The effect of boron amount in the electrolyte on the corrosion properties of Ti45Nb coated by PEO
Year 2023,
, 1127 - 1139, 15.10.2023
Sebahattin Yenal Vangölü
,
Özgü Bayrak
Abstract
Developing more biocompatible biomaterials with mechanical properties similar to those of cortical bone has long been a challenge for scientists. They are still working on new alloys and coating processes to meet this challenge. Among these biocompatible materials, ß-titanium alloys, which will prevent stress-shielding and have a Poisson’s ratio very close to the cortical bone, have been attracting the attention of scientists for a long time. In addition to this, the PEO method, which makes it possible to embed ions into the oxide layer, has also come to the fore in recent years as a surface treatment in order to increase the corrosion resistance, wear resistance and biocompatibility of biomaterials and also to provide antibacterial/antimicrobial properties. In this study, Ca and P-containing oxide layers with two different boron content and no boron content were successfully formed on Ti45Nb ß-titanium alloy substrate by using the PEO method. Surface characterization and corrosion resistance tests of these layers were carried out. The obtained results were compared with each other and with the uncoated substrate. XRD analysis showed that the coatings are primarily composed of two major polymorphs of TiO2, anatase and rutile. Static electrochemical measurements were made in diluted Foetal Bovine Serum (FBS) and hydrogen peroxide added serum. H2O2 was added to simulate the inflammatory state in the body. The measurements showed that all the coated samples had lower corrosion current densities compared to the uncoated ones both in serum and H2O2-added serum.
Thanks
The authors would like to thank Atatürk University East Anatolia High Technology Application and Research Center (DAYTAM) and Erzurum Technical University High Technology Application and Research Center (YUTAM) for their assistance during the characterisation of specimens.
References
- Atila, A., Halici, Z., Cadirci, E., Karakus, E., Palabiyik, S. S., Ay, N., Bakan, F., & Yilmaz, S. (2016). Study of the boron levels in serum after implantation of different ratios nano-hexagonal boron nitride-hydroxy apatite in rat femurs. Materials Science and Engineering C, 58, 1082–1089. https://doi.org/10.1016/j.msec.2015.09.041
- Bai, Y., Deng, Y., Zheng, Y., Li, Y., Zhang, R., Lv, Y., Zhao, Q., & Wei, S. (2016). Characterization, corrosion behavior, cellular response and in vivo bone tissue compatibility of titanium–niobium alloy with low Young’s modulus. Materials Science and Engineering: C, 59, 565–576. https://doi.org/10.1016/J.MSEC.2015.10.062
- Chen, Q., & Thouas, G. (2014). Biomaterials: A basic introduction (1st ed.). CRC Press. https://doi.org/10.1201/b17553
- Cheng, J., Peng, K., Jin, E., Zhang, Y., Liu, Y., Zhang, N., Song, H., Liu, H., & Tang, Z. (2011). Effect of additional boron on tibias of African ostrich chicks. Biological Trace Element Research, 144(1–3), 538–549. https://doi.org/10.1007/s12011-011-9024-y
- Elias, C. N., Lima, J. H. C., Valiev, R., & Meyers, M. A. (2008). Biomedical applications of titanium and its alloys. JOM, 60(3), 46–49. https://doi.org/10.1007/S11837-008-0031-1
- Esfahani, E. A., Bukuaghangin, O., Banfield, S., Vangölü, Y., Yang, L., Neville, A., Hall, R., & Bryant, M. (2022). Surface engineering of wrought and additive layer manufactured Ti-6Al-4V alloy for enhanced load bearing and bio-tribocorrosion applications. Surface and Coatings Technology, 442, 128139. https://doi.org/10.1016/J.SURFCOAT.2022.128139
- Gebert, A., Eigel, D., Gostin, P. F., Hoffmann, V., Uhlemann, M., Helth, A., Pilz, S., Schmidt, R., Calin, M., Göttlicher, M., Rohnke, M., & Janek, J. (2016). Oxidation treatments of beta-type Ti-40Nb for biomedical use. Surface and Coatings Technology, 302, 88–99. https://doi.org/10.1016/J.SURFCOAT.2016.05.036
- Hakki, S. S., Bozkurt, B. S., & Hakki, E. E. (2010). Boron regulates mineralized tissue-associated proteins in osteoblasts (MC3T3-E1). Journal of Trace Elements in Medicine and Biology, 24(4), 243–250. https://doi.org/10.1016/j.jtemb.2010.03.003
- Huang, P., Xu, K. W., & Han, Y. (2005). Preparation and apatite layer formation of plasma electrolytic oxidation film on titanium for biomedical application. Materials Letters, 59(2–3), 185–189. https://doi.org/10.1016/j.matlet.2004.09.045
- Ingemarsson, L., & Halvarsson, M. (2011). SEM / EDX analysis of boron 2011-0131 a case study. Chalmers University of Technology. http://fy.chalmers.se/~f10mh/Halvarsson/EM_intro_course_files/SEM_EDX%20Boron.pdf
- Johansson, C. B., & Albrektsson, T. (1991). A removal torque and histomorphometric study of commercially pure niobium and titanium implants in rabbit bone. Clinical Oral Implants Research, 2(1), 24–29. https://doi.org/10.1034/J.1600-0501.1991.020103.X
- Long, M., & Rack, H. J. (1998). Titanium alloys in total joint replacement—a materials science perspective. Biomaterials, 19(18), 1621–1639. https://doi.org/10.1016/S0142-9612(97)00146-4
- Lv, G. H., Chen, H., Gu, W. C., Li, L., Niu, E. W., Zhang, X. H., & Yang, S. Z. (2008). Effects of current frequency on the structural characteristics and corrosion property of ceramic coatings formed on magnesium alloy by PEO technology. Journal of Materials Processing Technology, 208(1–3), 9–13. https://doi.org/10.1016/j.jmatprotec.2007.12.125
- Matsuno, H., Yokoyama, A., Watari, F., Uo, M., & Kawasaki, T. (2001). Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials, 22(11), 1253–1262. https://doi.org/10.1016/S0142-9612(00)00275-1
- Niinomi, M. (2003). Recent research and development in titanium alloys for biomedical applications and healthcare goods. Science and Technology of Advanced Materials, 4(5), 445–454. https://doi.org/10.1016/J.STAM.2003.09.002
- Niinomi, M., & Boehlert, C. J. (2015). Titanium alloys for biomedical applications. In M. Niinomi, T. Narushima, & M. Nakai (Eds.), Advances in Metallic Materials (ss. 179–213). Springer. https://doi.org/10.1007/978-3-662-46836-4_8
- Ozaki, T., Matsumoto, H., Watanabe, S., & Hanada, S. (2004). Beta Ti alloys with low Young’s modulus. Materials Transactions, 45(8), 2776–2779. https://doi.org/10.2320/MATERTRANS.45.2776
- Sopchenski, L., Cogo, S., Dias-Ntipanyj, M. F., Elifio-Espósito, S., Popat, K. C., & Soares, P. (2018). Bioactive and antibacterial boron doped TiO2 coating obtained by PEO. Applied Surface Science, 458, 49–58. https://doi.org/10.1016/j.apsusc.2018.07.049
- Taşli, P. N., Yalvaç, M. E., Sofiev, N., & Şahin, F. (2013). Effect of F68, F127, and P85 pluronic block copolymers on odontogenic differentiation of human tooth germ stem cells. Journal of Endodontics, 39(10), 1265–1271. https://doi.org/10.1016/j.joen.2013.06.011
- Valiev, R. Z., Estrin, Y., Horita, Z., Langdon, T. G., Zehetbauer, M. J., & Zhu, Y. T. (2015). Fundamentals of superior properties in bulk NanoSPD materials. Materials Research Letters, 4(1), 1–21. https://doi.org/10.1080/21663831.2015.1060543
- Vangolu, Y., & Kilic, S. (2022). Corrosion and wear performances of hydroxyapatite and boron-containing TiO2 composite coatings on Ti6Al7Nb alloy. Surface Topography: Metrology and Properties, 10(2), 025030. https://doi.org/10.1088/2051-672X/AC7816
- Wang, Y., Wang, L., Zheng, H., Du, C., ChengyunNing, Shi, Z., & Xu, C. (2010). Effect of frequency on the structure and cell response of Ca- and P-containing MAO films. Applied Surface Science, 256(7), 2018–2024. https://doi.org/10.1016/j.apsusc.2009.09.041
- Yavari, S. A., Necula, B. S., Fratila-Apachitei, L. E., Duszczyk, J., & Apachitei, I. (2016). Biofunctional surfaces by plasma electrolytic oxidation on titanium biomedical alloys. Surface Engineering, 32(6), 411–417. https://doi.org/10.1179/1743294415Y.0000000101
- Ying, X., Cheng, S., Wang, W., Lin, Z., Chen, Q., Zhang, W., Kou, D., Shen, Y., Cheng, X., Rompis, F. A., Peng, L., & Lu, C. Z. (2011). Effect of boron on osteogenic differentiation of human bone marrow stromal cells. Biological Trace Element Research, 144(1–3), 306–315. https://doi.org/10.1007/s12011-011-9094-x
Elektrolit içerisindeki bor miktarının PEO ile kaplanan Ti45Nb'nin korozyon özelliklerine etkisi
Year 2023,
, 1127 - 1139, 15.10.2023
Sebahattin Yenal Vangölü
,
Özgü Bayrak
Abstract
Kortikal kemiğe benzer mekanik özelliklere sahip daha biyouyumlu biyomalzemeler geliştirmek uzun zamandır bilim adamları için bir zorluk olmuştur. Bu zorluğun üstesinden gelmek için hala yeni alaşımlar ve kaplama süreçleri üzerinde çalışmalar sürmektedir. Bu biyouyumlu malzemeler arasında stres kalkanı etkisini önleyecek ve kortikal kemiğe çok yakın Poisson oranına sahip ß-titanyum alaşımları uzun süredir bilim insanlarının ilgisini çekmektedir. Bunun yanı sıra oksit tabakasına iyon gömmeyi mümkün kılan PEO yöntemi, biyomalzemelerin korozyon direncini, aşınma direncini ve biyouyumluluğunu artırmak aynı zamanda antibakteriyel/antimikrobiyal özellikler sağlamak amacıyla son yıllarda bir yüzey işlemi olarak öne çıkmaktadır. Bu çalışmada, PEO yöntemi kullanılarak Ti45Nb ß-titanyum alaşımlı altlık üzerinde iki farklı bor içeriğine sahip ve bir de bor içermeyen Ca ve P içeren oksit tabakaları başarıyla oluşturulmuştur. Bu tabakaların yüzey karakterizasyonları ve korozyon dayanım testleri yapılmıştır. Elde edilen sonuçlar kendi aralarında ve kaplanmamış numuneler ile karşılaştırılmıştır. XRD analizlerinde kaplamaların temel olarak iki ana TiO2 polimorfundan, anataz ve rutilden oluştuğu görülmüştür. Seyreltilmiş Fetal Sığır Serumu (FBS) ve hidrojen peroksit eklenmiş serumda statik elektrokimyasal ölçümler yapılmıştır. H2O2 vücuttaki enflamatuar durumu simüle etmek için eklenmiştir. Ölçümler, kaplanmış tüm numunelerin hem serumda hem de H2O2 ilaveli serumda kaplanmamış olanlara kıyasla daha düşük korozyon akımı yoğunluklarına sahip olduğunu göstermiştir.
References
- Atila, A., Halici, Z., Cadirci, E., Karakus, E., Palabiyik, S. S., Ay, N., Bakan, F., & Yilmaz, S. (2016). Study of the boron levels in serum after implantation of different ratios nano-hexagonal boron nitride-hydroxy apatite in rat femurs. Materials Science and Engineering C, 58, 1082–1089. https://doi.org/10.1016/j.msec.2015.09.041
- Bai, Y., Deng, Y., Zheng, Y., Li, Y., Zhang, R., Lv, Y., Zhao, Q., & Wei, S. (2016). Characterization, corrosion behavior, cellular response and in vivo bone tissue compatibility of titanium–niobium alloy with low Young’s modulus. Materials Science and Engineering: C, 59, 565–576. https://doi.org/10.1016/J.MSEC.2015.10.062
- Chen, Q., & Thouas, G. (2014). Biomaterials: A basic introduction (1st ed.). CRC Press. https://doi.org/10.1201/b17553
- Cheng, J., Peng, K., Jin, E., Zhang, Y., Liu, Y., Zhang, N., Song, H., Liu, H., & Tang, Z. (2011). Effect of additional boron on tibias of African ostrich chicks. Biological Trace Element Research, 144(1–3), 538–549. https://doi.org/10.1007/s12011-011-9024-y
- Elias, C. N., Lima, J. H. C., Valiev, R., & Meyers, M. A. (2008). Biomedical applications of titanium and its alloys. JOM, 60(3), 46–49. https://doi.org/10.1007/S11837-008-0031-1
- Esfahani, E. A., Bukuaghangin, O., Banfield, S., Vangölü, Y., Yang, L., Neville, A., Hall, R., & Bryant, M. (2022). Surface engineering of wrought and additive layer manufactured Ti-6Al-4V alloy for enhanced load bearing and bio-tribocorrosion applications. Surface and Coatings Technology, 442, 128139. https://doi.org/10.1016/J.SURFCOAT.2022.128139
- Gebert, A., Eigel, D., Gostin, P. F., Hoffmann, V., Uhlemann, M., Helth, A., Pilz, S., Schmidt, R., Calin, M., Göttlicher, M., Rohnke, M., & Janek, J. (2016). Oxidation treatments of beta-type Ti-40Nb for biomedical use. Surface and Coatings Technology, 302, 88–99. https://doi.org/10.1016/J.SURFCOAT.2016.05.036
- Hakki, S. S., Bozkurt, B. S., & Hakki, E. E. (2010). Boron regulates mineralized tissue-associated proteins in osteoblasts (MC3T3-E1). Journal of Trace Elements in Medicine and Biology, 24(4), 243–250. https://doi.org/10.1016/j.jtemb.2010.03.003
- Huang, P., Xu, K. W., & Han, Y. (2005). Preparation and apatite layer formation of plasma electrolytic oxidation film on titanium for biomedical application. Materials Letters, 59(2–3), 185–189. https://doi.org/10.1016/j.matlet.2004.09.045
- Ingemarsson, L., & Halvarsson, M. (2011). SEM / EDX analysis of boron 2011-0131 a case study. Chalmers University of Technology. http://fy.chalmers.se/~f10mh/Halvarsson/EM_intro_course_files/SEM_EDX%20Boron.pdf
- Johansson, C. B., & Albrektsson, T. (1991). A removal torque and histomorphometric study of commercially pure niobium and titanium implants in rabbit bone. Clinical Oral Implants Research, 2(1), 24–29. https://doi.org/10.1034/J.1600-0501.1991.020103.X
- Long, M., & Rack, H. J. (1998). Titanium alloys in total joint replacement—a materials science perspective. Biomaterials, 19(18), 1621–1639. https://doi.org/10.1016/S0142-9612(97)00146-4
- Lv, G. H., Chen, H., Gu, W. C., Li, L., Niu, E. W., Zhang, X. H., & Yang, S. Z. (2008). Effects of current frequency on the structural characteristics and corrosion property of ceramic coatings formed on magnesium alloy by PEO technology. Journal of Materials Processing Technology, 208(1–3), 9–13. https://doi.org/10.1016/j.jmatprotec.2007.12.125
- Matsuno, H., Yokoyama, A., Watari, F., Uo, M., & Kawasaki, T. (2001). Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials, 22(11), 1253–1262. https://doi.org/10.1016/S0142-9612(00)00275-1
- Niinomi, M. (2003). Recent research and development in titanium alloys for biomedical applications and healthcare goods. Science and Technology of Advanced Materials, 4(5), 445–454. https://doi.org/10.1016/J.STAM.2003.09.002
- Niinomi, M., & Boehlert, C. J. (2015). Titanium alloys for biomedical applications. In M. Niinomi, T. Narushima, & M. Nakai (Eds.), Advances in Metallic Materials (ss. 179–213). Springer. https://doi.org/10.1007/978-3-662-46836-4_8
- Ozaki, T., Matsumoto, H., Watanabe, S., & Hanada, S. (2004). Beta Ti alloys with low Young’s modulus. Materials Transactions, 45(8), 2776–2779. https://doi.org/10.2320/MATERTRANS.45.2776
- Sopchenski, L., Cogo, S., Dias-Ntipanyj, M. F., Elifio-Espósito, S., Popat, K. C., & Soares, P. (2018). Bioactive and antibacterial boron doped TiO2 coating obtained by PEO. Applied Surface Science, 458, 49–58. https://doi.org/10.1016/j.apsusc.2018.07.049
- Taşli, P. N., Yalvaç, M. E., Sofiev, N., & Şahin, F. (2013). Effect of F68, F127, and P85 pluronic block copolymers on odontogenic differentiation of human tooth germ stem cells. Journal of Endodontics, 39(10), 1265–1271. https://doi.org/10.1016/j.joen.2013.06.011
- Valiev, R. Z., Estrin, Y., Horita, Z., Langdon, T. G., Zehetbauer, M. J., & Zhu, Y. T. (2015). Fundamentals of superior properties in bulk NanoSPD materials. Materials Research Letters, 4(1), 1–21. https://doi.org/10.1080/21663831.2015.1060543
- Vangolu, Y., & Kilic, S. (2022). Corrosion and wear performances of hydroxyapatite and boron-containing TiO2 composite coatings on Ti6Al7Nb alloy. Surface Topography: Metrology and Properties, 10(2), 025030. https://doi.org/10.1088/2051-672X/AC7816
- Wang, Y., Wang, L., Zheng, H., Du, C., ChengyunNing, Shi, Z., & Xu, C. (2010). Effect of frequency on the structure and cell response of Ca- and P-containing MAO films. Applied Surface Science, 256(7), 2018–2024. https://doi.org/10.1016/j.apsusc.2009.09.041
- Yavari, S. A., Necula, B. S., Fratila-Apachitei, L. E., Duszczyk, J., & Apachitei, I. (2016). Biofunctional surfaces by plasma electrolytic oxidation on titanium biomedical alloys. Surface Engineering, 32(6), 411–417. https://doi.org/10.1179/1743294415Y.0000000101
- Ying, X., Cheng, S., Wang, W., Lin, Z., Chen, Q., Zhang, W., Kou, D., Shen, Y., Cheng, X., Rompis, F. A., Peng, L., & Lu, C. Z. (2011). Effect of boron on osteogenic differentiation of human bone marrow stromal cells. Biological Trace Element Research, 144(1–3), 306–315. https://doi.org/10.1007/s12011-011-9094-x