Research Article
BibTex RIS Cite

New Mixed Ni(II), Cu(II), and Co(II) Complexes derived from 2-((2-mercaptophenylimino)methyl)-4-methoxyphenol and 1,10-Phenanthroline: Synthesis and Characterization

Year 2023, , 350 - 358, 15.04.2023
https://doi.org/10.17714/gumusfenbil.1179269

Abstract

Three new mixed Ni(II), Co(II) and Cu(II) complexes have been created using 2-((2-mercaptophenylimino)methyl)-4-methoxyphenol and 1,10-phenanthroline. FT-IR, Elemental analysis, magnetic susceptibility, UV-Vis and molar conductivity technique have all been used to explore the structural characterisation of these compounds. Magnetic susceptibility readings for the L-Cu, L-Ni, and L-Co complexes were 1.97 BM, 2.92 BM, and 2.84 BM, respectively. The L-Co complex is thought to be antiferromagnetic. The structures of the mixed ligand metal complexes are thought to be octahedral geometry. There are no conductivity properties in the complexes; however, they exhibit molar conductivities that range from 2.46 to 9.04 µS/cm.

Thanks

The authors would like to thank Mehmet Sönmez for his kind technical assistance.

References

  • Al Zoubi, W., Al-Hamdani, A .A .S., & Ko, Y.G. (2017). Schiff bases and their complexes: recent progress in thermal analysis. Separation Science and Technology, 52, 1052–1069, https://doi.org/10.1080/01496395.2016.1267756
  • Bhardwaj, V.K., Hundal, M.S., Corbella, M., Gomez, V., & Hundal, G. (2012). Salicylaldimine Schiff bases–generation of self-assembled and chiral complexes with Ni(II) and Zn (II) ions: an unusual antiferromagnetic interaction in a triplybridged Ni(II) dimer. Polyhedron, 38, 224–234. https://doi.org/10.1016/j.poly.2012.03.029
  • Chohan, Z.H., Praveen, M., & Ghaffar, A. (1997). Structural and biological behaviour of Co(II), Cu(II) and Ni(II) metal complexes of some amino acid derived Schiff-bases, Metal-Based. Drugs, 4, 803138. https://doi.org/10.1155/MBD.1997.267
  • da Silva, C.M., da Silva, D.L., Modolo, L.V., Alves, R.B., de Resende, M.A., Martins, C.V.B., & de Fátima, Â. (2011). Schiff bases: a short review of their antimicrobial activities, Journal of Advanced Research, 2, 1–8, https://doi.org/10.1016/j.jare.2010.05.004
  • Dede, B., Özen, N., & Görgülü, G. (2018). Synthesis, characterization, theoretical calculations and enzymatic activities of novel diimine-dioxime ligand and its homodinuclear Cu (II) complex, Journal of Molecular Structure, 1163, 357-367. https://doi.org/10.1016/j.molstruc.2018.03.015
  • Ekmekcioglu, P., Karabocek, N., Karabocek, S., & Emirik, M. (2015). Synthesis, structural and biochemical activity studies of a new hexadentate Schiff base ligand and its Cu(II), Ni(II), and Co(II) complexes. Journal of Molecular Structure, 1099, 189-196. https://doi.org/10.1016/j.molstruc.2015.06.051
  • Fabbrizzi, L. (2020). Beauty in chemistry: making artistic molecules with Schiff bases. The Journal of Organic Chemistry, 85, 12212–12226, https://doi.org/10.1021/acs.joc.0c01420
  • Goorchibeygi, S., Bikas, R., Soleimani, M., Siczek, M., & Lis, T. (2022). Molecular structure and catalytic activity of Fe(III) coordination compound with ONO-donor hydrazone ligand in the oxidation of cyclooctene by H2O2. Journal of Molecular Structure, 1250(1), 131774. https://doi.org/10.1016/j.molstruc.2021.131774
  • Gülcan, M., & Sönmez, M. (2011). Synthesis and characterization of Cu (II), Ni (II), Co (II), Mn (II), and Cd (II) transition metal complexes of tridentate Schiff base derived from o-vanillin and N-aminopyrimidine-2-thione. Phosphorus Sulfur and Silicon, 186, 1962-1971. https://doi.org/10.1080/10426507.2011.553501
  • Ibrahim, F.M., & Abdalhadi, S.M. (2021). Performance of Schiff bases metal complexes and their ligand in biological activity: a review. Al-Nahrain Journal of Science, 24(1), 1–10. https://doi.org/10.22401/ANJS.24.1.01
  • Jafari, M., Salehi, M., Kubicki, M., Arab, A., & Khaleghian, A. (2017). DFT studies and antioxidant activity of Schiff base metal complexes of 2-aminopyridine. Crystal structures of cobalt (II) and zinc (II) complexes. Inorganica Chimica Acta, 462, 329–335. https://doi.org/10.1016/J.ICA.2017.04.007
  • Kajal, A., Bala, S., Kamboj, S., Sharma, N., & Saini, V. (2013). Schiff bases: a versatile phar- macophore, Journal of Catalysts, 2013, 893512. https://doi.org/10.1155/2013/893512
  • Kesavan, D., Tamizh, M. M., Gopiraman, M., Sulochana, N., & Karvembu, R. (2012). Physicochemical studies of 4-substituted N-(2-Mercaptophenyl)Salicylideneimines: corrosion inhibition of mild steel in an acid medium. Journal of Surfactants and Detergents, 15(5), 567–576. https://doi.org/10.1007/s11743-012-1338-z
  • Maravalli, P.B., Dhumwad, S.D., & Goudar, T.R. (1999). Synthetic, spectral, thermal and biological studies of lanthanide (III) complexes with a Schiff base derived from 3-N-Yetaylpiperidino-4-Amino-5-Yercapto-1,2,4-Triazole. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 29, 525-540. https://doi.org/10.1080/00945719909349467
  • Min, K. S., DiPasquale, A. G., Golen, J. A., Rheingold, A. L., & Miller, J. S. (2007). Synthesis, structure, and magnetic properties of valence ambiguous dinuclear antiferromagnetically coupled cobalt and ferromagnetically coupled iron complexes containing the chloranilate(2−) and the significantly stronger coupling chloranilate(•3−) radical trianion. Journal of the American Chemical Society, 129(8), 2360–2368. https://doi.org/10.1021/ja067208q
  • Miri, R., Razzaghi-asl, N., & Mohammadi, M.K. (2013). QM study and conformational analysis of an isatin Schiff base as a potential cytotoxic agent. Journal of Molecular Modeling, 19, 727–735, https://doi.org/10.10 07/s0 0894- 012- 1586- x
  • Muthu Tamizh, M., Mereiter, K., Kirchner, K., & Karvembu, R. (2012). Ruthenium(II) carbonyl complexes containing ‘pincer like’ ONS donor Schiff base and triphenylphosphine as catalyst for selective oxidation of alcohols at room temperature. Journal of Organometallic Chemistry, 700, 194-201, https://doi.org/10.1016/j.jorganchem.2011.12.016.
  • Sahraei, A., Kargar, H., Hakimi, M., & Tahir, M.N. (2017a). Distorted square-antiprism geometry of new zirconium (IV) Schiff base complexes: synthesis, spectral characterization, crystal structure and investigation of biological properties. Journal of Molecular Structure, 1149, 576–584. https://doi.org/10.1016/J.MOLSTRUC.2017.08.022
  • Sahraei, A., Kargar, H., Hakimi, M., & Tahir, M.N. (2017b). Synthesis, characterization, crystal structures and biological activities of eight-coordinate zirconium (IV) Schiff base complexes. Transition Metal Chemistry, 42(6), 483–489. https://doi.org/10.1007/s11243-017-0152-x
  • Salib, K.A.R., Saleh, A.A., Abu El-Wafa, S., & El-Shafiy, H.F.O. (2003). Preparation and characterization of novel asymmetrical Schiff-base ligands derived from 2-methyl-7-formyl-8-hydroxyquinoline and their metal complexes. Journal of Coordination Chemistry, 56(4), 283-298. https://doi.org/10.1080/0095897031000069021
  • Schiff, H. (1864). Mittheilungen aus dem universitäts laboratorium in Pisa: eineneue Reiheorganischer basen, Justus Liebigs Annalen der Chemie, 131, 118–119. https://doi.org/10.1002/jlac.18641310113
  • Sogukomerogullari, H.G., Sönmez, M. & Ceyhan, G. (2019). ONO tip Schiff baz komplekslerinin sentezi, karakterizasyonu, katalitik özellikleri ve termal çalışmaları. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(3), 701-708. https://doi.org/10.19113/sdufenbed.517882
  • Sogukomerogullari, H.G., & Başaran, E. (2022). Synthesis and characterization of new hydrazone derivatives Fe(II), Co(II), Ni(II) and Cu(II) complexes. Süleyman Demirel University Journal of Natural and Applied Sciences, 26(2), 216-222. https://doi.org/10.19113/sdufenbed.1031209
  • Sondhi, S.M., Singh, N., Kumar, A., Lozach, O., & Meijer, L. (2006). Synthesis, anti- inflammatory, analgesic and kinase (CDK-1, CDK-5 and GSK-3) inhibition activity evaluation of benzimidazole/benzoxazole derivatives and some Schiff’s bases. Bioorganic & Medicinal Chemistry, 14(11), 3758–3765. https:// doi.org/10.1016/j.bmc.2006.01.054.
  • Sönmez, M., Sogukomerogullari, H.G., Öztemel, F., & Berber, İ. (2014). Synthesis and biological evaluation of a novel ONS tridentate Schiff base bearing pyrimidine ring and some metal complexes. Medicinal Chemistry Research, 23, 3451-3457. https://doi.org/10.1007/s00044-014-0925-0
  • Sönmez, M., & Hacıyusufoğlu, M. E. (2006). Synthesis, characterization and antimicrobial studies of Cu(II), Co(II), Ni(II) and Zn(II) Schiff base complexes derived from acetylaceton with 1-amino-5-benzoyl-4phenyl-1H pyrimidine-2-one. Asian Journal of Chemistry, 18(3), 2032-2036.
  • Sönmez, M,. & Şekerci, M. (2003). Synthesis, characterization and thermal investigation of copper(II), nickel(II), cobalt(II) and zinc(II) complexes with 5-Benzoyl-1-(phenylmethylenamino)-4-phenyl-1Hpyrimidine-2-thione. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 33(9), 1689-1700. https://doi.org/10.1081/SIM-120025448
  • Sönmez, M., & Şekerci, M. (2007). The template synthesis, spectral characterization and thermal behavior of new binuclear Schiff base complexes derived from N-aminopyrimidine with 2, 3-butandion. Journal of the Serbian Chemical Society, 72(3), 259-264. https://doi.org/10.2298/JSC0703259S
  • Surendar, P., Pooventhiran, T., Al-Zaqri, N., Rajam, S., D. J. Rao., & Thomas, R. (2021). Synthesis of three quasi liquid Schiff bases between hexanal and adenine, cytosine, and l -leucine, structural interpretation, quantum mechanical studies and biological activity prediction. Journal of Molecular Liquids, 341, 117305. https://doi.org/10.1016/j.molliq.2021.117305
  • Surendar, P., Pooventhiran, T., Rajam, S., Bhattacharyya U., Bakht, A., & Thomas. R. (2021). Quasil liquid Schiff bases from trans-2-hexenal and cytosineand l-leucine with potential antieczematic and antiarthritic activities: synthesis, structure and quantum mechanical studies. Journal of Molecular Liquids, 334, 11644. https://doi.org/10.1016/j.molliq.2021.116448

2-((2-merkaptofenilimino)metil)-4-metoksifenol ve 1,10-fenantrolinden Türetilen Yeni Karışık Ni(II), Cu(II) ve Co(II) Kompleksleri: Sentez ve Karakterizasyon

Year 2023, , 350 - 358, 15.04.2023
https://doi.org/10.17714/gumusfenbil.1179269

Abstract

2-((2-merkaptofenilimino)metil)-4-metoksifenol ve 1,10-fenantrolinden üç yeni karışık Ni(II), Co(II) ve Cu(II) kompleksi sentezlenmiştir. Bu bileşiklerin yapısal karakterizasyonu, FT-IR, elementel analiz, manyetik duyarlılık, UV-Vis ve molar iletkenlik teknikleri kullanılarak araştırılmıştır. Manyetik duyarlılık ölçümleri L-Cu, L-Ni ve L-Co kompleksleri için sırasıyla 1.97 BM, 2.92 BM, ve 2.84 BM olarak kaydedilmiştir. L-Co kompleksinin antiferromanyetik özellikte olduğu düşünülmektedir. Karışık ligand metal komplekslerinin yapılarının oktahedral geometriye sahip olduğu düşünülmektedir. Komplekslerin molar iletkenlik değerleri 2.46-9.04 μS/cm arasında olduğundan dolayı iletkenlik göstermemektedir.

References

  • Al Zoubi, W., Al-Hamdani, A .A .S., & Ko, Y.G. (2017). Schiff bases and their complexes: recent progress in thermal analysis. Separation Science and Technology, 52, 1052–1069, https://doi.org/10.1080/01496395.2016.1267756
  • Bhardwaj, V.K., Hundal, M.S., Corbella, M., Gomez, V., & Hundal, G. (2012). Salicylaldimine Schiff bases–generation of self-assembled and chiral complexes with Ni(II) and Zn (II) ions: an unusual antiferromagnetic interaction in a triplybridged Ni(II) dimer. Polyhedron, 38, 224–234. https://doi.org/10.1016/j.poly.2012.03.029
  • Chohan, Z.H., Praveen, M., & Ghaffar, A. (1997). Structural and biological behaviour of Co(II), Cu(II) and Ni(II) metal complexes of some amino acid derived Schiff-bases, Metal-Based. Drugs, 4, 803138. https://doi.org/10.1155/MBD.1997.267
  • da Silva, C.M., da Silva, D.L., Modolo, L.V., Alves, R.B., de Resende, M.A., Martins, C.V.B., & de Fátima, Â. (2011). Schiff bases: a short review of their antimicrobial activities, Journal of Advanced Research, 2, 1–8, https://doi.org/10.1016/j.jare.2010.05.004
  • Dede, B., Özen, N., & Görgülü, G. (2018). Synthesis, characterization, theoretical calculations and enzymatic activities of novel diimine-dioxime ligand and its homodinuclear Cu (II) complex, Journal of Molecular Structure, 1163, 357-367. https://doi.org/10.1016/j.molstruc.2018.03.015
  • Ekmekcioglu, P., Karabocek, N., Karabocek, S., & Emirik, M. (2015). Synthesis, structural and biochemical activity studies of a new hexadentate Schiff base ligand and its Cu(II), Ni(II), and Co(II) complexes. Journal of Molecular Structure, 1099, 189-196. https://doi.org/10.1016/j.molstruc.2015.06.051
  • Fabbrizzi, L. (2020). Beauty in chemistry: making artistic molecules with Schiff bases. The Journal of Organic Chemistry, 85, 12212–12226, https://doi.org/10.1021/acs.joc.0c01420
  • Goorchibeygi, S., Bikas, R., Soleimani, M., Siczek, M., & Lis, T. (2022). Molecular structure and catalytic activity of Fe(III) coordination compound with ONO-donor hydrazone ligand in the oxidation of cyclooctene by H2O2. Journal of Molecular Structure, 1250(1), 131774. https://doi.org/10.1016/j.molstruc.2021.131774
  • Gülcan, M., & Sönmez, M. (2011). Synthesis and characterization of Cu (II), Ni (II), Co (II), Mn (II), and Cd (II) transition metal complexes of tridentate Schiff base derived from o-vanillin and N-aminopyrimidine-2-thione. Phosphorus Sulfur and Silicon, 186, 1962-1971. https://doi.org/10.1080/10426507.2011.553501
  • Ibrahim, F.M., & Abdalhadi, S.M. (2021). Performance of Schiff bases metal complexes and their ligand in biological activity: a review. Al-Nahrain Journal of Science, 24(1), 1–10. https://doi.org/10.22401/ANJS.24.1.01
  • Jafari, M., Salehi, M., Kubicki, M., Arab, A., & Khaleghian, A. (2017). DFT studies and antioxidant activity of Schiff base metal complexes of 2-aminopyridine. Crystal structures of cobalt (II) and zinc (II) complexes. Inorganica Chimica Acta, 462, 329–335. https://doi.org/10.1016/J.ICA.2017.04.007
  • Kajal, A., Bala, S., Kamboj, S., Sharma, N., & Saini, V. (2013). Schiff bases: a versatile phar- macophore, Journal of Catalysts, 2013, 893512. https://doi.org/10.1155/2013/893512
  • Kesavan, D., Tamizh, M. M., Gopiraman, M., Sulochana, N., & Karvembu, R. (2012). Physicochemical studies of 4-substituted N-(2-Mercaptophenyl)Salicylideneimines: corrosion inhibition of mild steel in an acid medium. Journal of Surfactants and Detergents, 15(5), 567–576. https://doi.org/10.1007/s11743-012-1338-z
  • Maravalli, P.B., Dhumwad, S.D., & Goudar, T.R. (1999). Synthetic, spectral, thermal and biological studies of lanthanide (III) complexes with a Schiff base derived from 3-N-Yetaylpiperidino-4-Amino-5-Yercapto-1,2,4-Triazole. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 29, 525-540. https://doi.org/10.1080/00945719909349467
  • Min, K. S., DiPasquale, A. G., Golen, J. A., Rheingold, A. L., & Miller, J. S. (2007). Synthesis, structure, and magnetic properties of valence ambiguous dinuclear antiferromagnetically coupled cobalt and ferromagnetically coupled iron complexes containing the chloranilate(2−) and the significantly stronger coupling chloranilate(•3−) radical trianion. Journal of the American Chemical Society, 129(8), 2360–2368. https://doi.org/10.1021/ja067208q
  • Miri, R., Razzaghi-asl, N., & Mohammadi, M.K. (2013). QM study and conformational analysis of an isatin Schiff base as a potential cytotoxic agent. Journal of Molecular Modeling, 19, 727–735, https://doi.org/10.10 07/s0 0894- 012- 1586- x
  • Muthu Tamizh, M., Mereiter, K., Kirchner, K., & Karvembu, R. (2012). Ruthenium(II) carbonyl complexes containing ‘pincer like’ ONS donor Schiff base and triphenylphosphine as catalyst for selective oxidation of alcohols at room temperature. Journal of Organometallic Chemistry, 700, 194-201, https://doi.org/10.1016/j.jorganchem.2011.12.016.
  • Sahraei, A., Kargar, H., Hakimi, M., & Tahir, M.N. (2017a). Distorted square-antiprism geometry of new zirconium (IV) Schiff base complexes: synthesis, spectral characterization, crystal structure and investigation of biological properties. Journal of Molecular Structure, 1149, 576–584. https://doi.org/10.1016/J.MOLSTRUC.2017.08.022
  • Sahraei, A., Kargar, H., Hakimi, M., & Tahir, M.N. (2017b). Synthesis, characterization, crystal structures and biological activities of eight-coordinate zirconium (IV) Schiff base complexes. Transition Metal Chemistry, 42(6), 483–489. https://doi.org/10.1007/s11243-017-0152-x
  • Salib, K.A.R., Saleh, A.A., Abu El-Wafa, S., & El-Shafiy, H.F.O. (2003). Preparation and characterization of novel asymmetrical Schiff-base ligands derived from 2-methyl-7-formyl-8-hydroxyquinoline and their metal complexes. Journal of Coordination Chemistry, 56(4), 283-298. https://doi.org/10.1080/0095897031000069021
  • Schiff, H. (1864). Mittheilungen aus dem universitäts laboratorium in Pisa: eineneue Reiheorganischer basen, Justus Liebigs Annalen der Chemie, 131, 118–119. https://doi.org/10.1002/jlac.18641310113
  • Sogukomerogullari, H.G., Sönmez, M. & Ceyhan, G. (2019). ONO tip Schiff baz komplekslerinin sentezi, karakterizasyonu, katalitik özellikleri ve termal çalışmaları. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(3), 701-708. https://doi.org/10.19113/sdufenbed.517882
  • Sogukomerogullari, H.G., & Başaran, E. (2022). Synthesis and characterization of new hydrazone derivatives Fe(II), Co(II), Ni(II) and Cu(II) complexes. Süleyman Demirel University Journal of Natural and Applied Sciences, 26(2), 216-222. https://doi.org/10.19113/sdufenbed.1031209
  • Sondhi, S.M., Singh, N., Kumar, A., Lozach, O., & Meijer, L. (2006). Synthesis, anti- inflammatory, analgesic and kinase (CDK-1, CDK-5 and GSK-3) inhibition activity evaluation of benzimidazole/benzoxazole derivatives and some Schiff’s bases. Bioorganic & Medicinal Chemistry, 14(11), 3758–3765. https:// doi.org/10.1016/j.bmc.2006.01.054.
  • Sönmez, M., Sogukomerogullari, H.G., Öztemel, F., & Berber, İ. (2014). Synthesis and biological evaluation of a novel ONS tridentate Schiff base bearing pyrimidine ring and some metal complexes. Medicinal Chemistry Research, 23, 3451-3457. https://doi.org/10.1007/s00044-014-0925-0
  • Sönmez, M., & Hacıyusufoğlu, M. E. (2006). Synthesis, characterization and antimicrobial studies of Cu(II), Co(II), Ni(II) and Zn(II) Schiff base complexes derived from acetylaceton with 1-amino-5-benzoyl-4phenyl-1H pyrimidine-2-one. Asian Journal of Chemistry, 18(3), 2032-2036.
  • Sönmez, M,. & Şekerci, M. (2003). Synthesis, characterization and thermal investigation of copper(II), nickel(II), cobalt(II) and zinc(II) complexes with 5-Benzoyl-1-(phenylmethylenamino)-4-phenyl-1Hpyrimidine-2-thione. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 33(9), 1689-1700. https://doi.org/10.1081/SIM-120025448
  • Sönmez, M., & Şekerci, M. (2007). The template synthesis, spectral characterization and thermal behavior of new binuclear Schiff base complexes derived from N-aminopyrimidine with 2, 3-butandion. Journal of the Serbian Chemical Society, 72(3), 259-264. https://doi.org/10.2298/JSC0703259S
  • Surendar, P., Pooventhiran, T., Al-Zaqri, N., Rajam, S., D. J. Rao., & Thomas, R. (2021). Synthesis of three quasi liquid Schiff bases between hexanal and adenine, cytosine, and l -leucine, structural interpretation, quantum mechanical studies and biological activity prediction. Journal of Molecular Liquids, 341, 117305. https://doi.org/10.1016/j.molliq.2021.117305
  • Surendar, P., Pooventhiran, T., Rajam, S., Bhattacharyya U., Bakht, A., & Thomas. R. (2021). Quasil liquid Schiff bases from trans-2-hexenal and cytosineand l-leucine with potential antieczematic and antiarthritic activities: synthesis, structure and quantum mechanical studies. Journal of Molecular Liquids, 334, 11644. https://doi.org/10.1016/j.molliq.2021.116448
There are 30 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Hatice Gamze Soğukömeroğulları 0000-0002-0575-8131

Ahmet Oral Sarıoğlu 0000-0001-7787-7968

Publication Date April 15, 2023
Submission Date September 23, 2022
Acceptance Date February 5, 2023
Published in Issue Year 2023

Cite

APA Soğukömeroğulları, H. G., & Sarıoğlu, A. O. (2023). New Mixed Ni(II), Cu(II), and Co(II) Complexes derived from 2-((2-mercaptophenylimino)methyl)-4-methoxyphenol and 1,10-Phenanthroline: Synthesis and Characterization. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 13(2), 350-358. https://doi.org/10.17714/gumusfenbil.1179269