Research Article
BibTex RIS Cite

First report of qnr and blaVIM-4-like producing clinical Alcaligenes faecalis isolated in Türkiye

Year 2023, , 57 - 65, 15.01.2023
https://doi.org/10.17714/gumusfenbil.1179361

Abstract

The study set out to look at the clinical strain of A. faecalis's antibiotic susceptibility pattern. Both biochemical and molecular approaches were used to identify A.faecalis. The VITEK compact system was used to analyze the strain's antibiotic susceptibility profile. The use of PCR was evaluated to determine the presence of resistance genes. It was also determined whether resistance determinants could be transferred. It was determined that A. feacalis showed resistance to imipenem, cefepime, ceftazidime, gentamicin, amikacin, netilmicin, tobramicin, ciprofloxacin, and levofloxacin. The blaVIM-4-like gene was present in this strain, according to the results of the PCR and DNA sequencing studies. In contrast to VIM-4, this blaVIM-4-like gene showed one amino acid change (Ala265Val).Filter-mating experiments showed that the blaVIM-4-like gene cannot be transferred from A. faecalis to E. coli. In this study, This research, demonstrated the presence of the blaVIM-4-like gene for the first time in A. faecalis from Turkey.

Supporting Institution

Gümüşhane Üniversitesi

Project Number

18.F5119.03.02

Thanks

Under the project number 18.F5119.03.02, the Gümüşhane University Scientific Research Project Fund is funding this work.

References

  • Adelowo, O.O., & Fagade, O.E. (2012). Phylogenetic characterization, antimicrobial susceptibilities, and mechanisms of resistance in bacteria isolates from a poultry waste-polluted river, southwestern Nigeria. Turkish Journal of Biology, 36:37-45. https://doi.org/10.3906/biy-1010-145
  • Adesoji, A.T., & Ogunjobi, A.A. (2016). Detection of extended spectrum beta-lactamases resistance genes among bacteria isolated from selected drinking water distribution channels in southwestern Nigeria. BioMed research international, 7149295. https://doi.org/10.1155/2016/7149295.
  • Agersø, Y., & Sandvang, D. (2005). Class I integrons and tetracycline resistance genes in alcaligenes, arthrobacter, and pseudomonas spp. isolated from pigsties and manured soil. Applied And Environmental Microbiology, 71(12),7941-7. https://doi.org/10.1128/AEM.71.12.7941-7947.2005.
  • Al Laham, N., Chavda, K.D., Cienfuegos-Gallet, A.V., Kreiswirth, B.N., & Chen, L. (2017). Genomic characterization of vim metallo-β-lactamase-producing Alcaligenes faecalis from Gaza, Palestine. Antimicrobial agents and chemotherapy, 61(11),e01499-17. https://doi.org/10.1128/AAC.01499-17.
  • Ashwath, M.L., & Katner, H.P. (2005). Pancreatic abscess secondary to Alcaligenes faecalis. The American Journal of the Medical Sciences, 329(1),54-5. https://doi.org/10.1097/00000441-200501000-00011.
  • Barlow, R.S, Fegan, N., & Gobius, K.S. (2008). A comparison of antibiotic resistance integrons in cattle from separate beef meat production systems at slaughter. Journal of Applied Microbiology, 104(3),651–58. https://doi.org/ 10.1111/j.1365-2672.2007.03572.x.
  • Bush, K. (2010). Bench-to-bedside review: The role of beta-lactamases in antibiotic-resistant Gram-negative infections. Critical Care, 14(3),224. https://doi.org/10.1186/cc8892.
  • Bush, K. (2018). Past and present perspectives on β-Lactamases. Antimicrobial Agents and Chemotherapy, 62:e01076-18. https://doi.org/10.1128/AAC.01076-18.
  • Cattoir, V., Poirel, L., Rotimi, V., Soussy, C.J., & Nordmann, P. (2007). Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates, Journal of Antimicrobial Chemotherapy, 60(2),394-7. https://doi.org/ 10.1093/jac/dkm204.
  • Celenza, G., Pellegrini, C., Caccamo, M., Segatore, B., Amicosante, G., & Perilli, M. (2006). Spread of blaCTX-M-type and blaPER-2 β-lactamase genes in clinical isolates from Bolivian hospitals, Journal of Antimicrobial Chemotherapy, 57 (5), 975-8. https://doi.org/10.1093/jac/dkl055
  • Cicek, A.C., Saral, A., Iraz, M., Ceylan, A., Duzgun, A.O., Peleg, A.Y., & Sandalli, C. (2014). OXA and GES-type β-lactamases predominate in extensively drug-resistant Acinetobacter baumannii isolates from a Turkish University Hospital. Clinical Microbiology and Infection, 20(5),410-5. https://doi.org/ 10.1111/1469-0691.12338.
  • Copur Cicek, A., Saral, A., Ozad Duzgun, A., Yasar, E., Cizmeci, Z., Balci, P.O., Sari, F., Firat, M., Altintop, Y.A., Ak, S., Caliskan, A., Yildiz, N., Sancaktar, M., Budak, E.E., Erturk, A., Ozgumus, O.B., & Sandalli, C. (2013). Nationwide study of Escherichia coli producing extended-spectrum β-lactamases TEM, SHV and CTX-M in Turkey, The Journal of Antibiotics (Tokyo), 66(11),647-50. https://doi.org/ 10.1038/ja.2013.72.
  • Cury, J., Jové, T., Touchon, M., Néron, B., & Rocha, E.P. (2016). Identification and analysis of integrons and cassette arrays in bacterial genomes, Nucleic Acids Research, 44(10),4539-50. https://doi.org/10.1093/nar/gkw319
  • Çıçek, A.Ç., Düzgün, A.Ö., Saral, A., Kayman, T., Çızmecı, Z., Balcı, P.Ö., Dal, T., Fırat, M., Tosun, İ., Alıtntop, Y.A., Çalışkan, A., Yazıcı. Y., & Sandallı, C. (2013a). Detection of class I integron in Acinetobacter baumannii isolates collected from nine hospitals in Turkey. Asian Pacific Journal of Tropical Biomedicine, 3(9),743-7. https://doi.org/10.1016/S2221-1691(13)60149-5.
  • Cicek, A. C., Saral, A., Duzgun, A. O., Cizmeci, Z., Kayman, T., Balci, P. O., Dal, T., Firat, M., Yazici, Y., Sancaktar, M., Ozgumus, O. B., & Sandalli, C. (2013b). Screening of Class 1 and Class 2 integrons in clinical isolates of Pseudomonas aeruginosa collected from seven hospitals in Turkey: A multicenter study. Open Journal of Medical Microbiology, 3, 227-233. https://doi.org/10.4236/ojmm.2013.34034
  • De Paiva, MC. (2015). Diversidade de bactérias, genes de resistência a quinolonas e abundância do gene intI1 em uma estação de tratamento de esgoto revelada por abordagens de cultivo e metagenômica (Doctorate, Universidade Federal de Minas Gerais).
  • Doi, Y., Wachino, J.I., & Arakawa, Y. (2016). Aminoglycoside Resistance: The Emergence of Acquired 16S Ribosomal RNA Methyltransferases. Infectious Disease Clinics of North America, 30(2),523-537. https://doi.org/10.1016/j.idc.2016.02.011.
  • Dubois, V., Arpin, C., Coulange, L., Andre,´ C., Noury, P., & Quentin, C. (2006). TEM-21 extended-spectrum β-lactamase in a clinical isolate of Alcaligenes faecalis from a nursing home. Journal of Antimicrobial Chemotherapy, 57(2),368-9. https://doi.org/10.1093/jac/dki450.
  • Ellington, M.J., Kistler, J., Livermore, D.M., & Woodford, N. (2007). Multiplex PCR for rapid detection of genes encoding acquired metallo β-lactamases, Journal of Antimicrobial Chemotherapy, 59(2),321-2. https://doi.org/10.1093/jac/dkl481.
  • EUCAST, (2017). The European Committee on Antimicrobial Susceptibility Testing, Breakpoint tables for interpretation of MICs and zone diameters. Version 8.0, http://www.eucast.org. Filipe, M., Reimer, Å., Matuschek, E., Paul, M., Pelkonen, T., & Riesbeck, K. (2017). Fluoroquinolone-Resistant Alcaligenes faecalis related to chronic suppurative otitis media, Angola. Emerging Infectious Diseases, 23(10):1740-1742. https://doi.org/10.3201/eid2310.170268.
  • Hasan, M.J., Nizhu, L.N., & Rabbani, R. (2019). Bloodstream infection with pandrug-resistant Alcaligenes faecalis treated with double-dose of tigecycline. IDCases; 15;18:e00600. https://doi.org/ 10.1016/j.idcr.2019.e00600.
  • Hidalgo del Río, L. (2014). Identification and characterization of an emergent aminoglycoside resistance mechanism the 16S rRNA methyltransferases (Doctorate, Memorıa Para Optar Al Grado De Doctor)
  • Iraz, M., Duzgun,A.O., Cicek, A.C., Bonnin, R.A., Ceylan, A., Saral, A., Nordmann, P., & Sandalli, C. (2014). Characterization of novel VIM carbapenemase, VIM-38, and first detection of GES-5 carbapenem-hydrolyzing β-lactamases in Pseudomonas aeruginosa in Turkey. Diagnostic Microbiology and Infectious Disease, 78(3),292-4. https://doi.org/10.1016/j.diagmicrobio.2013.12.003.
  • Jeon, B.C., Jeong, S.H., Bae, I.K., Kwon, S.B., Lee, K., Young, D., Lee, J.H., Song, J.S., & Lee, S.H. (2005). Investigation of a nosocomial outbreak of imipenem- resistant Acinetobacter baumannii producing the OXA-23 β-lactamase in Korea. Journal of Clinical Microbiology, 43(5),2241-5. https://doi.org/10.1128/JCM.43.5.2241-2245.2005.
  • Kahveci, A., Asicioglu, E., Tigen, E., Ari, E., Arikan, H., Odabasi, Z., & Ozener, C. (2011). Unusual causes of peritonitis in a peritoneal dialysis patient: Alcaligenes faecalis and Pantoea agglomerans. Annals of Clinical Microbiology and Antimicrobials,10:12. https://doi.org/10.1186/1476-0711-10-12.
  • Kavuncuoglu, F., Unal, A., Oguzhan, N., Tokgoz, B., Oymak, O., & Utas, C. (2010). First reported case of Alcaligenes faecalis peritonitis. Peritoneal Dialysis International, 30(1),118-9. https://doi.org/10.3747/pdi.2009.00058.
  • Khajuria, A,, Praharaj, A.K., Kumar, M., & Grover, N. (2013). Emergence of VIM-6 metallo-beta-lactamase-producing Alcaligenes faecalis clinical isolates in a hospital in India. The Journal of Infection in Developing Countries, 7(6),494-6. https://doi.org/10.3855/jidc.3556.
  • Khokhar, D.S., Sethi, H.S., Kumar, H., Sudan, R., Sharma, N., & Nayak, N. (2002). Postkeratoplasty endophthalmitis by Alcaligenes faecalis. Cornea, 21(2),232-3. https://doi.org/10.1097/00003226-200203000-00024.
  • Makena, A., Düzgün, A.Ö., Brem, J., McDonough, M.A., Rydzik, A.M., Abboud, M.I., Saral, A., Çiçek, A.Ç., Sandalli, C., & Schofield, C.J. (2015). Comparison of Verona Integron-Borne Metallo-β-Lactamase (VIM) Variants Reveals Differences in Stability and Inhibition Profiles. Antimicrobial Agents and Chemotherapy, 60(3),1377-84. https://doi.org/10.1128/AAC.01768-15.
  • Mantengoli, E., & Rossolini, G.M. (2005). Tn5393d, a complex Tn5393 derivative carrying the PER-1 extended-spectrum beta-lactamase gene and other resistance determinants. Antimicrobial Agents and Chemotherapy, 49(8),3289-96. https://doi.org/10.1128/AAC.49.8.3289-3296.2005.
  • Møller, T.S., Overgaard, M., Nielsen, S.S., Bortolaia, V., Sommer, M.O., Guardabassi, L., & Olsen, J.E. (2016). Relation between tetR and tetA expression in tetracycline resistant Escherichia coli. BMC Microbiology, 12;16:39. https://doi.org/10.1186/s12866-016-0649-z.
  • Moubareck, C., Brémont, S., Conroy, M.C., Courvalin, P., & Lambert, T. (2009). GES-11, a novel integron-associated GES variant in Acinetobacter baumannii, Antimicrobial Agents and Chemotherapy, 53(8),3579-81. https://doi.org/ 10.1128/AAC.00072-09.
  • Pereira, M., Perilli, M., Mantengoli, E., Luzzaro, F., Toniolo, A., Rossolini, G.M, & Amicosante, G. (2000). PER-1 extended-spectrum beta-lactamase production in an Alcaligenes faecalis clinical isolate resistant to expanded-spectrum cephalosporins and monobactams from a hospital in Northern Italy. Microbial Drug Resistance, 6(1),85-90. https://doi.org/10.1089/mdr.2000.6.85.
  • Poirel, L., Cattoir, V., & Nordmann, P. (2012). Plasmid-mediated quinolone resistance; interactions between human, animal, and environmental ecologies. Frontiers in Microbiology, 2;3:24. https://doi.org/10.3389/fmicb.2012.00024.
  • Redgrave, L.S., Sutton, S.B., Webber, M.A., & Piddock, L.J. (2014). Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends in Microbiology, 22(8),438-45. https://doi.org/10.1016/j.tim.2014.04.007.
  • Rice, L.B., Willey, S.H., Papanicolaou, G.A., Medeiros, A.A., Eliopoulos, G.M., Moellering Jr, R.C., & Jacoby, G.A. (1990). Outbreak ceftazidime resistance caused by extended-spectrum β lactamases at Massachusetts chronic care facility. Antimicrobial Agents and Chemotherapy, 34(11),2193-9. https://doi.org/10.1128/AAC.34.11.2193.
  • Szeto, C.C., Kwan, B.C., Chow, K.M., Pang, W.F., Kwong, V.W., Leung, C.B., & Li, P.K. (2011). Persistent symptomatic intra-abdominal collection after catheter removal for PD-related peritonitis. Peritoneal Dialysis International, 31(1),34-8. https://doi.org/10.3747/pdi.2009.00185.
  • Tena, D., Fernández, C., & Lago, M.R. (2015). Alcaligenes faecalis: an unusual cause of skin and soft tissue infection. Japanese Journal of Infectious Diseases, 68(2),128-30. https://doi.org/10.7883/yoken.JJID.2014.164.
  • Wang, X., Liu, W., Zou, D., Li, X., Wei, X., Shang, W., Wang, Y., Li, H., Huan, Li, Y.W., He, X., Huang, L., & Yuan, J. (2013). High Rate of New Delhi Metallo-β-Lactamase 1–Producing Bacterial Infection in China. Clinical Infectious Diseases, 56(1),161-2. https://doi.org/10.1093/cid/cis782.
  • Woodford, N., Ellington, M.J., Coelho, J.M., Turton, J.F., Ward, M.E., Brown, S., Amyes, S.G., & Livermore, D.M. (2006). Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. International Journal of Antimicrobial Agents, 27(4),351-3. https://doi.org/ 10.1016/j.ijantimicag.2006.01.004.
  • Wisplinghoff, H. (2017). Pseudomonas spp., Acinetobacter spp. and miscellaneous Gram-negative bacilli. In: Infectious Diseases.e1572: 1579-1599. https://doi.org/10.1016/B978-0-7020-6285-8.00181-7
  • Woodford, N. (2010). Rapid Characterization of β-lactamases by multiplex PCR, In: Gillespie, S.H., McHugh T.D., editors, Antibiotic Resistance Protocols, 2th ed. London: Humana Press, Pp:181-92.
  • Vasilaki, O., Ntokou, E., Ikonomidis, A., Sofianou ,D., Frantzidou, F., Alexiou-Daniel, S., Maniatis, A.N., & Pournaras, S. (2008). Emergence of the plasmid-mediated quinolone resistance gene qnrS1 in Escherichia coli isolates in Greece, Antimicrobial Agents and Chemotherapy, 52(8),2996-7. https://doi.org/ 10.1128/AAC.00325-08.
  • Zeynudin, A., Pritsch, M., Schubert, S., Messerer, M., Liegl, G., Hoelscher, M., Belachew, T., & Wieser, A. (2018). Prevalence and antibiotic susceptibility pattern of CTX-M type extended-spectrum β-lactamases among clinical isolates of gram-negative bacilli in Jimma, Ethiopia. BMC Infectious Diseases, 18(1),524. https://doi.org/10.1186/s12879-018-3436-7.

Türkiye'den izole edilen qnr ve blaVIM-4-like üreten klinik Alcaligenes faecalis’in ilk raporu

Year 2023, , 57 - 65, 15.01.2023
https://doi.org/10.17714/gumusfenbil.1179361

Abstract

Çalışmanın amacı, A. faecalis klinik suşunun antibiyotik duyarlılık paterninin araştırmaktır. A. faecalis hem biyokimyasal hem de moleküler yöntemlerle tanımlanmıştır. VITEK kompakt sistemi, suşun antibiyotik duyarlılık profilini analiz etmek için kullanıldı. Direnç genlerinin belirlenmesi, PCR yöntemi kullanılarak değerlendirildi. Ayrıca, direnç belirleyicilerinin aktarılabilirliği araştırıldı. A. feacalis'in imipenem, sefepim, seftazidim, gentamisin, amikasin, netilmisin, tobramisin, siprofloksasin ve levofloksasine direnç gösterdiği belirlendi. PCR ve DNA dizi analizleri, bu suşun blaVIM-4 benzeri gene sahip olduğunu ortaya çıkardı. Bu blaVIM-4-like gen, VIM-4'e kıyasla bir amino asit ikamesi (Ala265Val) sergiledi. Filtre eşleştirme deneyleri, blaVIM-4-like genin A. faecalis'ten E. coli'ye aktarılamayacağını gösterdi. Bu çalışmada, Türkiye'den A. faecalis'te ilk kez blaVIM-4-like genin varlığı ortaya konmuştur.

Project Number

18.F5119.03.02

References

  • Adelowo, O.O., & Fagade, O.E. (2012). Phylogenetic characterization, antimicrobial susceptibilities, and mechanisms of resistance in bacteria isolates from a poultry waste-polluted river, southwestern Nigeria. Turkish Journal of Biology, 36:37-45. https://doi.org/10.3906/biy-1010-145
  • Adesoji, A.T., & Ogunjobi, A.A. (2016). Detection of extended spectrum beta-lactamases resistance genes among bacteria isolated from selected drinking water distribution channels in southwestern Nigeria. BioMed research international, 7149295. https://doi.org/10.1155/2016/7149295.
  • Agersø, Y., & Sandvang, D. (2005). Class I integrons and tetracycline resistance genes in alcaligenes, arthrobacter, and pseudomonas spp. isolated from pigsties and manured soil. Applied And Environmental Microbiology, 71(12),7941-7. https://doi.org/10.1128/AEM.71.12.7941-7947.2005.
  • Al Laham, N., Chavda, K.D., Cienfuegos-Gallet, A.V., Kreiswirth, B.N., & Chen, L. (2017). Genomic characterization of vim metallo-β-lactamase-producing Alcaligenes faecalis from Gaza, Palestine. Antimicrobial agents and chemotherapy, 61(11),e01499-17. https://doi.org/10.1128/AAC.01499-17.
  • Ashwath, M.L., & Katner, H.P. (2005). Pancreatic abscess secondary to Alcaligenes faecalis. The American Journal of the Medical Sciences, 329(1),54-5. https://doi.org/10.1097/00000441-200501000-00011.
  • Barlow, R.S, Fegan, N., & Gobius, K.S. (2008). A comparison of antibiotic resistance integrons in cattle from separate beef meat production systems at slaughter. Journal of Applied Microbiology, 104(3),651–58. https://doi.org/ 10.1111/j.1365-2672.2007.03572.x.
  • Bush, K. (2010). Bench-to-bedside review: The role of beta-lactamases in antibiotic-resistant Gram-negative infections. Critical Care, 14(3),224. https://doi.org/10.1186/cc8892.
  • Bush, K. (2018). Past and present perspectives on β-Lactamases. Antimicrobial Agents and Chemotherapy, 62:e01076-18. https://doi.org/10.1128/AAC.01076-18.
  • Cattoir, V., Poirel, L., Rotimi, V., Soussy, C.J., & Nordmann, P. (2007). Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates, Journal of Antimicrobial Chemotherapy, 60(2),394-7. https://doi.org/ 10.1093/jac/dkm204.
  • Celenza, G., Pellegrini, C., Caccamo, M., Segatore, B., Amicosante, G., & Perilli, M. (2006). Spread of blaCTX-M-type and blaPER-2 β-lactamase genes in clinical isolates from Bolivian hospitals, Journal of Antimicrobial Chemotherapy, 57 (5), 975-8. https://doi.org/10.1093/jac/dkl055
  • Cicek, A.C., Saral, A., Iraz, M., Ceylan, A., Duzgun, A.O., Peleg, A.Y., & Sandalli, C. (2014). OXA and GES-type β-lactamases predominate in extensively drug-resistant Acinetobacter baumannii isolates from a Turkish University Hospital. Clinical Microbiology and Infection, 20(5),410-5. https://doi.org/ 10.1111/1469-0691.12338.
  • Copur Cicek, A., Saral, A., Ozad Duzgun, A., Yasar, E., Cizmeci, Z., Balci, P.O., Sari, F., Firat, M., Altintop, Y.A., Ak, S., Caliskan, A., Yildiz, N., Sancaktar, M., Budak, E.E., Erturk, A., Ozgumus, O.B., & Sandalli, C. (2013). Nationwide study of Escherichia coli producing extended-spectrum β-lactamases TEM, SHV and CTX-M in Turkey, The Journal of Antibiotics (Tokyo), 66(11),647-50. https://doi.org/ 10.1038/ja.2013.72.
  • Cury, J., Jové, T., Touchon, M., Néron, B., & Rocha, E.P. (2016). Identification and analysis of integrons and cassette arrays in bacterial genomes, Nucleic Acids Research, 44(10),4539-50. https://doi.org/10.1093/nar/gkw319
  • Çıçek, A.Ç., Düzgün, A.Ö., Saral, A., Kayman, T., Çızmecı, Z., Balcı, P.Ö., Dal, T., Fırat, M., Tosun, İ., Alıtntop, Y.A., Çalışkan, A., Yazıcı. Y., & Sandallı, C. (2013a). Detection of class I integron in Acinetobacter baumannii isolates collected from nine hospitals in Turkey. Asian Pacific Journal of Tropical Biomedicine, 3(9),743-7. https://doi.org/10.1016/S2221-1691(13)60149-5.
  • Cicek, A. C., Saral, A., Duzgun, A. O., Cizmeci, Z., Kayman, T., Balci, P. O., Dal, T., Firat, M., Yazici, Y., Sancaktar, M., Ozgumus, O. B., & Sandalli, C. (2013b). Screening of Class 1 and Class 2 integrons in clinical isolates of Pseudomonas aeruginosa collected from seven hospitals in Turkey: A multicenter study. Open Journal of Medical Microbiology, 3, 227-233. https://doi.org/10.4236/ojmm.2013.34034
  • De Paiva, MC. (2015). Diversidade de bactérias, genes de resistência a quinolonas e abundância do gene intI1 em uma estação de tratamento de esgoto revelada por abordagens de cultivo e metagenômica (Doctorate, Universidade Federal de Minas Gerais).
  • Doi, Y., Wachino, J.I., & Arakawa, Y. (2016). Aminoglycoside Resistance: The Emergence of Acquired 16S Ribosomal RNA Methyltransferases. Infectious Disease Clinics of North America, 30(2),523-537. https://doi.org/10.1016/j.idc.2016.02.011.
  • Dubois, V., Arpin, C., Coulange, L., Andre,´ C., Noury, P., & Quentin, C. (2006). TEM-21 extended-spectrum β-lactamase in a clinical isolate of Alcaligenes faecalis from a nursing home. Journal of Antimicrobial Chemotherapy, 57(2),368-9. https://doi.org/10.1093/jac/dki450.
  • Ellington, M.J., Kistler, J., Livermore, D.M., & Woodford, N. (2007). Multiplex PCR for rapid detection of genes encoding acquired metallo β-lactamases, Journal of Antimicrobial Chemotherapy, 59(2),321-2. https://doi.org/10.1093/jac/dkl481.
  • EUCAST, (2017). The European Committee on Antimicrobial Susceptibility Testing, Breakpoint tables for interpretation of MICs and zone diameters. Version 8.0, http://www.eucast.org. Filipe, M., Reimer, Å., Matuschek, E., Paul, M., Pelkonen, T., & Riesbeck, K. (2017). Fluoroquinolone-Resistant Alcaligenes faecalis related to chronic suppurative otitis media, Angola. Emerging Infectious Diseases, 23(10):1740-1742. https://doi.org/10.3201/eid2310.170268.
  • Hasan, M.J., Nizhu, L.N., & Rabbani, R. (2019). Bloodstream infection with pandrug-resistant Alcaligenes faecalis treated with double-dose of tigecycline. IDCases; 15;18:e00600. https://doi.org/ 10.1016/j.idcr.2019.e00600.
  • Hidalgo del Río, L. (2014). Identification and characterization of an emergent aminoglycoside resistance mechanism the 16S rRNA methyltransferases (Doctorate, Memorıa Para Optar Al Grado De Doctor)
  • Iraz, M., Duzgun,A.O., Cicek, A.C., Bonnin, R.A., Ceylan, A., Saral, A., Nordmann, P., & Sandalli, C. (2014). Characterization of novel VIM carbapenemase, VIM-38, and first detection of GES-5 carbapenem-hydrolyzing β-lactamases in Pseudomonas aeruginosa in Turkey. Diagnostic Microbiology and Infectious Disease, 78(3),292-4. https://doi.org/10.1016/j.diagmicrobio.2013.12.003.
  • Jeon, B.C., Jeong, S.H., Bae, I.K., Kwon, S.B., Lee, K., Young, D., Lee, J.H., Song, J.S., & Lee, S.H. (2005). Investigation of a nosocomial outbreak of imipenem- resistant Acinetobacter baumannii producing the OXA-23 β-lactamase in Korea. Journal of Clinical Microbiology, 43(5),2241-5. https://doi.org/10.1128/JCM.43.5.2241-2245.2005.
  • Kahveci, A., Asicioglu, E., Tigen, E., Ari, E., Arikan, H., Odabasi, Z., & Ozener, C. (2011). Unusual causes of peritonitis in a peritoneal dialysis patient: Alcaligenes faecalis and Pantoea agglomerans. Annals of Clinical Microbiology and Antimicrobials,10:12. https://doi.org/10.1186/1476-0711-10-12.
  • Kavuncuoglu, F., Unal, A., Oguzhan, N., Tokgoz, B., Oymak, O., & Utas, C. (2010). First reported case of Alcaligenes faecalis peritonitis. Peritoneal Dialysis International, 30(1),118-9. https://doi.org/10.3747/pdi.2009.00058.
  • Khajuria, A,, Praharaj, A.K., Kumar, M., & Grover, N. (2013). Emergence of VIM-6 metallo-beta-lactamase-producing Alcaligenes faecalis clinical isolates in a hospital in India. The Journal of Infection in Developing Countries, 7(6),494-6. https://doi.org/10.3855/jidc.3556.
  • Khokhar, D.S., Sethi, H.S., Kumar, H., Sudan, R., Sharma, N., & Nayak, N. (2002). Postkeratoplasty endophthalmitis by Alcaligenes faecalis. Cornea, 21(2),232-3. https://doi.org/10.1097/00003226-200203000-00024.
  • Makena, A., Düzgün, A.Ö., Brem, J., McDonough, M.A., Rydzik, A.M., Abboud, M.I., Saral, A., Çiçek, A.Ç., Sandalli, C., & Schofield, C.J. (2015). Comparison of Verona Integron-Borne Metallo-β-Lactamase (VIM) Variants Reveals Differences in Stability and Inhibition Profiles. Antimicrobial Agents and Chemotherapy, 60(3),1377-84. https://doi.org/10.1128/AAC.01768-15.
  • Mantengoli, E., & Rossolini, G.M. (2005). Tn5393d, a complex Tn5393 derivative carrying the PER-1 extended-spectrum beta-lactamase gene and other resistance determinants. Antimicrobial Agents and Chemotherapy, 49(8),3289-96. https://doi.org/10.1128/AAC.49.8.3289-3296.2005.
  • Møller, T.S., Overgaard, M., Nielsen, S.S., Bortolaia, V., Sommer, M.O., Guardabassi, L., & Olsen, J.E. (2016). Relation between tetR and tetA expression in tetracycline resistant Escherichia coli. BMC Microbiology, 12;16:39. https://doi.org/10.1186/s12866-016-0649-z.
  • Moubareck, C., Brémont, S., Conroy, M.C., Courvalin, P., & Lambert, T. (2009). GES-11, a novel integron-associated GES variant in Acinetobacter baumannii, Antimicrobial Agents and Chemotherapy, 53(8),3579-81. https://doi.org/ 10.1128/AAC.00072-09.
  • Pereira, M., Perilli, M., Mantengoli, E., Luzzaro, F., Toniolo, A., Rossolini, G.M, & Amicosante, G. (2000). PER-1 extended-spectrum beta-lactamase production in an Alcaligenes faecalis clinical isolate resistant to expanded-spectrum cephalosporins and monobactams from a hospital in Northern Italy. Microbial Drug Resistance, 6(1),85-90. https://doi.org/10.1089/mdr.2000.6.85.
  • Poirel, L., Cattoir, V., & Nordmann, P. (2012). Plasmid-mediated quinolone resistance; interactions between human, animal, and environmental ecologies. Frontiers in Microbiology, 2;3:24. https://doi.org/10.3389/fmicb.2012.00024.
  • Redgrave, L.S., Sutton, S.B., Webber, M.A., & Piddock, L.J. (2014). Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends in Microbiology, 22(8),438-45. https://doi.org/10.1016/j.tim.2014.04.007.
  • Rice, L.B., Willey, S.H., Papanicolaou, G.A., Medeiros, A.A., Eliopoulos, G.M., Moellering Jr, R.C., & Jacoby, G.A. (1990). Outbreak ceftazidime resistance caused by extended-spectrum β lactamases at Massachusetts chronic care facility. Antimicrobial Agents and Chemotherapy, 34(11),2193-9. https://doi.org/10.1128/AAC.34.11.2193.
  • Szeto, C.C., Kwan, B.C., Chow, K.M., Pang, W.F., Kwong, V.W., Leung, C.B., & Li, P.K. (2011). Persistent symptomatic intra-abdominal collection after catheter removal for PD-related peritonitis. Peritoneal Dialysis International, 31(1),34-8. https://doi.org/10.3747/pdi.2009.00185.
  • Tena, D., Fernández, C., & Lago, M.R. (2015). Alcaligenes faecalis: an unusual cause of skin and soft tissue infection. Japanese Journal of Infectious Diseases, 68(2),128-30. https://doi.org/10.7883/yoken.JJID.2014.164.
  • Wang, X., Liu, W., Zou, D., Li, X., Wei, X., Shang, W., Wang, Y., Li, H., Huan, Li, Y.W., He, X., Huang, L., & Yuan, J. (2013). High Rate of New Delhi Metallo-β-Lactamase 1–Producing Bacterial Infection in China. Clinical Infectious Diseases, 56(1),161-2. https://doi.org/10.1093/cid/cis782.
  • Woodford, N., Ellington, M.J., Coelho, J.M., Turton, J.F., Ward, M.E., Brown, S., Amyes, S.G., & Livermore, D.M. (2006). Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. International Journal of Antimicrobial Agents, 27(4),351-3. https://doi.org/ 10.1016/j.ijantimicag.2006.01.004.
  • Wisplinghoff, H. (2017). Pseudomonas spp., Acinetobacter spp. and miscellaneous Gram-negative bacilli. In: Infectious Diseases.e1572: 1579-1599. https://doi.org/10.1016/B978-0-7020-6285-8.00181-7
  • Woodford, N. (2010). Rapid Characterization of β-lactamases by multiplex PCR, In: Gillespie, S.H., McHugh T.D., editors, Antibiotic Resistance Protocols, 2th ed. London: Humana Press, Pp:181-92.
  • Vasilaki, O., Ntokou, E., Ikonomidis, A., Sofianou ,D., Frantzidou, F., Alexiou-Daniel, S., Maniatis, A.N., & Pournaras, S. (2008). Emergence of the plasmid-mediated quinolone resistance gene qnrS1 in Escherichia coli isolates in Greece, Antimicrobial Agents and Chemotherapy, 52(8),2996-7. https://doi.org/ 10.1128/AAC.00325-08.
  • Zeynudin, A., Pritsch, M., Schubert, S., Messerer, M., Liegl, G., Hoelscher, M., Belachew, T., & Wieser, A. (2018). Prevalence and antibiotic susceptibility pattern of CTX-M type extended-spectrum β-lactamases among clinical isolates of gram-negative bacilli in Jimma, Ethiopia. BMC Infectious Diseases, 18(1),524. https://doi.org/10.1186/s12879-018-3436-7.
There are 44 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Esma Akyıldız 0000-0001-7175-5257

Ayşegül Saral 0000-0002-7757-6812

Tuba Köse 0000-0003-0267-8758

Mikail Arslan 0000-0003-0737-9167

Fatih Şaban Beriş 0000-0002-0535-943X

Azer Özad Düzgün 0000-0002-6301-611X

Project Number 18.F5119.03.02
Publication Date January 15, 2023
Submission Date September 23, 2022
Acceptance Date November 4, 2022
Published in Issue Year 2023

Cite

APA Akyıldız, E., Saral, A., Köse, T., Arslan, M., et al. (2023). First report of qnr and blaVIM-4-like producing clinical Alcaligenes faecalis isolated in Türkiye. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 13(1), 57-65. https://doi.org/10.17714/gumusfenbil.1179361