Research Article
BibTex RIS Cite

Kaolin Dağılımının Spektral Sınıflama Yöntemleri ile Belirlenmesi: Geminbeli Kaolin Yatağı (Sivas) ve Çevresi

Year 2020, Volume: 10 Issue: 4, 1085 - 1094, 15.10.2020
https://doi.org/10.17714/gumusfenbil.729104

Abstract

Kaolin grubu killer, günümüzde kağıt, çimento, boya, ilaç, seramik ve plastik sanayisi gibi oldukça geniş kullanım alanlarına sahiptirler. Türkiye’ de özellikle çimento ve seramik sanayisinin yüksek ekonomik değerli hammaddesini oluşturmaktadır. Bu tür sahaların tespiti ve halihazırda işletilenlerin ise iyileştirilmesi için arazi ve laboratuvar süreçleri oldukça önemlidir. Son yıllarda, uydu verileri ile mineral haritalama çalışmaları yapılmakta olup madencilik sektörüne katkı sunacak olumlu sonuçlar ortaya çıkmaktadır. Bu çalışma, uydu verilerinin yoğun killeşme alanlardaki performansını belirlemeye yönelik gerçekleştirilmiştir. İnceleme alanı, Sivas ili Zara ve Suşehri ilçeleri arasında kalan bölgede mevcut bir kaolin işletmesi ve çevresini kapsamaktadır. Araziden alınan temsili örnekler de yapılan petrografik ve XRD incelemelerinde, kaolinit, illit, smektit ve klorit kil türleri tespit edilmiştir. Çalışmada, ASTER uydu görüntüsünde Spektral Açı Haritalama (SAM) ve Eşlenen Filtreleme (MF) spektral sınıflandırma yöntemleri uygulanarak, killeşme gösteren alanlarda kaolinit, illit, smektit ve klorit dağılımları ortaya çıkarılmıştır. Kaolinit için, uydu verilerinden elde edilen sonuçlar ile arazi verilerinin yüksek oranda örtüştüğü belirlenmiştir. Ancak, MF yönteminin, illit, klorit ve smektit dağılımlarının belirlenmesinde SAM yöntemine göre daha iyi sonuçlar verdiğini görülmüştür.

Supporting Institution

Sivas Cumhuriyet Üniversitesi

Project Number

M-613 ve M-754

References

  • Abrams, M. 2000. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data products for the high spatial resolution imager on NASA’s Terra Platform. International Journal of Remote Sensing. https://doi.org/10.1080/014311600210326
  • Abrams, M., ve Hook, S. J. 1995. Simulated Aster Data for Geologic Studies. IEEE Transactions on Geoscience and Remote Sensing, 33(3), 692–699. https://doi.org/10.1109/36.387584
  • Abrams, M., ve Yamaguchi, Y. 2019. Twenty Years of ASTER Contributions to Lithologic Mapping and Mineral Exploration. Remote Sensing. https://doi.org/10.3390/rs11111394
  • Archard, F., ve D’Souza, G. 1994. Collection and Pre-Processing of NOAA-AVHRR 1km Resolution Data for Tropical Forest Resource Assessment. Report EUR 16055, European Commission, Luxembourg
  • Ayoobi, I., ve Tangestani, M. H. 2017. Evaluating the Effect of Spatial Subsetting on Subpixel Unmixing Methodology Applied to ASTER Over a Hydrothermally Altered Terrain. International Journal of Applied Earth Observation and Geoinformation. https://doi.org/10.1016/j.jag.2017.05.008
  • Başıbüyük, Z., 2006. Eosen Volkaniklerinin Hidrotermal Alterasyon Mineralojisi-Petrografisi ve Jeokimyası: Zara-İmranlı-Suşehri-Şerefiye Dörtgeni'nden Bir Örnek (Sivas Kuzeydoğusu, İç-Doğu Anadolu, Türkiye). Doktora Tezi, Sivas Cumhuriyet Üniversitesi Fen Bilimleri Enstitüsü, Sivas, 299s.
  • Boardman, J. W., 1998. Leveraging The High Dimensionality of AVIRIS Data For Improved Sub-Pixel Target Unmixing And Rejection Of False Positives: Mixture Tuned Matched Filtering. JPL Airborne Earth Science Workshop.
  • Boztuğ, D., 2008. Petrogenesis of The Kösedag Pluton, Suşehri-NE Sivas. Turkish Journal of Earth Sciences, 17, 241–262.
  • Canbaz, O., Gürsoy, Ö. ve Gökce, A., 2018. Detecting Clay Minerals in Hydrothermal Alteration Areas with Integration of ASTER Image and Spectral Data in Kösedag-Zara (Sivas), Turkey. Journal of Geological Society of India, 91(4), 389–516.
  • Clark, R. N. 1999. Spectroscopy of Rocks and Minerals and Principles of Spectrocopy. Remote Sensing for the Earth Sciences: Manual of Remote Sensing.
  • Efe, A. ve Gökce, A., 1999. Geology and Fluid Inclusion Studies of the Maden Village (Imranli-Sivas) Pb-Zn Deposits. Bulletin of Faculty of Engineering of Cumhuriyet University, Series-Earth Sciences, 16, 29–38.
  • Eyuboglu, Y., Dudas, F. O., Thorkelson, D., Zhu, D. C., Liu, Z., Chatterjee ve N., Santosh, M., 2017. Eocene Granitoids of Northern Turkey: Polybaric Magmatism in an Evolving Arc–Slab Window System. Gondwana Research, C. 50, ss. 311–345. https://doi.org/10.1016/j.gr.2017.05.008
  • Eva, H., ve Lambin, E. F. 1998. Burnt Area Mapping in Central Africa Using Atsr Data. International Journal of Remote Sensing. https://doi.org/10.1080/014311698213768
  • De Carvalho, O. A., ve Meneses, P. R. 2000. Spectral Correlation Mapper (SCM); An Improvement on the Spectral Angle Mapper (SAM). Summaries of the 9th JPL Airborne Earth Science Workshop, JPL Publication 00-18, 9 p
  • Gad, S., ve Kusky, T. 2007. ASTER Spectral Ratioing for Lithological Mapping in the Arabian-Nubian Shield, the Neoproterozoic Wadi Kid Area, Sinai, Egypt. Gondwana Research. https://doi.org/10.1016/j.gr.2006.02.010
  • Girouard, G., ve Bannari, a. 2004. Validated Spectral Angle Mapper Algorithm for Geological Mapping: Comparative Study Between QuickBird and Landsat-TM. XXth ISPRS Congress
  • Gupta, R. P. 2003. Remote Sensing Geology (Vol. 655). Berlin. Springer.
  • Harsanyi, J. C., ve Chang, C. I. 1994. Hyperspectral Image Classification and Dimensionality Reduction: An Orthogonal Subspace Projection Approach. IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/36.298007
  • Hawkesworth, C. J., Turner, S. P., McDermott, F., Peate, D. W. ve Van Calsteren, P., 1997. U-Th Isotopes in Arc Magmas: Implications for Element Transfer From the Subducted Crust. Science, 276(5312), 551–555. https://doi.org/10.1126/science.276.5312.551
  • Hu, B., Xu, Y., Wan, B., Wu, X., ve Yi, G. 2018. Hydrothermally Altered Mineral Mapping Using Synthetic Application of Sentinel-2A MSI, ASTER and Hyperion data in the Duolong Area, Tibetan Plateau, China. Ore Geology Reviews. https://doi.org/10.1016/j.oregeorev.2018.07.017
  • Hunt, G. R. 1977. Spectral Signatures of Particulate Minerals in The Visible and Near Infrared. Geophysics. https://doi.org/10.1190/1.1440721
  • Iwasakı, A., ve Tonoka, H. 2005. Validation of A Crosstalk Correction Algorithm 371 for ASTER/SIWR. Transactions on Geoscience and Remote Sensing, 43, 2747–2751.
  • Kalkancı, Ş., 1974. Etüde Geologique et Petrochimique du Sud de la Region de Suşehri. Geochronologie du Massif Syenitique de Kösedağ (Sivas Turquie). These de Doctoral de 3 e Cycle, L’Universite de Grenoble.
  • Kruse, F. A. 2012. Mapping Surface Mineralogy Using Imaging Spectrometry. Geomorphology. https://doi.org/10.1016/j.geomorph.2010.09.032
  • Kruse, F. A., ve Perry, S. L. 2013. Mineral Mapping Using Simulated Worldview-3 Short-Wave-Infrared İmagery. Remote Sensing. https://doi.org/10.3390/rs5062688
  • Mahanta, P., ve Maiti, S. 2018. Regional Scale Demarcation of Alteration Zone Using Aster Imageries in South Purulia Shear Zone, East India: Implication for Mineral Exploration in Vegetated Regions. Ore Geology Reviews. https://doi.org/10.1016/j.oregeorev.2018.07.028
  • Malayoğlu, U. ve Akar, A., 1995. Killerin Sınıflandırmasında ve Kullanım Alanlarının Saptanmasında Aranan Kriterlerin İrdelenmesi. Endüstriyel Hammaddeler Sempozyumu, 21-22 Nisan 1995, İzmir, Bildiri Özleri Kitabı, s. 125–132.
  • Massironi, M., Bertoldi, L., Calafa, P., Visonà, D., Bistacchi, A., Giardino, C. ve Schiavo, A., 2008. Interpretation and Processing of ASTER Data for Geological Mapping and Granitoids Detection in the Saghro Massif (Eastern Anti-Atlas, Morocco). Geosphere. https://doi.org/10.1130/GES00161.1
  • Mehr, G., S., Ahadnejad, V., Abbaspour, R. A., ve Hamzeh, M. 2013. Using the mixture-tuned matched filtering method for lithological mapping with Landsat TM5 images. International Journal of Remote Sensing. https://doi.org/10.1080/01431161.2013.853144
  • MTA., 2002. 1/500.000 Türkiye Jeoloji Haritası, Sivas Paftası. Maden Tetkik ve Arama Genel Müdürlüğü. Ankara.
  • Okay, A. I., ve Tüysüz, O., 1999. Tethyan Sutures of Northern Turkey. Geological Society, London, Special Publications, 156 (1), 475–515. https://doi.org/10.1144/GSL.SP.1999.156.01.22
  • Pirajno, F. 2009. Hydrothermal Processes And Mineral Systems. Springer. https://doi.org/10.1007/978-1-4020-8613-7
  • Pour, A. B., ve Hashim, M. 2012. The Application of ASTER Remote Sensing Data to Porphyry Copper and Epithermal Gold Deposits. Ore Geology Reviews. https://doi.org/10.1016/j.oregeorev.2011.09.009
  • Rajendran, S., ve Nasir, S. 2018. Mapping Of Hydrothermal Alteration in The Upper Mantle-Lower Crust Transition Zone of The Tayin Massif, Sultanate of Oman Using Remote Sensing Technique. Journal of African Earth Sciences. https://doi.org/10.1016/j.jafrearsci.2018.10.001
  • Rowan, L. C., Mars, J. C. ve Simpson, C. J., 2005. Lithologic Mapping of the Mordor, NT, Australia Ultramafic Complex by Using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Remote Sensing of Environment, 99(1–2), 105–126. https://doi.org/10.1016/j.rse.2004.11.021
  • Salehi, T., ve H. Tangestani, M. 2020. Evaluation of WorldView-3 VNIR and SWIR Data for Hydrothermal Alteration Mapping for Mineral Exploration: Case Study from Northeastern Isfahan, Iran. Natural Resources Research. https://doi.org/10.1007/s11053-020-09703-6
  • Yamaguchi, Y., Kahle, A. B., Tsu, H., Kawakami, T., ve Pniel, M. 1998. Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1062–1071. https://doi.org/10.1109/36.700991
  • Yang, R., Li, Z., ve Chen, X. 2012. Information Extraction of Typical Alteration Mineral Assemblage in Porphyry Copper Using ASTER Satellite Data, Arequipa Province of South Peru. Geo-information Science. https://doi.org/10.3724/sp.j.1047.2012.00411
  • Yılmaz, A., Okay, A. ve Bilgiç, T., 1985. Yukarı Kelkit Çayı Yöresi ve Güneyinin Temel Jeoloji Özellikleri ve Sonuçları: MTA Rapor No: 7777 (Yayınlanmamış), Ankara.
  • URL-1, https://www.mta.gov.tr/v3.0/bilgi-merkezi/seramik-killer.

Determination of Kaolin Distribution by Using Spectral Classification Methods: Geminbeli Kaolin Deposit (Sivas) and Its Surroundings

Year 2020, Volume: 10 Issue: 4, 1085 - 1094, 15.10.2020
https://doi.org/10.17714/gumusfenbil.729104

Abstract

In the nowadays, kaolin group clays have a wide range of areas of utilization such as paper, cement, paint, pharmaceutical, ceramic and plastic industries. It is a raw material with high economic value in especially cement and ceramic industries in Turkey. The field and laboratory processes are crucial for the detection of such sites and for the improvement of already mining operated sites. In recent years, mineral mapping studies have been carried out with satellite data and useful results have obtained that contribute to the mining process. In this study, it was carried out to determine the performance of satellite data in argillisation areas. The study area is located between Zara and Suşehri Towns of Sivas Province and include a kaolin deposit. In the petrographic and XRD investigations, which were also carried out in representative samples taken from the study area, kaolinite, illite, smectite and chlorite clays were determined. In the study, kaolinite, illite, smectite and chlorite distributions were determined by using the SAM (Spectral Angle Mapper) and MF (Matched Filtered) spectral classification methods in the argillisation areas. For kaolinite, it has been determined that the results obtained from satellite data substantially coincided with the field study data. However, it has been observed that MF method gives better results in illite, chlorite and smectite distributions than SAM method.

Project Number

M-613 ve M-754

References

  • Abrams, M. 2000. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data products for the high spatial resolution imager on NASA’s Terra Platform. International Journal of Remote Sensing. https://doi.org/10.1080/014311600210326
  • Abrams, M., ve Hook, S. J. 1995. Simulated Aster Data for Geologic Studies. IEEE Transactions on Geoscience and Remote Sensing, 33(3), 692–699. https://doi.org/10.1109/36.387584
  • Abrams, M., ve Yamaguchi, Y. 2019. Twenty Years of ASTER Contributions to Lithologic Mapping and Mineral Exploration. Remote Sensing. https://doi.org/10.3390/rs11111394
  • Archard, F., ve D’Souza, G. 1994. Collection and Pre-Processing of NOAA-AVHRR 1km Resolution Data for Tropical Forest Resource Assessment. Report EUR 16055, European Commission, Luxembourg
  • Ayoobi, I., ve Tangestani, M. H. 2017. Evaluating the Effect of Spatial Subsetting on Subpixel Unmixing Methodology Applied to ASTER Over a Hydrothermally Altered Terrain. International Journal of Applied Earth Observation and Geoinformation. https://doi.org/10.1016/j.jag.2017.05.008
  • Başıbüyük, Z., 2006. Eosen Volkaniklerinin Hidrotermal Alterasyon Mineralojisi-Petrografisi ve Jeokimyası: Zara-İmranlı-Suşehri-Şerefiye Dörtgeni'nden Bir Örnek (Sivas Kuzeydoğusu, İç-Doğu Anadolu, Türkiye). Doktora Tezi, Sivas Cumhuriyet Üniversitesi Fen Bilimleri Enstitüsü, Sivas, 299s.
  • Boardman, J. W., 1998. Leveraging The High Dimensionality of AVIRIS Data For Improved Sub-Pixel Target Unmixing And Rejection Of False Positives: Mixture Tuned Matched Filtering. JPL Airborne Earth Science Workshop.
  • Boztuğ, D., 2008. Petrogenesis of The Kösedag Pluton, Suşehri-NE Sivas. Turkish Journal of Earth Sciences, 17, 241–262.
  • Canbaz, O., Gürsoy, Ö. ve Gökce, A., 2018. Detecting Clay Minerals in Hydrothermal Alteration Areas with Integration of ASTER Image and Spectral Data in Kösedag-Zara (Sivas), Turkey. Journal of Geological Society of India, 91(4), 389–516.
  • Clark, R. N. 1999. Spectroscopy of Rocks and Minerals and Principles of Spectrocopy. Remote Sensing for the Earth Sciences: Manual of Remote Sensing.
  • Efe, A. ve Gökce, A., 1999. Geology and Fluid Inclusion Studies of the Maden Village (Imranli-Sivas) Pb-Zn Deposits. Bulletin of Faculty of Engineering of Cumhuriyet University, Series-Earth Sciences, 16, 29–38.
  • Eyuboglu, Y., Dudas, F. O., Thorkelson, D., Zhu, D. C., Liu, Z., Chatterjee ve N., Santosh, M., 2017. Eocene Granitoids of Northern Turkey: Polybaric Magmatism in an Evolving Arc–Slab Window System. Gondwana Research, C. 50, ss. 311–345. https://doi.org/10.1016/j.gr.2017.05.008
  • Eva, H., ve Lambin, E. F. 1998. Burnt Area Mapping in Central Africa Using Atsr Data. International Journal of Remote Sensing. https://doi.org/10.1080/014311698213768
  • De Carvalho, O. A., ve Meneses, P. R. 2000. Spectral Correlation Mapper (SCM); An Improvement on the Spectral Angle Mapper (SAM). Summaries of the 9th JPL Airborne Earth Science Workshop, JPL Publication 00-18, 9 p
  • Gad, S., ve Kusky, T. 2007. ASTER Spectral Ratioing for Lithological Mapping in the Arabian-Nubian Shield, the Neoproterozoic Wadi Kid Area, Sinai, Egypt. Gondwana Research. https://doi.org/10.1016/j.gr.2006.02.010
  • Girouard, G., ve Bannari, a. 2004. Validated Spectral Angle Mapper Algorithm for Geological Mapping: Comparative Study Between QuickBird and Landsat-TM. XXth ISPRS Congress
  • Gupta, R. P. 2003. Remote Sensing Geology (Vol. 655). Berlin. Springer.
  • Harsanyi, J. C., ve Chang, C. I. 1994. Hyperspectral Image Classification and Dimensionality Reduction: An Orthogonal Subspace Projection Approach. IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/36.298007
  • Hawkesworth, C. J., Turner, S. P., McDermott, F., Peate, D. W. ve Van Calsteren, P., 1997. U-Th Isotopes in Arc Magmas: Implications for Element Transfer From the Subducted Crust. Science, 276(5312), 551–555. https://doi.org/10.1126/science.276.5312.551
  • Hu, B., Xu, Y., Wan, B., Wu, X., ve Yi, G. 2018. Hydrothermally Altered Mineral Mapping Using Synthetic Application of Sentinel-2A MSI, ASTER and Hyperion data in the Duolong Area, Tibetan Plateau, China. Ore Geology Reviews. https://doi.org/10.1016/j.oregeorev.2018.07.017
  • Hunt, G. R. 1977. Spectral Signatures of Particulate Minerals in The Visible and Near Infrared. Geophysics. https://doi.org/10.1190/1.1440721
  • Iwasakı, A., ve Tonoka, H. 2005. Validation of A Crosstalk Correction Algorithm 371 for ASTER/SIWR. Transactions on Geoscience and Remote Sensing, 43, 2747–2751.
  • Kalkancı, Ş., 1974. Etüde Geologique et Petrochimique du Sud de la Region de Suşehri. Geochronologie du Massif Syenitique de Kösedağ (Sivas Turquie). These de Doctoral de 3 e Cycle, L’Universite de Grenoble.
  • Kruse, F. A. 2012. Mapping Surface Mineralogy Using Imaging Spectrometry. Geomorphology. https://doi.org/10.1016/j.geomorph.2010.09.032
  • Kruse, F. A., ve Perry, S. L. 2013. Mineral Mapping Using Simulated Worldview-3 Short-Wave-Infrared İmagery. Remote Sensing. https://doi.org/10.3390/rs5062688
  • Mahanta, P., ve Maiti, S. 2018. Regional Scale Demarcation of Alteration Zone Using Aster Imageries in South Purulia Shear Zone, East India: Implication for Mineral Exploration in Vegetated Regions. Ore Geology Reviews. https://doi.org/10.1016/j.oregeorev.2018.07.028
  • Malayoğlu, U. ve Akar, A., 1995. Killerin Sınıflandırmasında ve Kullanım Alanlarının Saptanmasında Aranan Kriterlerin İrdelenmesi. Endüstriyel Hammaddeler Sempozyumu, 21-22 Nisan 1995, İzmir, Bildiri Özleri Kitabı, s. 125–132.
  • Massironi, M., Bertoldi, L., Calafa, P., Visonà, D., Bistacchi, A., Giardino, C. ve Schiavo, A., 2008. Interpretation and Processing of ASTER Data for Geological Mapping and Granitoids Detection in the Saghro Massif (Eastern Anti-Atlas, Morocco). Geosphere. https://doi.org/10.1130/GES00161.1
  • Mehr, G., S., Ahadnejad, V., Abbaspour, R. A., ve Hamzeh, M. 2013. Using the mixture-tuned matched filtering method for lithological mapping with Landsat TM5 images. International Journal of Remote Sensing. https://doi.org/10.1080/01431161.2013.853144
  • MTA., 2002. 1/500.000 Türkiye Jeoloji Haritası, Sivas Paftası. Maden Tetkik ve Arama Genel Müdürlüğü. Ankara.
  • Okay, A. I., ve Tüysüz, O., 1999. Tethyan Sutures of Northern Turkey. Geological Society, London, Special Publications, 156 (1), 475–515. https://doi.org/10.1144/GSL.SP.1999.156.01.22
  • Pirajno, F. 2009. Hydrothermal Processes And Mineral Systems. Springer. https://doi.org/10.1007/978-1-4020-8613-7
  • Pour, A. B., ve Hashim, M. 2012. The Application of ASTER Remote Sensing Data to Porphyry Copper and Epithermal Gold Deposits. Ore Geology Reviews. https://doi.org/10.1016/j.oregeorev.2011.09.009
  • Rajendran, S., ve Nasir, S. 2018. Mapping Of Hydrothermal Alteration in The Upper Mantle-Lower Crust Transition Zone of The Tayin Massif, Sultanate of Oman Using Remote Sensing Technique. Journal of African Earth Sciences. https://doi.org/10.1016/j.jafrearsci.2018.10.001
  • Rowan, L. C., Mars, J. C. ve Simpson, C. J., 2005. Lithologic Mapping of the Mordor, NT, Australia Ultramafic Complex by Using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Remote Sensing of Environment, 99(1–2), 105–126. https://doi.org/10.1016/j.rse.2004.11.021
  • Salehi, T., ve H. Tangestani, M. 2020. Evaluation of WorldView-3 VNIR and SWIR Data for Hydrothermal Alteration Mapping for Mineral Exploration: Case Study from Northeastern Isfahan, Iran. Natural Resources Research. https://doi.org/10.1007/s11053-020-09703-6
  • Yamaguchi, Y., Kahle, A. B., Tsu, H., Kawakami, T., ve Pniel, M. 1998. Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1062–1071. https://doi.org/10.1109/36.700991
  • Yang, R., Li, Z., ve Chen, X. 2012. Information Extraction of Typical Alteration Mineral Assemblage in Porphyry Copper Using ASTER Satellite Data, Arequipa Province of South Peru. Geo-information Science. https://doi.org/10.3724/sp.j.1047.2012.00411
  • Yılmaz, A., Okay, A. ve Bilgiç, T., 1985. Yukarı Kelkit Çayı Yöresi ve Güneyinin Temel Jeoloji Özellikleri ve Sonuçları: MTA Rapor No: 7777 (Yayınlanmamış), Ankara.
  • URL-1, https://www.mta.gov.tr/v3.0/bilgi-merkezi/seramik-killer.
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Oktay Canbaz 0000-0002-8161-1326

Önder Gürsoy 0000-0002-1531-135X

Ahmet Gökce 0000-0001-7776-1893

Project Number M-613 ve M-754
Publication Date October 15, 2020
Submission Date April 29, 2020
Acceptance Date September 20, 2020
Published in Issue Year 2020 Volume: 10 Issue: 4

Cite

APA Canbaz, O., Gürsoy, Ö., & Gökce, A. (2020). Kaolin Dağılımının Spektral Sınıflama Yöntemleri ile Belirlenmesi: Geminbeli Kaolin Yatağı (Sivas) ve Çevresi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10(4), 1085-1094. https://doi.org/10.17714/gumusfenbil.729104