Research Article
BibTex RIS Cite

Relationships with the Fibonacci Numbers and the Special Vertices of the Suborbital Graphs

Year 2017, Volume: 7 Issue: 2, 168 - 180, 31.07.2017

Abstract

Using general ideas in the study of (Sims, 1967), suborbital
graphs produced by imprimitive action on rational projective line of the
modular group
 were examined.
Properties of Farey graph
 were extended
to suborbital graphs
, where   and  (Jones et al.,
1991). In our previous study, trees which are subgraphs of the suborbital
graphs
 consisting of
the orbits in
 block of  were examined.
Relationships of continued fractions with vertices of paths of minimal length
on the subgraphs were established and value of the farthest vertex which a
vertex can be bound on this path of the suborbital graph
 was found
(Deger et al., 2011). In the present study, using structure of continued
fractions, relationships of values of these type of vertices with Fibonacci
numbers in special cases were investigated. As a most important result,
equation
 was found,
where
 and value of Fibonacci number sequence for all  natural number
is as
. In addition, terms of Fibonacci sequence  and  were obtained
by using this matrix.

References

  • Akbas, M., 2001, On Suborbital Graphs for the Modular Group, Bulletin of the London Mathematical Society, 33, 647-652.
  • Biggs, N.L. ve White, A.T., 1979, Permutation Groups and Combinatorial Structures, London Mathematical Society Lecture Note Series 33, Cambridge University Press, Cambridge, 140p.
  • Cuyt, A., Petersen, V.B., Verdonk, B., Waadeland, H. ve Jones, W.B., 2008, Handbook of Continued Fractions for Special Functions, Springer, New York, 431p.
  • Deger, A.H., Besenk, M. ve Guler, B.O., 2011, On Suborbital Graphs and Related Continued Fractions, Applied Mathematics and Computation, 218, 3, 746-750.
  • Deger, A.H., 2017, Vertices of Paths of Minimal Lengths on Suborbital Graphs, Filomat, (in press).
  • Diamond, H.G., 1982, Elementary Methods in the Study of the Distrubition of Prime Numbers, Bulletin of the American Mathematical Society, 7, 3, 553-589.
  • Ford, L.R., 1951, Automorphic Functions, American Mathematical Society, Chelsea Publishing Series 85, 333p.
  • Guler, B.O., Besenk, M., Deger, A.H. ve Kader, S., 2011, Elliptic Elements and Circuits in Suborbital Graphs, Hacettepe Journal of Mathematics and Statistics, 40, 2, 203-210.
  • Jones G.A., Singerman, D. ve Wicks, K., 1991, The Modular Group and Generalized Farey Graphs, London Mathematical Society Lecture Note Series, 160, 316-338.
  • Kader, S., Guler, B.O. ve Deger, A.H., 2010, Suborbital Graphs for a Special Subgroup of the Normalizer of Γ_0 (m), Iranian Journal of Science and Technology, Transactions A: Science, 34, 4, 305-312.

Fibonacci Sayıları ile Alt Yörüngesel Grafların Özel Köşeleri Arasındaki İlişkiler

Year 2017, Volume: 7 Issue: 2, 168 - 180, 31.07.2017

Abstract

(Sims, 1967) in çalışmasındaki
genel fikirler kullanılarak, \Gamma
 Modüler grubunun rasyonel projektif doğrusu üzerindeki impirimitif
hareketi ile üretilen alt yörüngesel graflar incelendi. (u,N)=1
 ve N>1 olmak üzere, G_1,1 Farey grafının
özellikleri G_u,N
 alt yörüngesel
graflarına genişletildi
(Jones vd., 1991). Önceki
çalışmamızda G_u,N 
 nin [sonsuz] bloğundaki
yörüngelerinden oluşan F_u,N
 alt yörüngesel
grafının alt grafları olan ağaçlar incelendi. Bu alt graflar üzerindeki minimal
uzunluklu yolların köşelerinin sürekli kesirler ile ilişkileri tespit edildi ve
 F_u,N alt yörüngesel
grafındaki bu yolda bir köşenin bağlanabileceği en uzak köşenin değeri bulundu
(Deger vd., 2011). Bu çalışmada ise özel durumlarda bu tip köşelerin sürekli
kesir yapısı ile birlikte Fibonacci sayıları ile ilişkileri incelendi. En
önemli sonuç olarak,
 F_0=0, F_1=1 ve her n>=2 doğal sayısı için n. Fibonacci sayı
dizisinin değeri F_n
 olmak üzere,  (burada yazılamıyor) eşitliği
bulundu. Bu matris yardımı ile birlikte F_2n-1 
 ve F_2n+1 Fibonacci
dizisi terimleri de elde edildi.


References

  • Akbas, M., 2001, On Suborbital Graphs for the Modular Group, Bulletin of the London Mathematical Society, 33, 647-652.
  • Biggs, N.L. ve White, A.T., 1979, Permutation Groups and Combinatorial Structures, London Mathematical Society Lecture Note Series 33, Cambridge University Press, Cambridge, 140p.
  • Cuyt, A., Petersen, V.B., Verdonk, B., Waadeland, H. ve Jones, W.B., 2008, Handbook of Continued Fractions for Special Functions, Springer, New York, 431p.
  • Deger, A.H., Besenk, M. ve Guler, B.O., 2011, On Suborbital Graphs and Related Continued Fractions, Applied Mathematics and Computation, 218, 3, 746-750.
  • Deger, A.H., 2017, Vertices of Paths of Minimal Lengths on Suborbital Graphs, Filomat, (in press).
  • Diamond, H.G., 1982, Elementary Methods in the Study of the Distrubition of Prime Numbers, Bulletin of the American Mathematical Society, 7, 3, 553-589.
  • Ford, L.R., 1951, Automorphic Functions, American Mathematical Society, Chelsea Publishing Series 85, 333p.
  • Guler, B.O., Besenk, M., Deger, A.H. ve Kader, S., 2011, Elliptic Elements and Circuits in Suborbital Graphs, Hacettepe Journal of Mathematics and Statistics, 40, 2, 203-210.
  • Jones G.A., Singerman, D. ve Wicks, K., 1991, The Modular Group and Generalized Farey Graphs, London Mathematical Society Lecture Note Series, 160, 316-338.
  • Kader, S., Guler, B.O. ve Deger, A.H., 2010, Suborbital Graphs for a Special Subgroup of the Normalizer of Γ_0 (m), Iranian Journal of Science and Technology, Transactions A: Science, 34, 4, 305-312.
There are 10 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Ali Hikmet Değer

Publication Date July 31, 2017
Submission Date February 7, 2017
Published in Issue Year 2017 Volume: 7 Issue: 2

Cite

APA Değer, A. H. (2017). Fibonacci Sayıları ile Alt Yörüngesel Grafların Özel Köşeleri Arasındaki İlişkiler. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 7(2), 168-180.