Research Article
BibTex RIS Cite

Ultrasonik işlemin linyit süspansiyonunun yağ aglomerasyonu üzerine etkisi

Year 2023, , 471 - 481, 15.04.2023
https://doi.org/10.17714/gumusfenbil.1228887

Abstract

Ultrasonik işlemin kullanımı çoğunlukla ince kömürlerin flotasyon işlemi için araştırılmıştır, ancak yağlarla aglomerasyona uygulanması son derece sınırlıdır. Bu nedenle, bu çalışmanın amacı, gazyağı kullanılarak ultrasonik işleminin yağ aglomerasyon süreci üzerindeki etkisini araştırmaktır. Ultrasonik, ön işlem aşamasında ve aglomerasyon aşamasında olmak üzere iki farklı şekilde kullanılmış ve farklı sonuçlar bulunmuştur. Ön işlem aşamasında ultrasonik kullanımı linyit süspansiyonunun kül içeriğini azalttı ve yanabilir kömür verimini artırdı. Öte yandan, aglomerasyon aşamasında ultrasonik kullanımı kömürün yağ aglomerasyonunu olumsuz yönde etkilemiştir. Yağ aglomerasyon başarısını etkileyen diğer faktörler ultrasonik sistemin güç ve tedavi süresiydi ve düşük güç değeri ve kısa süreli ultrasonik işlem ile aglomerasyon başarısının arttığı sonucuna varıldı. Sonuç olarak, %26.02 kül içeriğine sahip kömür, optimum koşullar altında ultrasonik ön işlemle %10.03 kül içeriği ve %79.06 yanabilir verim ile zenginleştirildi.

References

  • Alonso, M. I., Valdés, A. F., Martinez-Tarazona, R. M., & Garcia, A. B. (2002). Coal recovery from fines cleaning wastes by agglomeration with colza oil: a contribution to the environment and energy preservation. Fuel Processing Technology, 75, 85–95. https://doi.org/10.1016/S0378-3820(01)00233-8
  • Allen, R. W., & Wheelock, T. D. (1993). Effects of pH and ionic strength on kinetics of oil agglomeration of oil agglomeration of fine coal. Mineral Engineering, 6(1), 87–97.
  • Altun, N. E., Hwang, J. Y., & Hicyilmaz, C. (2009). Enhancement of flotation performance of oil shale cleaning by ultrasonic treatment. International Journal Mineral Processing, 91(1-2), 1–13. https://doi.org/10.1016/j.minpro.2008.10.003.
  • Ambedkar, B., Chintala, T. N., Nagarajan, R., & Jayanti, S. (2011a). Feasibility of using ultrasound assisted process for sulfur and ash removal from coal. Chemical Engineering and Processing, 50(3), 236–246. https://doi.org/10.1016/j.cep.2011.02.008
  • Ambedkar, B., Nagarajan, R., & Jayanti, S. (2011b). Investigation of high-frequency, high-intensity ultrasonics for size reduction and washing of coal in aqueous medium. Industrial and Engineering Chemistry Research, 50(23), 13210–13219. https://doi.org/10.1021/ie200222w.
  • Aslan, N. (2013). Use of grey analysis to determine optimal oil agglomeration with multiple performance characteristics, Fuel, 109,373–8. https://doi.org/10.1016/j.fuel.2013.02.069
  • Aslan, N., & Unal, I. (2011). Multi-response optimization of oil agglomeration with multiple performance characteristics. Fuel Processing Technology, 92(6), 1157–63. https://doi.org/10.1016/j.fuproc.2010.05.029
  • Barma, S. D., Baskey, P. K., & Biswal, S.K. (2018). Chemical beneficiation of high-ash Indian noncoking coal by alkali leaching under low-frequency ultrasonication, Energy Fuels, 32(2), 1309–1319. https://doi.org/10.1021/acs.energyfuels.7b03291
  • Burat, F., Sirkeci, A. A., & Onal, G. (2014). Improved fine coal dewatering by ultrasonic pretreatment and dewatering aids, Mineral Processing and Extractive Metallurgy Review, 36(2), 129-135. https://doi.org/10.1080/08827508.2014.898637
  • Capes, C.(1980). Principles and applications of size enlargement in liquid systems. Fine Particles Processing, 2, 1442-1462, 1980.
  • Capes, C., & Jonasson, K. (1989). Application of oil–water wetting of coals in beneficiation. Interfacial Phenomena in Coal Technology, Surfactant science series, (1nd ed.), p. 115–155.
  • Cebeci, Y., & Eroglu, N. (1998). Determination of bridging liquid type in oil agglomeration of lignite. Fuel, 77, 419–424 https://doi.org/10.1016/S0016-2361(98)80032-X
  • Cebeci, Y. (2003). Investigation of kinetics of agglomerate growth in oil agglomeration process. Fuel, 82, 1645–1651. https://doi.org/10.1016/S0016-2361(03)00095-4
  • Cebeci, Y., & Sonmez, I. (2002). The investigation of coal-pyrite/lignite concentration and their separation in the artificial mixture by oil agglomeration. Fuel, 81, 1139–46. https://doi.org/10.1016/S0016-2361(02)00028-5
  • Cebeci, Y., & Sonmez, I. (2006). Application of the Box-Wilson experimental design method for the spherical oil agglomeration of coal. Fuel, 85, 289–97. https://doi.org/10.1016/j.fuel.2005.07.017.
  • Celik, M. S. (1989). Effect of ultrasonic treatment on the floatability of coal and galena. Separation Science and Technology, 24(14),1159–66.
  • Chary, G. H. V. C., & Dastidar, M. G. (2010). Optimization of experimental conditions for recovery of coking coal fines by oil agglomeration technique. Fuel, 89(9), 2317–22. https://doi.org/10.1016/j.fuel.2009.12.016
  • Chary, G. H. V. C., & Dastidar, M. G. (2012). Investigation of optimum conditions in coal–oil agglomeration using Taguchi experimental design. Fuel, 98, 259–64. https://doi.org/10.1016/j.fuel.2012.03.027
  • Chary, G. H. V. C., & Dastidar, M. G. (2013). Comprehensive study of process parameters affecting oil agglomeration using vegetable oils. Fuel, 106, 285–92. https://doi.org/10.1016/j.fuel.2012.12.002
  • Chen, Y., Truong, V. N. T., Bu, X., & Xie, G. (2020). A review of effects and applications of ultrasound in mineral flotation. Ultrasonics Sonochemistry, 60, 104739. https://doi.org/10.1016/j.ultsonch.2019.104739
  • De Castro, M. L., & Priego-Capote, F. (2007). Ultrasound-assisted crystallization (sonocrystallization). Ultrasonics Sonochemistry, 14, 717–724. https://doi.org/10.1016/j.ultsonch.2006.12.004
  • Duzyol, S., Aksu, A. Ö., Erişir, H. S., Aspir, K., & Sensogut, C. (2014). Tunçbilek linyit kömürünün yağ aglomerasyonu ile zenginleştirilmesi. Türkiye 19. Kömür Kongresi Bildiriler Kitabı,( pp. 237-244), Zonguldak
  • Duzyol, S. (2015). Investigation of oil agglomeration behavior of Tuncbilek clean coal and separation of artificial mixture of coal–clay by oil agglomeration. Powder Technology, 274, 1–4. https://doi.org/10.1016/j.powtec.2015.01.011
  • Gaikwad, S. G., & Pandit, A. B. (2008). Ultrasound emulsification: Effect of ultrasonic and physicochemical properties on dispersed phase volume and droplet size. Ultrasonics Sonochemistry 15(4), 554–563 https://doi.org/10.1016/j.ultsonch.2007.06.011
  • Gence, N. (2006). Coal recovery from bituminous coal by agglo flotation with petroleum oils. Fuel, 85, 1138–42. https://doi.org/10.1016/j.fuel.2005.11.001
  • Gungoren, C., Ozdemir, O., Wang, X., & Ozkan, S. (2019). Miller J. Effect of ultrasound on bubble-particle interaction in quartz-amine flotation system. Ultrasonics Sonochemistry, 52, 446–454. https://doi.org/10.1016/j.ultsonch.2018.12.023
  • Gurses, A., Doymus, K., & Bayrakceken, S. (1996). Selective oil agglomeration of brown coal: a systematic investigation of the design and process variables in the conditioning step. Fuel, 75(10), 1175–80, https://doi.org/10.1016/0016-2361(96)00077-4
  • Hassanzadeh, A., Sajjady, S. A., Gholami, H., Amini, S., & Ozkan, S. G. (2020). An Improvement on selective separation by applying ultrasound to rougher and re-cleaner stages of copper flotation. Minerals, 10(7), 619. https://doi.org/10.3390/min10070619
  • Jin, L., Wang, W., Tu, Y., Zhang, K., & Lv, Z. (2021). Effect of ultrasonic standing waves on flotation bubbles. Ultrasonics Sonochemistry, 73, 105459. https://doi.org/10.1016/j.ultsonch.2020.105459
  • Kang, W., Xun, H., & Chen, J. (2007). Study of enhanced fine coal de-sulphurization and de-ashing by ultrasonic flotation. Journal of China University of Mining and Technology, 17(3), 358–362. https://doi.org/10.1016/S1006-1266(07)60105-9.
  • Kang, W., Xun, H., & Hu, J. (2008). Study of the effect of ultrasonic treatment on the surface composition and the flotation performance of high-sulfur coal. Fuel Processing Technology, 89(12), 1337–1344. https://doi.org/10.1016/j.fuproc.2008.06.003
  • Kang, W., Xun, H., Kong, X., & Li, M. (2009). Effects from changes in pulp nature after ultrasonic conditioning on high-sulfur coal flotation. Mining Science and Technology, 19(4), 498–502, 507.https://doi.org/10.1016/S1674-5264(09)60093-4
  • Kentish, S., Wooster, T., Ashokkumar, M., Balachandran, S., Mawson, R., & Simons, L. (2008). The use of ultrasonics for nano emulsion preparation. Innovative Food Science and Emerging Technologies, 9, 170–175. https://doi.org/10.1016/j.ifset.2007.07.005
  • Mao, Y., Xia, W., Peng, Y., & Xie, G. (2019a). Ultrasonic-assisted flotation of fine coal: A review. Fuel Processing Technology, 195, 106150. https://doi.org/10.1016/j.fuproc.2019.106150
  • Mao, Y., Chen, Y., Bu, X., & Xie, G. (2019b). Effects of 20 kHz ultrasound on coal flotation: The roles of cavitation and acoustic radiation force. Fuel, 256, 115938. https://doi.org/10.1016/j.fuel.2019.115938
  • Mao, Y., Bu, X., Peng, Y., Tian, F., & Xie, G. (2020). Effects of simultaneous ultrasonic treatment on the separation selectivity and flotation kinetics of high-ash lignite. Fuel, 259(1), 116270. https://doi.org/10.1016/j.fuel.2019.116270
  • Onal, G., Ozer, M., & Arslan, F. (2003). Sedimentation of clay in ultrasonic medium. Mining and Engineering, 16 (2),129–34. doi:10.1016/S0892-6875(02)00309-6.
  • Ozer, M., Basha, O. M., & Morsi, B. (2017). Coal-agglomeration processes: a review. International Journal of Coal Preparation and Utilization, 37(3), 31–167. https://doi.org/10.1080/19392699.2016.1142443.
  • Ozkan, S. G., & Kuyumcu, H. Z. (2006). Investigation of mechanism of ultrasound on coal flotation. International Journal Mineral Processing, 81(3), 201–203. https://doi.org/10.1016/j.minpro.2006.07.011
  • Ozkan, S. G., & Kuyumcu, H. Z. (2007). Design of a flotation cell equipped with ultrasound transducers to enhance coal flotation. Ultrasonics Sonochemistry, 14(5), 639–645. https://doi.org/10.1016/j.ultsonch.2006.10.001
  • Ozkan, S. G. (2012). Effects of simultaneous ultrasonic treatment on flotation of hard coal slimes. Fuel, 93, 576–580. https://doi.org/10.1016/j.fuel.2011.10.032
  • Ozkan, S. G. (2017). Further investigations on simultaneous ultrasonic coal flotation. Minerals, 7(10), 177, https://doi.org/10.3390/min7100177
  • Petela, R., Ignasıak, B., & Pawlak, W. (1995). Selective agglomeration of coal: analysis of laboratory batch test results. Fuel, 74, 1200–1210 https://doi.org/10.1016/0016-2361(95)00047-9
  • Royaei, M. M., Jorjani, E., & Chelgani, S.C. (2012). Combination of microwave and ultrasonic irradiations as a pretreatment method to produce ultraclean coal. International Journal of Coal Preparation and Utilization, 32, 143–155. https://doi.org/10.1080/19392699.2012.663024
  • Sahinoglu, E., & Uslu, T. (2008). Amenability of Muzret bituminous coal to oil agglomeration. Energy Convers Manage, 49, 3684–90. https://doi.org/10.1016/j.enconman.2008.06.026
  • Sahinoglu, E., & Uslu, T. (2013a). Increasing coal quality by oil agglomeration after ultrasonic treatment. Fuel Processing Technology, 116, 332–8. https://doi.org/10.1016/j.fuproc.2013.07.016
  • Sahinoglu, E., & Uslu, T. (2013b). Use of ultrasonic emulsification in oil agglomeration for coal cleaning. Fuel, 113, 719–725. https://doi.org/10.1016/j.fuel.2013.06.046
  • Sahinoglu, E., & Uslu, T. (2014). Effect of particle size on cleaning of high-sulphur fine coal by oil agglomeration. Fuel Processing Technology, 128, 211–9. https://doi.org/10.1016/j.fuproc.2014.07.015
  • Unal, I., & Aktas, Z. (2001). Effect of various bridging liquids on coal fines agglomeration performance. Fuel Processing Technology, 69, 141–55. https://doi.org/10.1016/S0378-3820(00)00137-5
  • Unal, I., & Ersan, M. G. (2005). Oil agglomeration of a lignite treated with microwave energy: effect of particle size and bridging oil. Fuel Processing Technology, 87, 71–76. https://doi.org/10.1016/j.fuproc.2005.08.001
  • Wang, H., Yang, W., Yan, X., Wang, L., Wang, Y., & Zhang, H. (2020). Regulation of bubble size in flotation: A review. Journal of Environmental Chemical Engineering, 8(5), 104070. https://doi.org/10.1016/j.jece.2020.104070
  • Xu, M., Xing, Y., Gui, X., Cao, Y., Wang, D., & Wang, L. (2017). Effect of ultrasonic pretreatment on oxidized coal flotation. Energy Fuels, 31, 14367–14373. https://doi.org/10.1021/acs.energyfuels.7b02115
  • Yasuda, K., Matsushima, H., & Asakura, Y. (2019). Generation and reduction of bulk nanobubbles by ultrasonic irradiation. Chemical Engineering Science, 195, 455–461. https://doi.org/10.1016/j.ces.2018.09.044
  • Yazıcı, E. Y., Deveci, H., Alp, I., & Uslu, T. (2007). Generation of hydrogen peroxide and removal of cyanide from solutions using ultrasonic waves. Desalination, 216(1-3), 209–221. https://doi.org/10.1016/j.desal.2006.12.018
  • Zhang, H. X., Bai, H. J., Dong, X. S., & Wang, Z. Z. (2012). Enhanced desulfurizing flotation of different size fractions of high sulfur coal using sonoelectrochemical method. Fuel Processing Technology, 97, 9–14. https://doi.org/10.1016/j.fuproc.2012.01.005

The effect of ultrasonic treatment on oil agglomeration of lignite suspension

Year 2023, , 471 - 481, 15.04.2023
https://doi.org/10.17714/gumusfenbil.1228887

Abstract

The use of ultrasonic process has mostly been investigated for the flotation process in coal fines, but its application to agglomeration with oils is extremely limited. Therefore, the purpose of present study is to investigate the influence of ultrasound treatment on the oil agglomeration of lignite using kerosene. Ultrasonic process was used in two different ways, at the pretreatment stage and at the agglomeration stage, and different results were found. The use of ultrasonic at the pretreatment stage reduced the ash content of the lignite suspension and increased the combustible recovery. On the other hand, the use of ultrasonic at the agglomeration stage adversely affected the agglomeration of lignite. Other factors affecting the oil agglomeration were the power of ultrasonic and the duration of process, and it was concluded that the agglomeration success was increased by the low power value and the short-term ultrasonic process. As a result, coal with an ash content of 26.02% was cleaned with an ash content of 10.03% and a combustible recovery of 79.06% by ultrasonic pretreatment under optimal conditions.

References

  • Alonso, M. I., Valdés, A. F., Martinez-Tarazona, R. M., & Garcia, A. B. (2002). Coal recovery from fines cleaning wastes by agglomeration with colza oil: a contribution to the environment and energy preservation. Fuel Processing Technology, 75, 85–95. https://doi.org/10.1016/S0378-3820(01)00233-8
  • Allen, R. W., & Wheelock, T. D. (1993). Effects of pH and ionic strength on kinetics of oil agglomeration of oil agglomeration of fine coal. Mineral Engineering, 6(1), 87–97.
  • Altun, N. E., Hwang, J. Y., & Hicyilmaz, C. (2009). Enhancement of flotation performance of oil shale cleaning by ultrasonic treatment. International Journal Mineral Processing, 91(1-2), 1–13. https://doi.org/10.1016/j.minpro.2008.10.003.
  • Ambedkar, B., Chintala, T. N., Nagarajan, R., & Jayanti, S. (2011a). Feasibility of using ultrasound assisted process for sulfur and ash removal from coal. Chemical Engineering and Processing, 50(3), 236–246. https://doi.org/10.1016/j.cep.2011.02.008
  • Ambedkar, B., Nagarajan, R., & Jayanti, S. (2011b). Investigation of high-frequency, high-intensity ultrasonics for size reduction and washing of coal in aqueous medium. Industrial and Engineering Chemistry Research, 50(23), 13210–13219. https://doi.org/10.1021/ie200222w.
  • Aslan, N. (2013). Use of grey analysis to determine optimal oil agglomeration with multiple performance characteristics, Fuel, 109,373–8. https://doi.org/10.1016/j.fuel.2013.02.069
  • Aslan, N., & Unal, I. (2011). Multi-response optimization of oil agglomeration with multiple performance characteristics. Fuel Processing Technology, 92(6), 1157–63. https://doi.org/10.1016/j.fuproc.2010.05.029
  • Barma, S. D., Baskey, P. K., & Biswal, S.K. (2018). Chemical beneficiation of high-ash Indian noncoking coal by alkali leaching under low-frequency ultrasonication, Energy Fuels, 32(2), 1309–1319. https://doi.org/10.1021/acs.energyfuels.7b03291
  • Burat, F., Sirkeci, A. A., & Onal, G. (2014). Improved fine coal dewatering by ultrasonic pretreatment and dewatering aids, Mineral Processing and Extractive Metallurgy Review, 36(2), 129-135. https://doi.org/10.1080/08827508.2014.898637
  • Capes, C.(1980). Principles and applications of size enlargement in liquid systems. Fine Particles Processing, 2, 1442-1462, 1980.
  • Capes, C., & Jonasson, K. (1989). Application of oil–water wetting of coals in beneficiation. Interfacial Phenomena in Coal Technology, Surfactant science series, (1nd ed.), p. 115–155.
  • Cebeci, Y., & Eroglu, N. (1998). Determination of bridging liquid type in oil agglomeration of lignite. Fuel, 77, 419–424 https://doi.org/10.1016/S0016-2361(98)80032-X
  • Cebeci, Y. (2003). Investigation of kinetics of agglomerate growth in oil agglomeration process. Fuel, 82, 1645–1651. https://doi.org/10.1016/S0016-2361(03)00095-4
  • Cebeci, Y., & Sonmez, I. (2002). The investigation of coal-pyrite/lignite concentration and their separation in the artificial mixture by oil agglomeration. Fuel, 81, 1139–46. https://doi.org/10.1016/S0016-2361(02)00028-5
  • Cebeci, Y., & Sonmez, I. (2006). Application of the Box-Wilson experimental design method for the spherical oil agglomeration of coal. Fuel, 85, 289–97. https://doi.org/10.1016/j.fuel.2005.07.017.
  • Celik, M. S. (1989). Effect of ultrasonic treatment on the floatability of coal and galena. Separation Science and Technology, 24(14),1159–66.
  • Chary, G. H. V. C., & Dastidar, M. G. (2010). Optimization of experimental conditions for recovery of coking coal fines by oil agglomeration technique. Fuel, 89(9), 2317–22. https://doi.org/10.1016/j.fuel.2009.12.016
  • Chary, G. H. V. C., & Dastidar, M. G. (2012). Investigation of optimum conditions in coal–oil agglomeration using Taguchi experimental design. Fuel, 98, 259–64. https://doi.org/10.1016/j.fuel.2012.03.027
  • Chary, G. H. V. C., & Dastidar, M. G. (2013). Comprehensive study of process parameters affecting oil agglomeration using vegetable oils. Fuel, 106, 285–92. https://doi.org/10.1016/j.fuel.2012.12.002
  • Chen, Y., Truong, V. N. T., Bu, X., & Xie, G. (2020). A review of effects and applications of ultrasound in mineral flotation. Ultrasonics Sonochemistry, 60, 104739. https://doi.org/10.1016/j.ultsonch.2019.104739
  • De Castro, M. L., & Priego-Capote, F. (2007). Ultrasound-assisted crystallization (sonocrystallization). Ultrasonics Sonochemistry, 14, 717–724. https://doi.org/10.1016/j.ultsonch.2006.12.004
  • Duzyol, S., Aksu, A. Ö., Erişir, H. S., Aspir, K., & Sensogut, C. (2014). Tunçbilek linyit kömürünün yağ aglomerasyonu ile zenginleştirilmesi. Türkiye 19. Kömür Kongresi Bildiriler Kitabı,( pp. 237-244), Zonguldak
  • Duzyol, S. (2015). Investigation of oil agglomeration behavior of Tuncbilek clean coal and separation of artificial mixture of coal–clay by oil agglomeration. Powder Technology, 274, 1–4. https://doi.org/10.1016/j.powtec.2015.01.011
  • Gaikwad, S. G., & Pandit, A. B. (2008). Ultrasound emulsification: Effect of ultrasonic and physicochemical properties on dispersed phase volume and droplet size. Ultrasonics Sonochemistry 15(4), 554–563 https://doi.org/10.1016/j.ultsonch.2007.06.011
  • Gence, N. (2006). Coal recovery from bituminous coal by agglo flotation with petroleum oils. Fuel, 85, 1138–42. https://doi.org/10.1016/j.fuel.2005.11.001
  • Gungoren, C., Ozdemir, O., Wang, X., & Ozkan, S. (2019). Miller J. Effect of ultrasound on bubble-particle interaction in quartz-amine flotation system. Ultrasonics Sonochemistry, 52, 446–454. https://doi.org/10.1016/j.ultsonch.2018.12.023
  • Gurses, A., Doymus, K., & Bayrakceken, S. (1996). Selective oil agglomeration of brown coal: a systematic investigation of the design and process variables in the conditioning step. Fuel, 75(10), 1175–80, https://doi.org/10.1016/0016-2361(96)00077-4
  • Hassanzadeh, A., Sajjady, S. A., Gholami, H., Amini, S., & Ozkan, S. G. (2020). An Improvement on selective separation by applying ultrasound to rougher and re-cleaner stages of copper flotation. Minerals, 10(7), 619. https://doi.org/10.3390/min10070619
  • Jin, L., Wang, W., Tu, Y., Zhang, K., & Lv, Z. (2021). Effect of ultrasonic standing waves on flotation bubbles. Ultrasonics Sonochemistry, 73, 105459. https://doi.org/10.1016/j.ultsonch.2020.105459
  • Kang, W., Xun, H., & Chen, J. (2007). Study of enhanced fine coal de-sulphurization and de-ashing by ultrasonic flotation. Journal of China University of Mining and Technology, 17(3), 358–362. https://doi.org/10.1016/S1006-1266(07)60105-9.
  • Kang, W., Xun, H., & Hu, J. (2008). Study of the effect of ultrasonic treatment on the surface composition and the flotation performance of high-sulfur coal. Fuel Processing Technology, 89(12), 1337–1344. https://doi.org/10.1016/j.fuproc.2008.06.003
  • Kang, W., Xun, H., Kong, X., & Li, M. (2009). Effects from changes in pulp nature after ultrasonic conditioning on high-sulfur coal flotation. Mining Science and Technology, 19(4), 498–502, 507.https://doi.org/10.1016/S1674-5264(09)60093-4
  • Kentish, S., Wooster, T., Ashokkumar, M., Balachandran, S., Mawson, R., & Simons, L. (2008). The use of ultrasonics for nano emulsion preparation. Innovative Food Science and Emerging Technologies, 9, 170–175. https://doi.org/10.1016/j.ifset.2007.07.005
  • Mao, Y., Xia, W., Peng, Y., & Xie, G. (2019a). Ultrasonic-assisted flotation of fine coal: A review. Fuel Processing Technology, 195, 106150. https://doi.org/10.1016/j.fuproc.2019.106150
  • Mao, Y., Chen, Y., Bu, X., & Xie, G. (2019b). Effects of 20 kHz ultrasound on coal flotation: The roles of cavitation and acoustic radiation force. Fuel, 256, 115938. https://doi.org/10.1016/j.fuel.2019.115938
  • Mao, Y., Bu, X., Peng, Y., Tian, F., & Xie, G. (2020). Effects of simultaneous ultrasonic treatment on the separation selectivity and flotation kinetics of high-ash lignite. Fuel, 259(1), 116270. https://doi.org/10.1016/j.fuel.2019.116270
  • Onal, G., Ozer, M., & Arslan, F. (2003). Sedimentation of clay in ultrasonic medium. Mining and Engineering, 16 (2),129–34. doi:10.1016/S0892-6875(02)00309-6.
  • Ozer, M., Basha, O. M., & Morsi, B. (2017). Coal-agglomeration processes: a review. International Journal of Coal Preparation and Utilization, 37(3), 31–167. https://doi.org/10.1080/19392699.2016.1142443.
  • Ozkan, S. G., & Kuyumcu, H. Z. (2006). Investigation of mechanism of ultrasound on coal flotation. International Journal Mineral Processing, 81(3), 201–203. https://doi.org/10.1016/j.minpro.2006.07.011
  • Ozkan, S. G., & Kuyumcu, H. Z. (2007). Design of a flotation cell equipped with ultrasound transducers to enhance coal flotation. Ultrasonics Sonochemistry, 14(5), 639–645. https://doi.org/10.1016/j.ultsonch.2006.10.001
  • Ozkan, S. G. (2012). Effects of simultaneous ultrasonic treatment on flotation of hard coal slimes. Fuel, 93, 576–580. https://doi.org/10.1016/j.fuel.2011.10.032
  • Ozkan, S. G. (2017). Further investigations on simultaneous ultrasonic coal flotation. Minerals, 7(10), 177, https://doi.org/10.3390/min7100177
  • Petela, R., Ignasıak, B., & Pawlak, W. (1995). Selective agglomeration of coal: analysis of laboratory batch test results. Fuel, 74, 1200–1210 https://doi.org/10.1016/0016-2361(95)00047-9
  • Royaei, M. M., Jorjani, E., & Chelgani, S.C. (2012). Combination of microwave and ultrasonic irradiations as a pretreatment method to produce ultraclean coal. International Journal of Coal Preparation and Utilization, 32, 143–155. https://doi.org/10.1080/19392699.2012.663024
  • Sahinoglu, E., & Uslu, T. (2008). Amenability of Muzret bituminous coal to oil agglomeration. Energy Convers Manage, 49, 3684–90. https://doi.org/10.1016/j.enconman.2008.06.026
  • Sahinoglu, E., & Uslu, T. (2013a). Increasing coal quality by oil agglomeration after ultrasonic treatment. Fuel Processing Technology, 116, 332–8. https://doi.org/10.1016/j.fuproc.2013.07.016
  • Sahinoglu, E., & Uslu, T. (2013b). Use of ultrasonic emulsification in oil agglomeration for coal cleaning. Fuel, 113, 719–725. https://doi.org/10.1016/j.fuel.2013.06.046
  • Sahinoglu, E., & Uslu, T. (2014). Effect of particle size on cleaning of high-sulphur fine coal by oil agglomeration. Fuel Processing Technology, 128, 211–9. https://doi.org/10.1016/j.fuproc.2014.07.015
  • Unal, I., & Aktas, Z. (2001). Effect of various bridging liquids on coal fines agglomeration performance. Fuel Processing Technology, 69, 141–55. https://doi.org/10.1016/S0378-3820(00)00137-5
  • Unal, I., & Ersan, M. G. (2005). Oil agglomeration of a lignite treated with microwave energy: effect of particle size and bridging oil. Fuel Processing Technology, 87, 71–76. https://doi.org/10.1016/j.fuproc.2005.08.001
  • Wang, H., Yang, W., Yan, X., Wang, L., Wang, Y., & Zhang, H. (2020). Regulation of bubble size in flotation: A review. Journal of Environmental Chemical Engineering, 8(5), 104070. https://doi.org/10.1016/j.jece.2020.104070
  • Xu, M., Xing, Y., Gui, X., Cao, Y., Wang, D., & Wang, L. (2017). Effect of ultrasonic pretreatment on oxidized coal flotation. Energy Fuels, 31, 14367–14373. https://doi.org/10.1021/acs.energyfuels.7b02115
  • Yasuda, K., Matsushima, H., & Asakura, Y. (2019). Generation and reduction of bulk nanobubbles by ultrasonic irradiation. Chemical Engineering Science, 195, 455–461. https://doi.org/10.1016/j.ces.2018.09.044
  • Yazıcı, E. Y., Deveci, H., Alp, I., & Uslu, T. (2007). Generation of hydrogen peroxide and removal of cyanide from solutions using ultrasonic waves. Desalination, 216(1-3), 209–221. https://doi.org/10.1016/j.desal.2006.12.018
  • Zhang, H. X., Bai, H. J., Dong, X. S., & Wang, Z. Z. (2012). Enhanced desulfurizing flotation of different size fractions of high sulfur coal using sonoelectrochemical method. Fuel Processing Technology, 97, 9–14. https://doi.org/10.1016/j.fuproc.2012.01.005
There are 55 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Kiraz Eşmeli 0000-0001-5699-5199

Publication Date April 15, 2023
Submission Date January 3, 2023
Acceptance Date March 24, 2023
Published in Issue Year 2023

Cite

APA Eşmeli, K. (2023). Ultrasonik işlemin linyit süspansiyonunun yağ aglomerasyonu üzerine etkisi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 13(2), 471-481. https://doi.org/10.17714/gumusfenbil.1228887