Research Article
BibTex RIS Cite

Olivin esaslı refrakter tuğlanın karakterizasyonu

Year 2023, , 790 - 809, 15.10.2023
https://doi.org/10.17714/gumusfenbil.1178169

Abstract

Bu çalışmada öğütülmüş olivin kumu ve kil kullanılarak yarı yaş presleme yöntemiyle refrakter tuğla üretilmiştir. Üretilen tuğlalar farklı sıcaklıklarda sinterlenmiştir ve sinterleme için en uygun sıcaklığın 1350 0C olduğu tespit edilmiştir. Mekanik dayanımları da test edilen tuğlaların su emme değerlerine bakılmıştır. Farklı mekanik ve fiziksel özelliklere sahip tuğlalardan en iyi özellikleri sergileyen malzeme üzerinde içyapı incelemeleri yapılmıştır. Ege Bölgesi’ne ait hammadde kullanılarak üretilen ve yüksek sıcaklıklarda da kullanılabilecek bir malzeme olarak çeşitli alanlarda uygulanabilmesi için tuğlada yapılacak modifikasyonlara yol göstermesi amacıyla böyle bir temel çalışma yapılmıştır. Elde edilen malzemeye en yakın ticari ürün forsterit tuğlalardır. Forsterit tuğlanın 2,55-2,70 g/cm3 aralığındaki bulk yoğunluk, %18-24 aralığındaki açık porozite ve 50 MPa mekanik dayanım değerlerine benzer özellikler gösteren malzeme elde edilmiştir.

References

  • Acar, İ. (2020). Sintering properties of olivine and its utilization potential as a refractory raw material: mineralogical and microstructural investigations. Ceramics International, 46, 28025-28034. https://doi.org/10.1016/j.ceramint.2020.07.297
  • American Society for Testing and Materials. (2015). Apparent porosity, water absorption, apparent specific gravity, and bulk density of burned refractory brick (ASTM C20-00). West Conshohocken, Pennsylvania: American Society for Testing and Materials.
  • American Society for Testing and Materials. (2018). Flexural strength of advanced ceramics at ambient temperatures (ASTM C1161-18). West Conshohocken, Pennsylvania: American Society for Testing and Materials.
  • Ateş Tuğla Refrakter Tuğla ve Harçlar (t.y.). Refrakter ve tuğla bloklar. http://www.atestugla.com.tr
  • British Standards Institution. (2018). Determination of water absorption, apparent porosity, apparent relative density and bulk density in ceramic tiles (BS EN ISO 10545-3). London: British Standards Institution.
  • British Standards Institution. (2019). Determination of modulus of rupture and breaking strength in ceramic tiles (BS EN ISO 10545-4). London: British Standards Institution.
  • Brosnan, D.A. (2004). Corrosion of refractories. C.A., Schacht, (Ed.), Refractories Handbook (ss 39-79). Schacht Consulting Services.
  • Dakduklu Minerals (t.y.). Tundish support sand. http://www.dakdukluminerals.com/
  • Davis E.G., (1977). Beneficiation of olivine foundry sand by differential attrition grinding. U.S. Patent No. 4,039,625.
  • Devlet Planlama Teşkilatı. (2001). Sekizinci Beş Yıllık Kalkınma Planı Taş ve Toprağa Dayalı Ürünler Sanayii ÖİK Raporu (No:567). Türkiye Cumhuriyeti Başbakanlık. http://ekutup.dpt.gov.tr/imalatsa/tastopra/oik567.pdf
  • Devlet Planlama Teşkilatı. (2007). Dokuzuncu Beş Yıllık Kalkınma Planı Madencilik ÖİK Raporu (No:690). Türkiye Cumhuriyeti Başbakanlık. https://www.sbb.gov.tr/wp-content/uploads/2018/11/09_Madencilik_Madencilik.pdf
  • DKJL Company Limited (t.y.). Forsterite bricks. http://www.dkjl-refractories.com/eng/cp_more.asp?id=250
  • Dudolp Mining (t.y.). Olivine in iron and steel industry. https://www.dudolpmine.com/olivine-mine-the-use-of-iron-and-steel-industry/
  • Erkan, Y. (2011), Kayaç oluşturan önemli minerallerin mikroskopta incelenmeleri (5. Baskı). TMMOB Jeoloji Odası Yayınları.
  • Erkrom Madencilik (t.y.). Olivin. http://erkrommaden.com.tr/olivin.html
  • Falini, G., Foresti, E., Gazzano, M., Gualtieri, A.F., Leoni, M., Lesci, I.G., & Roveri, N. (2004). Tubular-shaped stoichiometric chrysotile nanocrystals. Chemistry-European Journal, 10, 3043-3049. https://doi.org/10.1002/chem.200305685
  • Gasparik, T. (2014). Phase diagrams for geoscientists: An atlas of the Earth’s interior (2nd ed.). Springer Science & Business Media.
  • Görhan, G., & Çelik, S. (2013). Pişirme hızının ve plastiklik suyunun tuğla özelliklerine etkisi. Selçuk Teknik Dergisi, 12(1), 1-11.
  • Güney, Ö. (2008). Demir oksit (FeO) ilavesinin forsterit sentezine etkisi [Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü].
  • Kanzaki, M., & Xue, X. (2017). Protoenstatite in MgSiO3 samples prepared by conventional solid statereaction. Journal of Petrological and Mineralogical Sciences, 112, 359-364. https://doi.org/10.2465/jmps.170616
  • Kılınçarslan, S., Pehlivanoğlu, H.E., Pehlivanoğlu, F., Seven, A., & Molla, T. (2010, June 8-9). High temperature fire resistance for concrete using sustainable building. Proceedings of the International Symposium on Sustainable Design (ISSD 2010), Sarajevo, Bosnia and Herzegovina.
  • Kiln Refractory (t.y.). Refractory bricks. https://www.kiln-refractory.com/refractory_brick
  • Liang, J., & Hawthorne, F. C. (1994). Characterization of fine-grained mixtures of rock-forming minerals by Rietveld structure refinement. The Canadian Mineralogist, 32, 541-552.
  • Maden Tetkik ve Arama Genel Müdürlüğü (t.y.). Olivin. http://www.mta.gov.tr/v3.0/bilgi-merkezi/olivin
  • Merli M., Oberti R., Caucia F., & Ungaretti L. (2001). Determination of site population in olivine: warnings on X-ray data treatment and refinement. American Mneralogist, 86, 55-65. https://doi.org/10.2138/am-2001-0107
  • Miller Jr.E.D., (1961). Basic refractory insulating shapes. U.S. Patent No. 3,008,842.A.
  • Nakatsuka, A., Ueno, H., Nakayama, N., Mizota, T., & Maekawa, H. (2004). Single-crystal X-ray diffraction study of cation distribution in MgAl2O4-MgFe2O4 spinel solid solution. Physics and Chemistry of Minerals, 31, 278-287. https://doi.org/10.1007/s00269-004-0385-z
  • ORE-MET (t.y.). Olivine sands, refractory mixes. http://www.oremet.net/content/mining
  • Örgün, Y., & Erarslan, C. (2012). 21. yüzyılda olivin ve Türkiye’nin olivin potansiyeli. Madencilik ve Türkiye Dergisi, 23, 62-74.
  • Ramezani, A., Emami, S.M., & Nemat, S. (2018). Effect of waste serpentine on the properties of basic insulating refractories. Ceramics International, 44, 9269-9275. https://doi.org/10.1016/j.ceramint.2018.02.138
  • Rani, A. B., Annamalai, A.R., Majhi, M.R., & Kumar, A. H. (2014). Synthesis and characterization of forsterite refractory by doping with kaolin. International Journal of ChemTech Research, 6(2), 1390-1397.
  • Rewell Refractory Company (t.y.). Zircon bricks. https://www.erefractory.com/zircon-bricks
  • Rong Sheng Refractory Materials (t.y.). Dolomite bricks. http://refractorymaterials.net
  • Sazcı, H. (2001). Seramikte kullanılan killerin tanımı. V. Arslan, H. Köse, & M. Tanrıverdi (Eds.), IV. Endüstriyel Hammaddeler Sempozyumu (ss. 28-41). İzmir: Uşşak Matbaacılık.
  • Simonov, M.A., Vasilev, D.G., Belokoneva, E.L., & Khisina, N.R. (1984). Intracrystalline distribution of Fe and Mg in the structures of 3 natural olivines. Doklady Akademii Nauk Soyuz Sovetskikh Sotsialisticheskikh Respublik, 276, 873-877.
  • Smith, J.V. (1959). The crystal structure of proto-enstatite. Acta Crystallographica, 12, 515-519.
  • Surendranathan, A.O. (2015). An introduction to ceramics and refractories (1st ed.). CRC Press Taylor&Francis Group. Tsigler, V.D., & Ye Pindrik, B. (1961). Technology of light weight brick. Refractories and Industrial Ceramics, 2, 163–168.
  • Wang, R., Zhang, J., Liu, Z., Liu, X., Xu, C., & Li, Y. (2020). Interaction between iron ore and magnesium additives during induration process of pellets. Powder Technology, 361, 894-902. https://doi.org/10.1016/j.powtec.2019.11.006

Characterization of olivine based refractory brick

Year 2023, , 790 - 809, 15.10.2023
https://doi.org/10.17714/gumusfenbil.1178169

Abstract

In this study, refractory bricks were produced with semi dry pressing method using grinded olivine sand and clay. The produced bricks were sintered at different temperatures and the optimum sintering temperature was determined as 1350 0C. The water absorption values of the bricks were also tested. Microstructure examinations were carried out on the materials which exhibited the best mechanical and physical properties. Such a basic study has been carried out in order to guide the modifications that to be made in brick composition for applying in various areas as a material which can be used at high temperatures produced using raw materials that belong to Aegean Region. Material, which has lower density value than forsterite bricks and provides their mechanical strength, has been produced. Forsterite bricks are the closest commercial product to obtained olivine brick. A material showing similar properties to forsterite brick with bulk density between 2.55-2.70 g/cm3, apparent porosity between 18-24% and mechanical strength of 50 MPa was obtained.

References

  • Acar, İ. (2020). Sintering properties of olivine and its utilization potential as a refractory raw material: mineralogical and microstructural investigations. Ceramics International, 46, 28025-28034. https://doi.org/10.1016/j.ceramint.2020.07.297
  • American Society for Testing and Materials. (2015). Apparent porosity, water absorption, apparent specific gravity, and bulk density of burned refractory brick (ASTM C20-00). West Conshohocken, Pennsylvania: American Society for Testing and Materials.
  • American Society for Testing and Materials. (2018). Flexural strength of advanced ceramics at ambient temperatures (ASTM C1161-18). West Conshohocken, Pennsylvania: American Society for Testing and Materials.
  • Ateş Tuğla Refrakter Tuğla ve Harçlar (t.y.). Refrakter ve tuğla bloklar. http://www.atestugla.com.tr
  • British Standards Institution. (2018). Determination of water absorption, apparent porosity, apparent relative density and bulk density in ceramic tiles (BS EN ISO 10545-3). London: British Standards Institution.
  • British Standards Institution. (2019). Determination of modulus of rupture and breaking strength in ceramic tiles (BS EN ISO 10545-4). London: British Standards Institution.
  • Brosnan, D.A. (2004). Corrosion of refractories. C.A., Schacht, (Ed.), Refractories Handbook (ss 39-79). Schacht Consulting Services.
  • Dakduklu Minerals (t.y.). Tundish support sand. http://www.dakdukluminerals.com/
  • Davis E.G., (1977). Beneficiation of olivine foundry sand by differential attrition grinding. U.S. Patent No. 4,039,625.
  • Devlet Planlama Teşkilatı. (2001). Sekizinci Beş Yıllık Kalkınma Planı Taş ve Toprağa Dayalı Ürünler Sanayii ÖİK Raporu (No:567). Türkiye Cumhuriyeti Başbakanlık. http://ekutup.dpt.gov.tr/imalatsa/tastopra/oik567.pdf
  • Devlet Planlama Teşkilatı. (2007). Dokuzuncu Beş Yıllık Kalkınma Planı Madencilik ÖİK Raporu (No:690). Türkiye Cumhuriyeti Başbakanlık. https://www.sbb.gov.tr/wp-content/uploads/2018/11/09_Madencilik_Madencilik.pdf
  • DKJL Company Limited (t.y.). Forsterite bricks. http://www.dkjl-refractories.com/eng/cp_more.asp?id=250
  • Dudolp Mining (t.y.). Olivine in iron and steel industry. https://www.dudolpmine.com/olivine-mine-the-use-of-iron-and-steel-industry/
  • Erkan, Y. (2011), Kayaç oluşturan önemli minerallerin mikroskopta incelenmeleri (5. Baskı). TMMOB Jeoloji Odası Yayınları.
  • Erkrom Madencilik (t.y.). Olivin. http://erkrommaden.com.tr/olivin.html
  • Falini, G., Foresti, E., Gazzano, M., Gualtieri, A.F., Leoni, M., Lesci, I.G., & Roveri, N. (2004). Tubular-shaped stoichiometric chrysotile nanocrystals. Chemistry-European Journal, 10, 3043-3049. https://doi.org/10.1002/chem.200305685
  • Gasparik, T. (2014). Phase diagrams for geoscientists: An atlas of the Earth’s interior (2nd ed.). Springer Science & Business Media.
  • Görhan, G., & Çelik, S. (2013). Pişirme hızının ve plastiklik suyunun tuğla özelliklerine etkisi. Selçuk Teknik Dergisi, 12(1), 1-11.
  • Güney, Ö. (2008). Demir oksit (FeO) ilavesinin forsterit sentezine etkisi [Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü].
  • Kanzaki, M., & Xue, X. (2017). Protoenstatite in MgSiO3 samples prepared by conventional solid statereaction. Journal of Petrological and Mineralogical Sciences, 112, 359-364. https://doi.org/10.2465/jmps.170616
  • Kılınçarslan, S., Pehlivanoğlu, H.E., Pehlivanoğlu, F., Seven, A., & Molla, T. (2010, June 8-9). High temperature fire resistance for concrete using sustainable building. Proceedings of the International Symposium on Sustainable Design (ISSD 2010), Sarajevo, Bosnia and Herzegovina.
  • Kiln Refractory (t.y.). Refractory bricks. https://www.kiln-refractory.com/refractory_brick
  • Liang, J., & Hawthorne, F. C. (1994). Characterization of fine-grained mixtures of rock-forming minerals by Rietveld structure refinement. The Canadian Mineralogist, 32, 541-552.
  • Maden Tetkik ve Arama Genel Müdürlüğü (t.y.). Olivin. http://www.mta.gov.tr/v3.0/bilgi-merkezi/olivin
  • Merli M., Oberti R., Caucia F., & Ungaretti L. (2001). Determination of site population in olivine: warnings on X-ray data treatment and refinement. American Mneralogist, 86, 55-65. https://doi.org/10.2138/am-2001-0107
  • Miller Jr.E.D., (1961). Basic refractory insulating shapes. U.S. Patent No. 3,008,842.A.
  • Nakatsuka, A., Ueno, H., Nakayama, N., Mizota, T., & Maekawa, H. (2004). Single-crystal X-ray diffraction study of cation distribution in MgAl2O4-MgFe2O4 spinel solid solution. Physics and Chemistry of Minerals, 31, 278-287. https://doi.org/10.1007/s00269-004-0385-z
  • ORE-MET (t.y.). Olivine sands, refractory mixes. http://www.oremet.net/content/mining
  • Örgün, Y., & Erarslan, C. (2012). 21. yüzyılda olivin ve Türkiye’nin olivin potansiyeli. Madencilik ve Türkiye Dergisi, 23, 62-74.
  • Ramezani, A., Emami, S.M., & Nemat, S. (2018). Effect of waste serpentine on the properties of basic insulating refractories. Ceramics International, 44, 9269-9275. https://doi.org/10.1016/j.ceramint.2018.02.138
  • Rani, A. B., Annamalai, A.R., Majhi, M.R., & Kumar, A. H. (2014). Synthesis and characterization of forsterite refractory by doping with kaolin. International Journal of ChemTech Research, 6(2), 1390-1397.
  • Rewell Refractory Company (t.y.). Zircon bricks. https://www.erefractory.com/zircon-bricks
  • Rong Sheng Refractory Materials (t.y.). Dolomite bricks. http://refractorymaterials.net
  • Sazcı, H. (2001). Seramikte kullanılan killerin tanımı. V. Arslan, H. Köse, & M. Tanrıverdi (Eds.), IV. Endüstriyel Hammaddeler Sempozyumu (ss. 28-41). İzmir: Uşşak Matbaacılık.
  • Simonov, M.A., Vasilev, D.G., Belokoneva, E.L., & Khisina, N.R. (1984). Intracrystalline distribution of Fe and Mg in the structures of 3 natural olivines. Doklady Akademii Nauk Soyuz Sovetskikh Sotsialisticheskikh Respublik, 276, 873-877.
  • Smith, J.V. (1959). The crystal structure of proto-enstatite. Acta Crystallographica, 12, 515-519.
  • Surendranathan, A.O. (2015). An introduction to ceramics and refractories (1st ed.). CRC Press Taylor&Francis Group. Tsigler, V.D., & Ye Pindrik, B. (1961). Technology of light weight brick. Refractories and Industrial Ceramics, 2, 163–168.
  • Wang, R., Zhang, J., Liu, Z., Liu, X., Xu, C., & Li, Y. (2020). Interaction between iron ore and magnesium additives during induration process of pellets. Powder Technology, 361, 894-902. https://doi.org/10.1016/j.powtec.2019.11.006
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Konuralp Sivri 0000-0002-5966-0092

Kemal Köseoğlu 0000-0003-1116-9103

Publication Date October 15, 2023
Submission Date September 21, 2022
Acceptance Date July 25, 2023
Published in Issue Year 2023

Cite

APA Sivri, K., & Köseoğlu, K. (2023). Olivin esaslı refrakter tuğlanın karakterizasyonu. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 13(4), 790-809. https://doi.org/10.17714/gumusfenbil.1178169