Dört yıllık fotovoltaik modül sıcaklık tahmininin dört farklı yazılımla değerlendirilmesi
Year 2023,
, 32 - 46, 15.01.2023
Doğa Tolgay
,
M. Samet Yakut
,
Talat Özden
,
Bülent Akınoğlu
Abstract
Günümüzde kullanılan fotovoltaik sistemlerde modül sıcaklığını tahminleme yazılımlarının analiz edilmesi çok önemlidir. Bu tahminler ileriye yönelik tekno-ekonomik ve çevre duyarlı analizler için gelecek nesiller için daha kazanımlı olacaktır. Mevcut çalışma, bu konuyla ilgili olarak, yaygın kullanılan dört yazılım modeli tarafından kullanılan modül sıcaklık tahmin formüllerini test etmek ve Orta Anadolu’da beş farklı fotovoltaik modülün sıcaklık analizleri için en uygun yazılımı belirlemektir. Açık alanda yapılan tutarlı ve uzun dönemli testler, temel sonuçlara ulaşmak için en gerçekçi yaklaşımdır. Giriş bölümünde temel bilgilerin ardından, analize ışık tutacak temel materyal ve yöntemler tartışılmaktadır. Ana metodoloji verilmekte ve sonuçlar sunulmaktadır. Dört iyi bilinen yazılım, beş farklı fotovoltaik modülün dört yıllık açık alan testleri kullanılarak analiz edilmiştir. Yazılım tahmin performanslarının sınıflandırılmasında ortam sıcaklığı ve güneş ışınımı kullanılmıştır. PV*SOL, düşük ışınım ve ortam sıcaklığında üstün görünürken, Helioscope genel olarak daha iyi sonuçlar vermiştir.
Supporting Institution
Türkiye Strateji ve Bütçe Başkanlığı
Project Number
BAP-08.11.2015K121200
Thanks
Yazarlar, açık hava test tesisi inşaatı için Türkiye Strateji ve Bütçe Başkanlığı tarafından verilen desteği kabul ederler [BAP-08.11.2015K121200].
References
- Akinoglu, B. G. (1991). A review of sunshine-based models used to estimate monthly average global solar radiation. Renewable Energy, 1(3–4), 479–497. https://doi.org/10.1016/0960-1481(91)90061-S
- Aly, S. P., Ahzi, S., & Barth, N. (2019). Effect of physical and environmental factors on the performance of a photovoltaic panel. Solar Energy Materials and Solar Cells, 200(September 2018), 109948. https://doi.org/10.1016/j.solmat.2019.109948
- Atse, L., Waal, A. C. de, Schropp, R. E. I., Faaij, A. P. C., & Sark, W. G. J. H. M. van. (2017). Comprehensive characterisation and analysis of PV module performance under real operating conditions. Progress In Photovoltaics: Research and Applications, 25(2), 218–232. https://doi.org/10.1002/pip.2848
- Bañuelos-Ruedas, F., Angeles-Camacho, C., & Rios-Marcuello, S. (2010). Analysis and validation of the methodology used in the extrapolation of wind speed data at different heights. Renewable and Sustainable Energy Reviews, 14(8), 2383–2391. https://doi.org/10.1016/j.rser.2010.05.001
- Dubey, S., Sarvaiya, J. N., & Seshadri, B. (2013). Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world a review. Energy Procedia, 33, 311–321. https://doi.org/10.1016/j.egypro.2013.05.072
- Duffie, J. A., Beckman, W. A., & McGowan, J. (1985). Solar engineering of thermal processes. https://doi.org/10.1119/1.14178
- Eckstein, J. H. (1990). Detailed modelling of photovoltaic system components. University of Wisconsin-Madison.
- Faiman, D. (2008). Assessing the outdoor operating temperature of photovoltaic modules. https://doi.org/10.1002/pip.813
- Folsom Labs. (2019). HelioScope software. https://www.helioscope.com/
- HOMER software. (2019). https://www.homerenergy.com/
- International renewable energy agency. (2020). Renewable Capacity Statistics 2020. https://irena.org/publications/2020/Mar/Renewable-Capacity-Statistics-2020
- Jaszczur, M., Teneta, J., Hassan, Q., Majewska, E., & Hanus, R. (2019). An experimental and numerical investigation of photovoltaic module temperature under varying environmental conditions. Heat Transfer Engineering, 42(3–4), 354–367. https://doi.org/10.1080/01457632.2019.1699306
- Jha, A., & Tripathy, P. P. (2019). Heat transfer modeling and performance evaluation of photovoltaic system in different seasonal and climatic conditions. Renewable Energy, 135, 856–865. https://doi.org/10.1016/j.renene.2018.12.032
- Karaveli, A. B., Ozden, T., & Akinoglu, B. G. (2018). Determining photovoltaic module performance and comparisons. PVCon 2018 - International Conference on Photovoltaic Science and Technologies, 18–22. https://doi.org/10.1109/PVCon.2018.8523868
- King, D. L., Boyson, W. E., & Kratochvil, J. A. (2004). Photovoltaic array performance model. In Sandia Report No. 2004-3535 (Vol. 8, Issue November). https://doi.org/10.2172/919131
- Koehl, M., Heck, M., Wiesmeier, S., & Wirth, J. (2011). Modeling of the nominal operating cell temperature based on outdoor weathering. Solar Energy Materials and Solar Cells, 95(7), 1638–1646. https://doi.org/10.1016/j.solmat.2011.01.020
- Nikolaeva-Dimitrova, M., Kenny, R. P., Dunlop, E. D., & Pravettoni, M. (2010). Seasonal variations on energy yield of a-Si, hybrid, and crystalline Si PV modules. Progress in Photovoltaics: Research and Applications, 18(5), 311–320. https://doi.org/10.1002/pip.918
- Ozden, T., Akinoglu, B. G., & Kurtz, S. (2018). Performance and degradation analyses of two different pv modules in central anatolia. PVCon 2018 - International Conference on Photovoltaic Science and Technologies, 18–21. https://doi.org/10.1109/PVCon.2018.8523880
- Ozden, T., Carr, A. J., Geerligs, B. (L J. )., Turan, R., & Akinoglu, B. G. (2020). One-year performance evaluation of two newly developed back-contact solar modules in two different climates. Renewable Energy, 145, 557–568. https://doi.org/10.1016/j.renene.2019.06.045
- Ozden, T., Karaveli, A., & Akinoglu, B. (2020). Fotovoltaik sistemlerde performans hesaplama modellerinin Ankara (Orta Anadolu) için karşılaştırılması. European Journal of Science and Technology, 18, 54–60. https://doi.org/10.31590/ejosat.653272
- Ozden, T., Tolgay, D., & Akinoglu, B. G. (2018). Daily and monthly module temperature variation for 9 different modules. PVCon 2018 - International Conference on Photovoltaic Science and Technologies. https://doi.org/10.1109/PVCon.2018.8523878
- Ozden, T., Tolgay, D., Yakut, M. S., & Akinoglu, B. G. (2020). An extended analysis of the models to esti̇mate photovoltaic module temperature. Turkish Journal of Engineering, 4(4), 183–196. https://doi.org/10.31127/tuje.639378
- Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633–1644. https://doi.org/10.5194/hess-11-1633-2007
- PVsyst. (2019). PVsyst PV Software. https://www.pvsyst.com
- Radziemska, E. (2003). The effect of temperature on the power drop in crystalline silicon solar cells. Renewable Energy, 28, 1–12. https://doi.org/10.1016/S0960-1481(02)00015-0
- Rahman, M. M., Hasanuzzaman, M., & Rahim, N. A. (2015). Effects of various parameters on PV-module power and efficiency. Energy Conversion and Management, 103, 348–358. https://doi.org/10.1016/j.enconman.2015.06.067
- Ross, R. G., & Smokler, M. I. (1986). Electricity from photovoltaic solar cells: Flat-Plate Solar Array Project final report.https://www2.jpl.nasa.gov/adv_tech/photovol/ppr_86-90/FSA%20Final%20Rpt%20VII%20-%20Encapsulation.pdf
- Rubel, F., Brugger, K., Haslinger, K., & Auer, I. (2017). The climate of the European Alps: Shift of very high resolution Köppen-Geiger climate zones 1800-2100. Meteorologische Zeitschrift, 26(2), 115–125. https://doi.org/10.1127/metz/2016/0816
- Sandnes, B., & Rekstad, J. (2002). A photovoltaic/thermal (PV/T) collector with a polymer absorber plate. Experimental study and analytical model. Solar Energy, 72(1), 63–73. https://doi.org/10.1016/S0038-092X(01)00091-3
- Shen, L., Li, Z., & Ma, T. (2020). Analysis of the power loss and quantification of the energy distribution in PV module. Applied Energy, 260(November 2019), 114333. https://doi.org/10.1016/j.apenergy.2019.114333
- Skoplaki, E., Boudouvis, A. G., & Palyvos, J. A. (2008). A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting. Solar Energy Materials and Solar Cells, 92(11), 1393–1402. https://doi.org/10.1016/j.solmat.2008.05.016
- Tuncel, B., Ozden, T., Balog, R. S., & Akinoglu, B. G. (2020). Dynamic thermal modelling of PV performance and effect of heat capacity on the module temperature. Case Studies in Thermal Engineering, 22(August), 100754. https://doi.org/10.1016/j.csite.2020.100754
- Twidell, J., & Weir, T. (2015). Renewable Energy Resources (3rd Edition, Ed.). Taylor Francis. https://doi.org/10.4324/9781315766416
- Valentin software. (2019). PV*SOL. https://valentin-software.com/en/products/pvsol-premium/
- Ye, J., Reindl, T., & Luther, J. (2012). Seasonal variation of PV module performance in tropical regions. Conference Record of the IEEE Photovoltaic Specialists Conference, 2406–2410. https://doi.org/10.1109/PVSC.2012.6318082
- Ye, Z., Nobre, A., Reindl, T., Luther, J., & Reise, C. (2013). On PV module temperatures in tropical regions. Solar Energy, 88, 80–87. https://doi.org/10.1016/j.solener.2012.11.001
Assessment of photovoltaic module temperature estimation for four years with four different software
Year 2023,
, 32 - 46, 15.01.2023
Doğa Tolgay
,
M. Samet Yakut
,
Talat Özden
,
Bülent Akınoğlu
Abstract
The software used today, on the estimation of module temperature of photovoltaic systems, seem very important to be analyzed. These estimates are crucial in future techno-economic and environmentally friendly analyses of the systems to reach better achievements for future generations. This is very important to reach lifetime analyses of long-term feasibility to find out payback time and the levelized cost of energy. The present work is based on this issue, to test the module temperature estimation formulas used by four commonly used software models, and to determine the most suitable software for temperature analyses of five different photovoltaic modules in Middle Anatolia. Outdoor truthful long-term testing is the main realistic approach to reach fundamental contemplations. After an introductory basic knowledge, the main materials and methods are discussed to enlighten the analysis. The main methodology is given and further prospects are enlightened. Four well-known software are analyzed using four years of outdoor testing of five different photovoltaic modules. Measured ambient temperature and solar irradiance are used in the categorization of the software estimation performances. PV*SOL appears to be superior at low irradiance and ambient temperature, whereas Helioscope appears to be superior overall.
Project Number
BAP-08.11.2015K121200
References
- Akinoglu, B. G. (1991). A review of sunshine-based models used to estimate monthly average global solar radiation. Renewable Energy, 1(3–4), 479–497. https://doi.org/10.1016/0960-1481(91)90061-S
- Aly, S. P., Ahzi, S., & Barth, N. (2019). Effect of physical and environmental factors on the performance of a photovoltaic panel. Solar Energy Materials and Solar Cells, 200(September 2018), 109948. https://doi.org/10.1016/j.solmat.2019.109948
- Atse, L., Waal, A. C. de, Schropp, R. E. I., Faaij, A. P. C., & Sark, W. G. J. H. M. van. (2017). Comprehensive characterisation and analysis of PV module performance under real operating conditions. Progress In Photovoltaics: Research and Applications, 25(2), 218–232. https://doi.org/10.1002/pip.2848
- Bañuelos-Ruedas, F., Angeles-Camacho, C., & Rios-Marcuello, S. (2010). Analysis and validation of the methodology used in the extrapolation of wind speed data at different heights. Renewable and Sustainable Energy Reviews, 14(8), 2383–2391. https://doi.org/10.1016/j.rser.2010.05.001
- Dubey, S., Sarvaiya, J. N., & Seshadri, B. (2013). Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world a review. Energy Procedia, 33, 311–321. https://doi.org/10.1016/j.egypro.2013.05.072
- Duffie, J. A., Beckman, W. A., & McGowan, J. (1985). Solar engineering of thermal processes. https://doi.org/10.1119/1.14178
- Eckstein, J. H. (1990). Detailed modelling of photovoltaic system components. University of Wisconsin-Madison.
- Faiman, D. (2008). Assessing the outdoor operating temperature of photovoltaic modules. https://doi.org/10.1002/pip.813
- Folsom Labs. (2019). HelioScope software. https://www.helioscope.com/
- HOMER software. (2019). https://www.homerenergy.com/
- International renewable energy agency. (2020). Renewable Capacity Statistics 2020. https://irena.org/publications/2020/Mar/Renewable-Capacity-Statistics-2020
- Jaszczur, M., Teneta, J., Hassan, Q., Majewska, E., & Hanus, R. (2019). An experimental and numerical investigation of photovoltaic module temperature under varying environmental conditions. Heat Transfer Engineering, 42(3–4), 354–367. https://doi.org/10.1080/01457632.2019.1699306
- Jha, A., & Tripathy, P. P. (2019). Heat transfer modeling and performance evaluation of photovoltaic system in different seasonal and climatic conditions. Renewable Energy, 135, 856–865. https://doi.org/10.1016/j.renene.2018.12.032
- Karaveli, A. B., Ozden, T., & Akinoglu, B. G. (2018). Determining photovoltaic module performance and comparisons. PVCon 2018 - International Conference on Photovoltaic Science and Technologies, 18–22. https://doi.org/10.1109/PVCon.2018.8523868
- King, D. L., Boyson, W. E., & Kratochvil, J. A. (2004). Photovoltaic array performance model. In Sandia Report No. 2004-3535 (Vol. 8, Issue November). https://doi.org/10.2172/919131
- Koehl, M., Heck, M., Wiesmeier, S., & Wirth, J. (2011). Modeling of the nominal operating cell temperature based on outdoor weathering. Solar Energy Materials and Solar Cells, 95(7), 1638–1646. https://doi.org/10.1016/j.solmat.2011.01.020
- Nikolaeva-Dimitrova, M., Kenny, R. P., Dunlop, E. D., & Pravettoni, M. (2010). Seasonal variations on energy yield of a-Si, hybrid, and crystalline Si PV modules. Progress in Photovoltaics: Research and Applications, 18(5), 311–320. https://doi.org/10.1002/pip.918
- Ozden, T., Akinoglu, B. G., & Kurtz, S. (2018). Performance and degradation analyses of two different pv modules in central anatolia. PVCon 2018 - International Conference on Photovoltaic Science and Technologies, 18–21. https://doi.org/10.1109/PVCon.2018.8523880
- Ozden, T., Carr, A. J., Geerligs, B. (L J. )., Turan, R., & Akinoglu, B. G. (2020). One-year performance evaluation of two newly developed back-contact solar modules in two different climates. Renewable Energy, 145, 557–568. https://doi.org/10.1016/j.renene.2019.06.045
- Ozden, T., Karaveli, A., & Akinoglu, B. (2020). Fotovoltaik sistemlerde performans hesaplama modellerinin Ankara (Orta Anadolu) için karşılaştırılması. European Journal of Science and Technology, 18, 54–60. https://doi.org/10.31590/ejosat.653272
- Ozden, T., Tolgay, D., & Akinoglu, B. G. (2018). Daily and monthly module temperature variation for 9 different modules. PVCon 2018 - International Conference on Photovoltaic Science and Technologies. https://doi.org/10.1109/PVCon.2018.8523878
- Ozden, T., Tolgay, D., Yakut, M. S., & Akinoglu, B. G. (2020). An extended analysis of the models to esti̇mate photovoltaic module temperature. Turkish Journal of Engineering, 4(4), 183–196. https://doi.org/10.31127/tuje.639378
- Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633–1644. https://doi.org/10.5194/hess-11-1633-2007
- PVsyst. (2019). PVsyst PV Software. https://www.pvsyst.com
- Radziemska, E. (2003). The effect of temperature on the power drop in crystalline silicon solar cells. Renewable Energy, 28, 1–12. https://doi.org/10.1016/S0960-1481(02)00015-0
- Rahman, M. M., Hasanuzzaman, M., & Rahim, N. A. (2015). Effects of various parameters on PV-module power and efficiency. Energy Conversion and Management, 103, 348–358. https://doi.org/10.1016/j.enconman.2015.06.067
- Ross, R. G., & Smokler, M. I. (1986). Electricity from photovoltaic solar cells: Flat-Plate Solar Array Project final report.https://www2.jpl.nasa.gov/adv_tech/photovol/ppr_86-90/FSA%20Final%20Rpt%20VII%20-%20Encapsulation.pdf
- Rubel, F., Brugger, K., Haslinger, K., & Auer, I. (2017). The climate of the European Alps: Shift of very high resolution Köppen-Geiger climate zones 1800-2100. Meteorologische Zeitschrift, 26(2), 115–125. https://doi.org/10.1127/metz/2016/0816
- Sandnes, B., & Rekstad, J. (2002). A photovoltaic/thermal (PV/T) collector with a polymer absorber plate. Experimental study and analytical model. Solar Energy, 72(1), 63–73. https://doi.org/10.1016/S0038-092X(01)00091-3
- Shen, L., Li, Z., & Ma, T. (2020). Analysis of the power loss and quantification of the energy distribution in PV module. Applied Energy, 260(November 2019), 114333. https://doi.org/10.1016/j.apenergy.2019.114333
- Skoplaki, E., Boudouvis, A. G., & Palyvos, J. A. (2008). A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting. Solar Energy Materials and Solar Cells, 92(11), 1393–1402. https://doi.org/10.1016/j.solmat.2008.05.016
- Tuncel, B., Ozden, T., Balog, R. S., & Akinoglu, B. G. (2020). Dynamic thermal modelling of PV performance and effect of heat capacity on the module temperature. Case Studies in Thermal Engineering, 22(August), 100754. https://doi.org/10.1016/j.csite.2020.100754
- Twidell, J., & Weir, T. (2015). Renewable Energy Resources (3rd Edition, Ed.). Taylor Francis. https://doi.org/10.4324/9781315766416
- Valentin software. (2019). PV*SOL. https://valentin-software.com/en/products/pvsol-premium/
- Ye, J., Reindl, T., & Luther, J. (2012). Seasonal variation of PV module performance in tropical regions. Conference Record of the IEEE Photovoltaic Specialists Conference, 2406–2410. https://doi.org/10.1109/PVSC.2012.6318082
- Ye, Z., Nobre, A., Reindl, T., Luther, J., & Reise, C. (2013). On PV module temperatures in tropical regions. Solar Energy, 88, 80–87. https://doi.org/10.1016/j.solener.2012.11.001