLENER.2022.07.044.
  • [4] Acir A, Canli ME, Ata I, Uzun S, Tanürün HE. Experimental Investigation of Thermal Energy Storage Efficiency Using Fin Application With Phase Change Material (PcM) Under Solar Radiation. Heat Transf Res 2021;52:21–39. https://doi.org/10.1615/HEATTRANSRES.2021036643.
  • [5] Singh Gill R, Singh Hans V, Pal Singh R. Optimization of artificial roughness parameters in a solar air heater duct roughened with hybrid ribs. Appl Therm Eng 2021:116871. https://doi.org/10.1016/j.applthermaleng.2021.116871.
  • [6] Kocer A. Numerical investigation of heat transfer and thermo-hydraulic performance of solar air heater with different ribs and their machine learning-based prediction. J Brazilian Soc Mech Sci Eng 2024;46:1–16. https://doi.org/10.1007/S40430-023-04663-3.
  • [7] Varun Kumar B, Manikandan G, Rajesh Kanna P. Enhancement of heat transfer in SAH with polygonal and trapezoidal shape of the rib using CFD. Energy 2021;234:121154. https://doi.org/10.1016/J.ENERGY.2021.121154.
  • [8] Singh I, Singh S. CFD analysis of solar air heater duct having square wave profiled transverse ribs as roughness elements. Sol Energy 2018;162:442–53. https://doi.org/10.1016/j.solener.2018.01.019.
  • [9] Srivastava A, Kumar Chhaparwal G, Kumar Sharma R. Numerical and Experimental Investigation of Different Rib Roughness in a Solar Air Heater. Therm Sci Eng Prog 2020:100576. https://doi.org/10.1016/j.tsep.2020.100576.
  • [10] Saini SK, Saini RP. Development of correlations for Nusselt number and friction factor for solar air heater with roughened duct having arc-shaped wire as artificial roughness. Sol Energy 2008;82:1118–30. https://doi.org/10.1016/J.SOLENER.2008.05.010.
  • [11] Haldar A, Varshney L, Verma P. Effect of roughness parameters on performance of solar air heater having artificial wavy roughness using CFD. Renew Energy 2022;184:266–79. https://doi.org/10.1016/J.RENENE.2021.11.088.
  • [12] Yadav AS, Bhagoria JL. A Numerical Investigation of Turbulent Flows through an Artificially Roughened Solar Air Heater. Numer Heat Transf Part A Appl 2014;65:679–98. https://doi.org/10.1080/10407782.2013.846187.
  • [13] Hans VS, Saini RP, Saini JS. Performance of artificially roughened solar air heaters-A review. Renew Sustain Energy Rev 2009;13:1854–69. https://doi.org/10.1016/j.rser.2009.01.030.
  • [14] Sharma S, Singh R, Bhushan B. CFD based thermal efficiency of square shape protruded roughened absorber plate for solar air heater. Energy Sources, Part A Recover Util Environ Eff 2021:1–22. https://doi.org/10.1080/15567036.2021.1908460.
  • [15] Yildirim C. V-Kanatçık Kullanımının Havalı Güneş Kollektörlerinde Termal ve Termohidrolik Verime Etkisinin Parametrik Analizi. Çukurova Univ J Fac Eng Archit 2019;34:23–32.
  • [16] Mahanand Y, Senapati JR. Thermo-hydraulic performance analysis of a solar air heater (SAH) with quarter-circular ribs on the absorber plate: A comparative study. Int J Therm Sci 2021;161:106747. https://doi.org/10.1016/j.ijthermalsci.2020.106747.
  • [17] Kumar A, Khan S. CFD Simulation of a Curved Solar Air Heater with Various Shaped Down Turbulators. Int J Res Publ Rev J Homepage WwwIjrprCom 2022;3:3033–43.
  • [18] Standard A. ASHRAE 93 (2003) Method of testing to determine the thermal performance of solar collectors. American Society of Heating. Refrig Air Cond Eng Atlanta, GA n.d.;30329.
  • [19] Yadav AS, Bhagoria JL. A CFD based thermo-hydraulic performance analysis of an artificially roughened solar air heater having equilateral triangular sectioned rib roughness on the absorber plate. Int J Heat Mass Transf 2014;70:1016–39. https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.074.
  • [20] Koçer A. Kare Kesit Yapay Pürüzlü Güneş Destekli Hava Isıtıcı Tasarımının Sayısal Analizi. Gazi Üniversitesi Fen Bilim Derg Part C Tasarım ve Teknol 2022;10:504–18. https://doi.org/10.29109/GUJSC.1089224.
  • [21] Webb R, Eckert E. Application of rough surfaces to heat exchanger design. Int J Heat Mass Transf 1972;15:1647–58.
  • [22] Bekele A, Mishra M, Dutta S. Heat transfer augmentation in solar air heater using delta-shaped obstacles mounted on the absorber plate. Int J Sustain Energy 2013;32:53–69. https://doi.org/10.1080/14786451.2011.598637.
  • [23] Korkmaz C, Kacar İ. Hesaplamalı Akışkanlar Dinamiği Simülasyonları İçin Optimum Ağ Elemanı Yapısının Belirlenmesi. Tarımsal Mek. ve Enerj. Üzerine Güncel Araştırmalar, Akademisyen Kitabevi A.Ş; 2021, p. 109–25.
  • [24] Patel YM, Jain S V., Lakhera VJ. Thermo-hydraulic performance analysis of a solar air heater roughened with reverse NACA profile ribs. Appl Therm Eng 2020;170:114940. https://doi.org/10.1016/J.APPLTHERMALENG.2020.114940.
  • [25] Yadav AS, Bhagoria JL. A numerical investigation of square sectioned transverse rib roughened solar air heater. Int J Therm Sci 2014;79:111–31. https://doi.org/10.1016/j.ijthermalsci.2014.01.008.

Modeling of Trapezoidal Section Artificial Rough Solar Air Heater

Year 2024, Volume: 12 Issue: 3, 570 - 578, 30.09.2024
https://doi.org/10.29109/gujsc.1514466

Abstract

Although solar air heaters are widely used, their heat transfer efficiency is low. A number of studies are being conducted on this subject. In this study, numerical modeling of a solar air heater with trapezoidal section artificial roughness was applied to increase heat transfer. The study was carried out at two different roughness rates; It was designed in two dimensions and realized with ANSYS Fluent, a common computational fluid dynamics software. By applying a constant heat flux of 1000 W/m2 on the absorber plate, turbulent flow was modeled with 10 different values between 4000 and 13000 Reynolds number. As a result of the study, an increase of 1.3 to 2.3 times in the Nusselt number was observed compared to the smooth surface. The maximum thermohydraulic performance parameter was obtained with a value of 1.55. It has also been emphasized that artificial roughness’s can be used to increase heat transfer.

References

  • [1] Shetty SP, Madhwesh N, Vasudeva Karanth K. Numerical analysis of a solar air heater with circular perforated absorber plate. Sol Energy 2021;215:416–33. https://doi.org/10.1016/j.solener.2020.12.053.
  • [2] Acır A, Emin Canlı M, Ata İ, Erdi Tanürün H. Effects of a circular-shaped turbulator having varying hole numbers on energy and exergy efficiencies of a solar air heater. Int J Ambient Energy 2019;40:739–48. https://doi.org/10.1080/01430750.2017.1423385.
  • [3] Prajapati S, Naik N, V.P. C. Numerical solution of solar air heater with triangular corrugations for indirect solar dryer: Influence of pitch and an optimized pitch of corrugation for enhanced performance. Sol Energy 2022;243:1–12. https://doi.org/10.1016/J.SOLENER.2022.07.044.
  • [4] Acir A, Canli ME, Ata I, Uzun S, Tanürün HE. Experimental Investigation of Thermal Energy Storage Efficiency Using Fin Application With Phase Change Material (PcM) Under Solar Radiation. Heat Transf Res 2021;52:21–39. https://doi.org/10.1615/HEATTRANSRES.2021036643.
  • [5] Singh Gill R, Singh Hans V, Pal Singh R. Optimization of artificial roughness parameters in a solar air heater duct roughened with hybrid ribs. Appl Therm Eng 2021:116871. https://doi.org/10.1016/j.applthermaleng.2021.116871.
  • [6] Kocer A. Numerical investigation of heat transfer and thermo-hydraulic performance of solar air heater with different ribs and their machine learning-based prediction. J Brazilian Soc Mech Sci Eng 2024;46:1–16. https://doi.org/10.1007/S40430-023-04663-3.
  • [7] Varun Kumar B, Manikandan G, Rajesh Kanna P. Enhancement of heat transfer in SAH with polygonal and trapezoidal shape of the rib using CFD. Energy 2021;234:121154. https://doi.org/10.1016/J.ENERGY.2021.121154.
  • [8] Singh I, Singh S. CFD analysis of solar air heater duct having square wave profiled transverse ribs as roughness elements. Sol Energy 2018;162:442–53. https://doi.org/10.1016/j.solener.2018.01.019.
  • [9] Srivastava A, Kumar Chhaparwal G, Kumar Sharma R. Numerical and Experimental Investigation of Different Rib Roughness in a Solar Air Heater. Therm Sci Eng Prog 2020:100576. https://doi.org/10.1016/j.tsep.2020.100576.
  • [10] Saini SK, Saini RP. Development of correlations for Nusselt number and friction factor for solar air heater with roughened duct having arc-shaped wire as artificial roughness. Sol Energy 2008;82:1118–30. https://doi.org/10.1016/J.SOLENER.2008.05.010.
  • [11] Haldar A, Varshney L, Verma P. Effect of roughness parameters on performance of solar air heater having artificial wavy roughness using CFD. Renew Energy 2022;184:266–79. https://doi.org/10.1016/J.RENENE.2021.11.088.
  • [12] Yadav AS, Bhagoria JL. A Numerical Investigation of Turbulent Flows through an Artificially Roughened Solar Air Heater. Numer Heat Transf Part A Appl 2014;65:679–98. https://doi.org/10.1080/10407782.2013.846187.
  • [13] Hans VS, Saini RP, Saini JS. Performance of artificially roughened solar air heaters-A review. Renew Sustain Energy Rev 2009;13:1854–69. https://doi.org/10.1016/j.rser.2009.01.030.
  • [14] Sharma S, Singh R, Bhushan B. CFD based thermal efficiency of square shape protruded roughened absorber plate for solar air heater. Energy Sources, Part A Recover Util Environ Eff 2021:1–22. https://doi.org/10.1080/15567036.2021.1908460.
  • [15] Yildirim C. V-Kanatçık Kullanımının Havalı Güneş Kollektörlerinde Termal ve Termohidrolik Verime Etkisinin Parametrik Analizi. Çukurova Univ J Fac Eng Archit 2019;34:23–32.
  • [16] Mahanand Y, Senapati JR. Thermo-hydraulic performance analysis of a solar air heater (SAH) with quarter-circular ribs on the absorber plate: A comparative study. Int J Therm Sci 2021;161:106747. https://doi.org/10.1016/j.ijthermalsci.2020.106747.
  • [17] Kumar A, Khan S. CFD Simulation of a Curved Solar Air Heater with Various Shaped Down Turbulators. Int J Res Publ Rev J Homepage WwwIjrprCom 2022;3:3033–43.
  • [18] Standard A. ASHRAE 93 (2003) Method of testing to determine the thermal performance of solar collectors. American Society of Heating. Refrig Air Cond Eng Atlanta, GA n.d.;30329.
  • [19] Yadav AS, Bhagoria JL. A CFD based thermo-hydraulic performance analysis of an artificially roughened solar air heater having equilateral triangular sectioned rib roughness on the absorber plate. Int J Heat Mass Transf 2014;70:1016–39. https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.074.
  • [20] Koçer A. Kare Kesit Yapay Pürüzlü Güneş Destekli Hava Isıtıcı Tasarımının Sayısal Analizi. Gazi Üniversitesi Fen Bilim Derg Part C Tasarım ve Teknol 2022;10:504–18. https://doi.org/10.29109/GUJSC.1089224.
  • [21] Webb R, Eckert E. Application of rough surfaces to heat exchanger design. Int J Heat Mass Transf 1972;15:1647–58.
  • [22] Bekele A, Mishra M, Dutta S. Heat transfer augmentation in solar air heater using delta-shaped obstacles mounted on the absorber plate. Int J Sustain Energy 2013;32:53–69. https://doi.org/10.1080/14786451.2011.598637.
  • [23] Korkmaz C, Kacar İ. Hesaplamalı Akışkanlar Dinamiği Simülasyonları İçin Optimum Ağ Elemanı Yapısının Belirlenmesi. Tarımsal Mek. ve Enerj. Üzerine Güncel Araştırmalar, Akademisyen Kitabevi A.Ş; 2021, p. 109–25.
  • [24] Patel YM, Jain S V., Lakhera VJ. Thermo-hydraulic performance analysis of a solar air heater roughened with reverse NACA profile ribs. Appl Therm Eng 2020;170:114940. https://doi.org/10.1016/J.APPLTHERMALENG.2020.114940.
  • [25] Yadav AS, Bhagoria JL. A numerical investigation of square sectioned transverse rib roughened solar air heater. Int J Therm Sci 2014;79:111–31. https://doi.org/10.1016/j.ijthermalsci.2014.01.008.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Energy Generation, Conversion and Storage (Excl. Chemical and Electrical)
Journal Section Tasarım ve Teknoloji
Authors

Abdülkadir Koçer 0000-0002-5139-421X

Early Pub Date September 3, 2024
Publication Date September 30, 2024
Submission Date July 11, 2024
Acceptance Date August 17, 2024
Published in Issue Year 2024 Volume: 12 Issue: 3

Cite

APA Koçer, A. (2024). Trapez Kesit Yapay Pürüzlü Güneş Destekli Hava Isıtıcının Modellenmesi. Gazi University Journal of Science Part C: Design and Technology, 12(3), 570-578. https://doi.org/10.29109/gujsc.1514466

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526