Research Article
BibTex RIS Cite

Nem ve Frekansa Bağlı Olarak Kayısı ve Erik Yapraklarının Dielektrik Özelliklerinin Dalga Kılavuzu İletim Hattı Yöntemiyle Belirlenmesi

Year 2020, Volume: 10 Issue: 1, 195 - 204, 15.01.2020
https://doi.org/10.17714/gumusfenbil.604818

Abstract

Gelişen teknolojiyle birlikte
tarımsal ürünlerdeki uygulamalar gün geçtikçe yaygınlaşmaktadır. Bu
uygulamalarda temel belirleyici parametre, bitkisel malzemenin dielektrik
özelliğinin belirlenmesidir. Çünkü malzemeye nüfuz eden elektromanyetik (EM)
dalganın malzemeyle nasıl etkileşeceği dielektrik özelliklerine de bağlıdır.
Üretimde verim ve kalitenin artmasını sağlayan uzaktan algılama (UA) ile
kurutma ve ısıtma teknolojilerinin etkin çalışabilmesi, malzemenin dielektrik
karakteristiğiyle ilişkilidir. Bu çalışmada, Türkiye’de çok yaygın olarak
üretimi yapılan kayısı ve erik ağaçlarının yapraklarının dielektrik
parametreleri iletim hattı yöntemi kullanılarak ölçülmüştür. Ölçümler 3,30-4,90
GHz arasında (WR229 dalga kılavuzu için) yapılmış ve nem oranı ve frekansa
bağlı kayısı ve erik yapraklarının dielektrik karakteristikleri incelenmiştir.
Kayısı yapraklarının dielektrik ölçüm verilerini kullanarak frekans ve nem
oranına bağlı, eğri uydurma yöntemiyle yeni bir model önerilmiştir. Bu model,
kayısı türüyle aynı aileden olan erik yaprağının dielektrik ölçüm sonuçlarıyla
karşılaştırılarak önerilen modelin doğruluğu test edilmiştir. Modelin
performansını görmek için determinasyon katsayısı R2 ve Hataların
Ortalama Kare Kökü (RMSE) değerleri sırasıyla 0.996 ve 0.653 olarak elde
edilmiştir.

References

  • Afzal, A. ve Mousavi, S.F., 2008. Estimation of moisture in maize leaf by measuring leaf dielectric constant. International Journal of Agriculture and Biology, 10, 66-68.
  • Baharudin, E., Ismail, A., Alhawari, A.R.H. Zainudin, E.S., Majid, D.L. ve Seman, F.C., 2015. Investigation on the dielectric properties of pulverized oil palm frond and pineapple leaf fiber for X-band microwave absorber application. Advanced Materials Research, 488-491.
  • Ballester-Berman, J.D., López-Sánchez, J.M. ve Fortuny-Guasch, J., 2005. Retrieval of biophysical parameters of agricultural crops using polarimetric SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 43 (4), 683-694.
  • Chuah, H., Kam, S. ve Chye, Y., 1997. Microwave dielectric properties of rubber and oil palm leaf samples: measurement and modelling. International Journal of Remote Sensing, 18, 2623-2639.
  • Colak, B., 2019. Moisture content effect of banana leaves to radio frequency absorbing. Microwave and Optical Technology Letters, 61, 2591-2595.
  • Faktorová, D. ve Isteníková, K., 2011. Modelling of scattering parameters in biological tissues. Skin, 1, 1-7.
  • Helhel, S. ve Kurnaz, O., 2016. Buried metal detection within the wooden block by X‐band measurements. Microwave and optical technology letters, 58, 1245-1253.
  • Jayamani, E., Hamdan, S., Ezhumalai, P. ve Bakri, M.K., 2016. Investigation on dielectric and sound absorption properties of banana fibers reinforced epoxy composites. Jurnal Teknologi, 78, 97-103.
  • Kamaruddin, M.J., Yusof, M. Ngadi, N., Zakaria, Z., Arsad, A. ve Kidam, K., 2017. Dielectric Properties for Extraction of Orthosiphon Stamineus (Java Tea) Leaves. Chemical Engineering Transactions, 56, 1771-1776.
  • Kaur, R., Aul,G.D. ve Chawla, V., 2015. Improved reflection loss performance of dried banana leaves pyramidal microwave absorbers by coal for application in anechoic chambers. Progress In Electromagnetics Research, 43, 157-164.
  • Khaled, D., Novas,N., Gazquez, J., Garcia, R. ve Manzano-Agugliaro, F., 2015. Fruit and vegetable quality assessment via dielectric sensing. Sensors, 15, 15363-15397.
  • Kocakusak, A., Colak, B. ve Helhel, S., 2016. Frequency dependent complex dielectric permittivity of rubber and magnolia leaves and leaf water content relation. Journal of Microwave Power and Electromagnetic Energy, 50, 294-307.
  • Kraszewski, A.W. ve Nelson, S.O., 2004. Microwave permittivity determination in agricultural products. Journal of Microwave Power and Electromagnetic Energy, 39, 41-52.
  • Krraoui, H., Mejri, F. ve Aguili, T., 2016. Dielectric constant measurement of materials by a microwave technique: application to the characterization of vegetation leaves. Journal of Electromagnetic Waves and Applications, 30, 1643-1660.
  • Kumar, A., Sharma, S. ve Singh, G., 2007. Measurement of dielectric constant and loss factor of the dielectric material at microwave frequencies. Progress In Electromagnetics Research, 69, 47-54.
  • Li, Z., Zeng, J., Chen, Q. ve Bi, H., 2014. The measurement and model construction of complex permittivity of vegetation. Science China Earth Sciences, 57 (4), 729-740.
  • Navarrete, A., Mato, R., Dimitrakis, G., Lester, E., Robinson, J. ve Cocero,M., 2011. Measurement and estimation of aromatic plant dielectric properties. Application to low moisture rosemary. Industrial Crops and Products, 33, 697-703.
  • Nelson, S.O., 1991. Dielectric properties of agricultural products-measurements and applications. IEEE Transactions on Electrical Insulation,26, 845-869.
  • Nelson, S.O., 2006. Agricultural applications of dielectric measurements. IEEE Transactions on Dielectrics and Electrical Insulation, 13, 688-702.
  • Nelson, S.O., 1991. Dielectric properties measurement techniques and applications. Transactions of the ASAE-American Society of Agricultural Engineers, 42, 523-530.
  • Nicolson, A. ve Ross, G., 1970. Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Transactions on instrumentation and measurement, 19, 377-382.
  • Romanov, A.N. ve Ulanov, P.N., 2018. Seasonal Differences in Dielectric Properties of Dwarf Woody Tundra Vegetation in a Microwave Range. IEEE Transactions on Geoscience and Remote Sensing, 57, 3119-3125.
  • Shrestha, B.L., Wood, H.C. ve Sokhansanj, S., 2011. Microwave dielectric properties of alfalfa leaves from 0.3 to 18 GHz. IEEE Transactions on Instrumentation and Measurement, 60, 2926-2933.
  • Trabelsi, S., Mckeown, M. S. ve Nelson, S.O., 2016. Dielectric properties-based method for rapid and nondestructive moisture sensing in almonds. Journal of Microwave Power and Electromagnetic Energy, 50, 94-105.
  • Ulaby, F.T. ve El-Rayes, M.A., 1987. Microwave dielectric spectrum of vegetation-Part II: Dual-dispersion model. IEEE Transactions on Geoscience and Remote Sensing, 550-557.
  • Ulaby, F.T. ve Jedlicka, R., 1984. Microwave dielectric properties of plant materials. IEEE Transactions on Geoscience and Remote Sensing, 406-415.
  • Uygulama Notları, 2004. De-embedding and Embedding S-Parameter Networks Using a Vector Network Analyzer.
  • Van Emmerik, T. H., 2013. Diurnal differences in vegetation dielectric constant as a measure of water stress. Yüksek Lisans Tezi, Delft Üniversitesi, Hollanda.
  • Van Emmerik, T., Steele-Dunne, S., Judge, J. ve van de Giesen, N., 2015. A comparison between leaf dielectric properties of stressed and unstressed tomato plants, IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 275-278.
  • Venkatesh, M. ve Raghavan, G., 2005. An overview of dielectric properties measuring techniques. Canadian Biosystems Engineering, 47, 15-30.
  • Weir, W.B., 1974. Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proceedings of the IEEE, 62, 33-36.
  • Ye, L., Li, C., Sun, X., Jin, S. Chen, B. ve Ye, X., 2016. Thru-Reflect-Line Calibration technique: error analysis for characteristic impedance variations in the line standards. IEEE Transactions on Electromagnetic Compatibility, 59, 779-788.

Determination of Dielectric Properties of Apricot and Plum Leaves by Waveguide Transmission Line Method depending on Moisture Content and Frequency

Year 2020, Volume: 10 Issue: 1, 195 - 204, 15.01.2020
https://doi.org/10.17714/gumusfenbil.604818

Abstract

With developing technology, applications in
agricultural products are becoming more common. The main dominant parameter in
these applications is the determination of the dielectric property of the plant
material. Because how the electromagnetic (EM) wave penetrating the material
interacts with the material depends on its dielectric properties. The ability
of remote sensing (RS) and drying and heating technologies to increase
efficiency and quality in production is related to the dielectric
characteristics of the material. In this study, the dielectric parameters of
leaves of apricot and plum trees made widely produced in Turkey are measured by
using the transmission line technique. Measurements are conducted between 3.30-4.90
GHz (for WR229 waveguide) and dielectric characteristics of apricot and plum
leaves depending on moisture content and frequency are investigated. A new
model is proposed by a curve fitting method based on frequency and moisture
content using dielectric measurement data of apricot leaves. This model is
compared with the dielectric measurement results of the plum leaves of the same
family as the apricot type and the accuracy of the proposed model is tested. To
make sure the performance of the model well enough, the coefficient of
determination R2 and Mean Square Root of Error (RMSE) values are
obtained as 0.996 and 0.653, respectively.

References

  • Afzal, A. ve Mousavi, S.F., 2008. Estimation of moisture in maize leaf by measuring leaf dielectric constant. International Journal of Agriculture and Biology, 10, 66-68.
  • Baharudin, E., Ismail, A., Alhawari, A.R.H. Zainudin, E.S., Majid, D.L. ve Seman, F.C., 2015. Investigation on the dielectric properties of pulverized oil palm frond and pineapple leaf fiber for X-band microwave absorber application. Advanced Materials Research, 488-491.
  • Ballester-Berman, J.D., López-Sánchez, J.M. ve Fortuny-Guasch, J., 2005. Retrieval of biophysical parameters of agricultural crops using polarimetric SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 43 (4), 683-694.
  • Chuah, H., Kam, S. ve Chye, Y., 1997. Microwave dielectric properties of rubber and oil palm leaf samples: measurement and modelling. International Journal of Remote Sensing, 18, 2623-2639.
  • Colak, B., 2019. Moisture content effect of banana leaves to radio frequency absorbing. Microwave and Optical Technology Letters, 61, 2591-2595.
  • Faktorová, D. ve Isteníková, K., 2011. Modelling of scattering parameters in biological tissues. Skin, 1, 1-7.
  • Helhel, S. ve Kurnaz, O., 2016. Buried metal detection within the wooden block by X‐band measurements. Microwave and optical technology letters, 58, 1245-1253.
  • Jayamani, E., Hamdan, S., Ezhumalai, P. ve Bakri, M.K., 2016. Investigation on dielectric and sound absorption properties of banana fibers reinforced epoxy composites. Jurnal Teknologi, 78, 97-103.
  • Kamaruddin, M.J., Yusof, M. Ngadi, N., Zakaria, Z., Arsad, A. ve Kidam, K., 2017. Dielectric Properties for Extraction of Orthosiphon Stamineus (Java Tea) Leaves. Chemical Engineering Transactions, 56, 1771-1776.
  • Kaur, R., Aul,G.D. ve Chawla, V., 2015. Improved reflection loss performance of dried banana leaves pyramidal microwave absorbers by coal for application in anechoic chambers. Progress In Electromagnetics Research, 43, 157-164.
  • Khaled, D., Novas,N., Gazquez, J., Garcia, R. ve Manzano-Agugliaro, F., 2015. Fruit and vegetable quality assessment via dielectric sensing. Sensors, 15, 15363-15397.
  • Kocakusak, A., Colak, B. ve Helhel, S., 2016. Frequency dependent complex dielectric permittivity of rubber and magnolia leaves and leaf water content relation. Journal of Microwave Power and Electromagnetic Energy, 50, 294-307.
  • Kraszewski, A.W. ve Nelson, S.O., 2004. Microwave permittivity determination in agricultural products. Journal of Microwave Power and Electromagnetic Energy, 39, 41-52.
  • Krraoui, H., Mejri, F. ve Aguili, T., 2016. Dielectric constant measurement of materials by a microwave technique: application to the characterization of vegetation leaves. Journal of Electromagnetic Waves and Applications, 30, 1643-1660.
  • Kumar, A., Sharma, S. ve Singh, G., 2007. Measurement of dielectric constant and loss factor of the dielectric material at microwave frequencies. Progress In Electromagnetics Research, 69, 47-54.
  • Li, Z., Zeng, J., Chen, Q. ve Bi, H., 2014. The measurement and model construction of complex permittivity of vegetation. Science China Earth Sciences, 57 (4), 729-740.
  • Navarrete, A., Mato, R., Dimitrakis, G., Lester, E., Robinson, J. ve Cocero,M., 2011. Measurement and estimation of aromatic plant dielectric properties. Application to low moisture rosemary. Industrial Crops and Products, 33, 697-703.
  • Nelson, S.O., 1991. Dielectric properties of agricultural products-measurements and applications. IEEE Transactions on Electrical Insulation,26, 845-869.
  • Nelson, S.O., 2006. Agricultural applications of dielectric measurements. IEEE Transactions on Dielectrics and Electrical Insulation, 13, 688-702.
  • Nelson, S.O., 1991. Dielectric properties measurement techniques and applications. Transactions of the ASAE-American Society of Agricultural Engineers, 42, 523-530.
  • Nicolson, A. ve Ross, G., 1970. Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Transactions on instrumentation and measurement, 19, 377-382.
  • Romanov, A.N. ve Ulanov, P.N., 2018. Seasonal Differences in Dielectric Properties of Dwarf Woody Tundra Vegetation in a Microwave Range. IEEE Transactions on Geoscience and Remote Sensing, 57, 3119-3125.
  • Shrestha, B.L., Wood, H.C. ve Sokhansanj, S., 2011. Microwave dielectric properties of alfalfa leaves from 0.3 to 18 GHz. IEEE Transactions on Instrumentation and Measurement, 60, 2926-2933.
  • Trabelsi, S., Mckeown, M. S. ve Nelson, S.O., 2016. Dielectric properties-based method for rapid and nondestructive moisture sensing in almonds. Journal of Microwave Power and Electromagnetic Energy, 50, 94-105.
  • Ulaby, F.T. ve El-Rayes, M.A., 1987. Microwave dielectric spectrum of vegetation-Part II: Dual-dispersion model. IEEE Transactions on Geoscience and Remote Sensing, 550-557.
  • Ulaby, F.T. ve Jedlicka, R., 1984. Microwave dielectric properties of plant materials. IEEE Transactions on Geoscience and Remote Sensing, 406-415.
  • Uygulama Notları, 2004. De-embedding and Embedding S-Parameter Networks Using a Vector Network Analyzer.
  • Van Emmerik, T. H., 2013. Diurnal differences in vegetation dielectric constant as a measure of water stress. Yüksek Lisans Tezi, Delft Üniversitesi, Hollanda.
  • Van Emmerik, T., Steele-Dunne, S., Judge, J. ve van de Giesen, N., 2015. A comparison between leaf dielectric properties of stressed and unstressed tomato plants, IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 275-278.
  • Venkatesh, M. ve Raghavan, G., 2005. An overview of dielectric properties measuring techniques. Canadian Biosystems Engineering, 47, 15-30.
  • Weir, W.B., 1974. Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proceedings of the IEEE, 62, 33-36.
  • Ye, L., Li, C., Sun, X., Jin, S. Chen, B. ve Ye, X., 2016. Thru-Reflect-Line Calibration technique: error analysis for characteristic impedance variations in the line standards. IEEE Transactions on Electromagnetic Compatibility, 59, 779-788.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Habib Doğan 0000-0001-8685-9569

Publication Date January 15, 2020
Submission Date August 9, 2019
Acceptance Date November 13, 2019
Published in Issue Year 2020 Volume: 10 Issue: 1

Cite

APA Doğan, H. (2020). Nem ve Frekansa Bağlı Olarak Kayısı ve Erik Yapraklarının Dielektrik Özelliklerinin Dalga Kılavuzu İletim Hattı Yöntemiyle Belirlenmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10(1), 195-204. https://doi.org/10.17714/gumusfenbil.604818