Research Article
BibTex RIS Cite

P-nitrofenol’ün elektrokimyasal yöntemle belirlenmesi için esnek ve müstakil PtCu ile modifiye edilmiş grafen esaslı kağıt

Year 2021, Volume: 11 Issue: 1, 147 - 160, 15.01.2021
https://doi.org/10.17714/gumusfenbil.742208

Abstract

Bu çalışmada; esnek, müstakil ve dayanıklı PtCu/indirgenmiş grafen oksit (iGrO) hibrit kağıt sentezlenmiş ve p-nitrofenolün (PNP) elektrokimyasal olarak tespiti için kullanılmıştır. PtCu/iGrO hibrit kağıt, PtCu alaşım nanokompozit yapısının iGrO kağıt elektrot üzerine elektrokimyasal olarak kaplanmasıyla üretilmiştir. Elde edilen PtCu/iGrO hibrit kağıt, taramalı elektron mikroskobu, X-ışını kırınım spektroskopisi, X-ışını fotoelektron spektroskopisi, Raman spektroskopisi, elektrokimyasal empedans spektroskopisi ile karakterize edildi. PtCu/iGrO hibrit kağıdının morfolojik analizi, iGrO elektrot yüzeyinde oluşan çiçek benzeri nanoyapıların çok sayıda keskin kenarlı PtCu nanotabakalarından oluştuğunu göstermiştir. PNP’nin elektrokimyasal belirlenmesinde kullanılan, PtCu/iGrO hibrit kağıt elektrotun, iGrO kağıda kıyasla yüksek elektrokatalitik performans, geniş doğrusal aralık (0.08-760 µM) ve düşük algılama limiti (0.022 µM) sergilediği belirlenmiştir. PtCu/iGrO hibrit kağıt sensör ayrıca musluk suyunda PNP tespiti için yüksek geri kazanım değerleri göstermiştir. Pratik ve uygulanması kolay bir yöntem ile hazırlanan hibrit kağıt sensörü mekanik olarak esnek ve dayanık özellik sergilemiştir. Ayrıca, PtCu/iGrO kağıdın stabilite testleri, bu hibrit elektrotun yüksek performanslı esnek sensör uygulamaları için önemli bir aday olduğunu göstermiştir.

References

  • Umamaheswari, A., Venkateswarlu, K. 2004. Impact of nitrophenols on the photosynthetic electron transport chain and ATP content in Nostoc muscorum and Chlorella vulgaris. Ecotoxicol. Environ. Saf., 58, 256-259.
  • Schummer, C., Groff, C., Al Chami, J., Jaber, F., M. Millet, 2009. Analysis of phenols and nitrophenols in rainwater collected simultaneously on an urban and rural site in east of France. Science of the Total Environment, 407, 5637-5643.
  • Yu, S., Hu, J., Wang, J. 2010. Gamma radiation-induced degradation of p-nitrophenol (PNP) in the presence of hydrogen peroxide (H2O2) in aqueous solution. J. Hazard. Mater., 177, 1061-1067.
  • Zhang, H., Fei, C., Zhang, D., Tang, F., 2007. Degradation of 4-nitrophenol in aqueous medium by electro-Fenton method. J. Hazard. Mater., 145, 227-232.
  • Liu, N., Cai, X., Zhang, Q., Lei, Y., Chan-Park, M.B., 2008. Real-time nitrophenol detection using single-walled carbon nanotube based devices. Electroanalysis, 20, 558-562.
  • Puig, D., Silgoner, I., Grasserbauer, M., Barceló, D., 1997. Part-per-trillion level determination of priority methyl-, nitro-, and chlorophenols in river water samples by automated on-line liquid/solid extraction followed by liquid chromatography/mass spectrometry using atmospheric pressure. Chemical Ionization and, Anal. Chem., 69, 2756-2761.
  • Norwitz, G., Nataro, N., Keliher, P.N., 1986. Study of the steam distillation of phenolic compounds using ultraviolet spectrometry. Anal. Chem., 58, 639-641.
  • Nistor, C., Oubiña, A., Marco, M.P., Barceló, D., Emnéus, J., 2001. Competitive flow immunoassay with fluorescence detection for determination of 4-nitrophenol. Anal. Chim. Acta., 426, 185-195.
  • Dağcı Kıranşan, K., Topçu, E., 2020. Conducting Polymer-Reduced Graphene Oxide Sponge Electrode for Electrochemical Detection Based on DNA Hybridization. ACS Appl. Nano Mater., https://doi.org/10.1021/acsanm.0c00782.
  • Topçu, E., Dağcı, K., Alanyalıoğlu, M., 2016. Free-standing Graphene/Poly(methylene blue)/AgNPs composite paper for electrochemical sensing of NADH. Electroanalysis, 28, 2058-2069.
  • Dağcı Kıranşan, K., Topçu, E., Alanyalıoğlu, M., 2017. Surface-confined electropolymerization of pyronin Y in the graphene composite paper structure for the amperometric determination of dopamine. J. Appl. Polym. Sci., 134, 1-10.
  • Ge, C., Li, H., Li, M., Li, C., Wu, X., Yang, B., 2015. Synthesis of a ZnO nanorod/CVD graphene composite for simultaneous sensing of dihydroxybenzene isomers. Carbon, 95, 1-9.
  • Dağcı Kıranşan, K., Topçu, E., 2018. Free-standing and flexible MoS2/iGrO paper electrode for amperometric detection of folic acid. Electroanalysis, 30, 810-818.
  • Dağcı Kıranşan, K., Aksoy, M., Topçu, E., 2018. Flexible and freestanding catalase-Fe3O4/reduced graphene oxide paper: Enzymatic hydrogen peroxide sensor applications. Mater. Res. Bull., 106, 57-65.
  • Yan, J. X., Leng, Y., Guo, Y., Wang, G. Q., Gong, H., Guo, P. Z., Tan, P. H., Long, Y. Z., Liu, X. L., Han, W. P., 2019. Highly conductive graphene paper with vertically aligned reduced graphene oxide sheets fabricated by ımproved electrospray deposition technique. ACS Appl. Mater. Interfaces, 11, 10810-10817.
  • Dağcı Kıranşan, K., Topçu, E., 2019. Graphene paper with sharp-edged nanorods of Fe-CuMOF as an xcellent electrode for the simultaneous detection of catechol and resorcinol. Electroanalysis, 31, 2518-2529.
  • Topçu, E., Kıranşan, K.D., 2019. Flexible gold nanoparticles/iGrO and thin film/iGrO papers: Novel electrocatalysts for hydrogen evolution reaction. J. Chem. Technol. Biotechnol., 94, 3895-3904.
  • Topçu, E., Kıranşan, K.D., 2020. Electrochemical simultaneous sensing of melatonin and ascorbic acid at a novel flexible B-RGO composite paper electrode. Diam. Relat. Mater., 105, 107811.
  • Topçu, E., 2020. Three-dimensional, free-standing, and flexible cobalt-based metal-organic frameworks/graphene composite paper: A novel electrochemical sensor for determination of resorcinol. Mater. Res. Bull., 121, 110629.
  • Topçu, E., Kıranşan, K.D., 2018. Flexible and free-standing PtNLs-MoS2/reduced graphene oxide composite paper: A high-performance rolled paper catalyst for hydrogen evolution reaction. ChemistrySelect. 3, 5941-5949.
  • Chi, K., Zhang, Z., Xi, J., Huang, Y., Xiao, F., Wang, S., Liu, Y., 2014. Freestanding graphene paper supported three-dimensional porous graphene-polyaniline nanocomposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor. ACS Appl. Mater. Interfaces, 6, 16312-16319.
  • Wang, D.W., Li, F., Zhao, J., Ren, W., Chen, Z.G., Tan, J., Wu, Z.S., Gentle, I., Lu, G.Q., Cheng, H.M., 2009. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano, 3, 1745-1752.
  • Dagci, K., Alanyalloglu, M., 2016. Preparation of free-standing and flexible graphene/Ag nanoparticles/poly(pyronin Y) hybrid paper electrode for amperometric determination of nitrite. ACS Appl. Mater. Interfaces, 8, 2713-2722.
  • Dağcı Kıranşan, K., 2019. Preparation and characterization of highly flexible, free-standing, three-dimensional and rough NiMOF/iGrO composite paper electrode for determination of catechol. ChemistrySelect, 4, 6488-6495.
  • Zhong, J., Li, L., Waqas, M., Wang, X., Fan, Y., Qi, J.,, Yang, B., Rong, C., Chen, W., Sun, S., 2019. Deep eutectic solvent-assisted synthesis of highly efficient PtCu alloy nanoclusters on carbon nanotubes for methanol oxidation reaction. Electrochimica Acta, 322, 134677.
  • Zhao, A., Zhang, Z., Zhang, P., Xiao, S., Wang, L., Dong, Y., Yuan, H., Li, P., Sun, Y., Jiang, X., Xiao, F., 2016. 3D nanoporous gold scaffold supported on graphene paper: Freestanding and flexible electrode with high loading of ultrafine PtCo alloy nanoparticles for electrochemical glucose sensing. Analytica Chimica Acta, 938, 63-71.
  • Sreeprasad, T.S., Samal, A.K., Pradeep, T., 2009. Tellurium nanowire-Induced room temperature conversion of graphite oxide to Leaf-like graphenic structures. J. Phys. Chem. C, 113, 1727-1737.
  • Kang, W., Li, R., Wei, D., Xu, S., Wei, S., Li, H., 2015. CTAB-reduced synthesis of urchin-like Pt–Cu alloy nanostructures and catalysis study towards the methanol oxidation reaction. RSC Adv., 5, 94210–94215.
  • Aksu, Z. ve Alanyalıoğlu, M., 2017. Fabrication of free-standing reduced graphene oxide composite papers doped with different dyes and comparison of their electrochemical performance for electrocatalytical oxidation of nitrite, Electrochimica Acta, 258,1376-1386.
  • Loudhaief, N., Ben Salem, M., Labiadh, H., Zouaoui, M., 2020. Electrical properties and fluctuation induced conductivity studies of Bi-based superconductors added by PtCu nanoparticles synthesized through the aqueous route. Mater. Chem. Phys., 242, 122464.
  • Song, D., Xia, J., Zhang,F., Bi, S., Xiang, W., Wang, Z., Xia, L., Xia, Y., Li, Y., Xia, L., 2015. Multiwall carbon nanotubes-poly(diallyldimethylammonium chloride)-graphene hybrid composite film for simultaneous determination of catechol and hydroquinone. Sensors and Actuators B 206, 111-118.
  • Saadati, F., Ghahramani, F., Shayani-jam, H., Piri, F., Yaftian, M.R., 2018. Synthesis and characterization of nanostructure molecularly imprinted polyaniline/graphene oxide composite as highly selective electrochemical sensor for detection of p-nitrophenol. J. Taiwan Inst. Chem. Eng., 86, 213-221.
  • Li, C., Wu, Z., Yang, H., Deng, L., Chen, X., 2017. Reduced graphene oxide-cyclodextrin-chitosan electrochemical sensor: Effective and simultaneous determination of o- and p-nitrophenols. Sensors Actuators, B Chem., 251, 446-454.
  • Hu,Y.F., Zhang, Z.H., Bin Zhang, H., Luo, L.J., Yao, S.Z., 2012. Sensitive and selective imprinted electrochemical sensor for p-nitrophenol based on ZnO nanoparticles/carbon nanotubes doped chitosan film. Thin Solid Films, 520, 5314-5321.
  • Zhang, C., Govindaraju, S., Giribabu, K., Huh, Y.S., Yun, K., 2017. AgNWs-PANI nanocomposite based electrochemical sensor for detection of 4-nitrophenol. Sensors Actuators, B Chem., 252, 616-623.
  • Guo, X., Zhou, H., Fan, T., Zhang, D., 2015. Electrochemical detection of p-nitrophenol on surface imprinted gold with lamellar-ridge architecture. Sensors Actuators, B Chem., 220, 33-39.

A flexible and self-standing PtCu modified graphene-based paperfor detection of p-nitrophenol with electrochemical method

Year 2021, Volume: 11 Issue: 1, 147 - 160, 15.01.2021
https://doi.org/10.17714/gumusfenbil.742208

Abstract

In this study; a flexible, self-contained and durable PtCu/reduced graphene oxide (iGrO) hybrid paper was synthesized and used for the electrochemical detection of p-nitrophenol (PNP). PtCu/iGrO hybrid paper was fabricated through electrodeposition of PtCu composite structure on iGrO paper electrode. The obtained PtCu/iGrO hybrid paper was characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, electrochemical impedance spectroscopy. The morphological analysis of PtCu/iGrO hybrid paper showed that flower-like nanostructures formed on the iGrO electrode surface consist of numerous sharp-edged nano layer of PtCu. PtCu/iGrO hybrid paper electrode demonstrated high electrocatalytic performance compared to iGrO paper and exhibited a wide linear range (0.08-760 µM) and a low detection limit (0.022 µM) for the determination of PNP. The PtCu/iGrO hybrid paper sensor also showed high recovery values for PNP detection in tap water. The hybrid paper sensor prepared with a practical and easy-to-apply method exhibited mechanically flexible and durable properties. Moreover, stability tests of PtCu/iGrO paper displayed that this hybrid electrode is an important candidate for high-performance flexible sensor applications.

References

  • Umamaheswari, A., Venkateswarlu, K. 2004. Impact of nitrophenols on the photosynthetic electron transport chain and ATP content in Nostoc muscorum and Chlorella vulgaris. Ecotoxicol. Environ. Saf., 58, 256-259.
  • Schummer, C., Groff, C., Al Chami, J., Jaber, F., M. Millet, 2009. Analysis of phenols and nitrophenols in rainwater collected simultaneously on an urban and rural site in east of France. Science of the Total Environment, 407, 5637-5643.
  • Yu, S., Hu, J., Wang, J. 2010. Gamma radiation-induced degradation of p-nitrophenol (PNP) in the presence of hydrogen peroxide (H2O2) in aqueous solution. J. Hazard. Mater., 177, 1061-1067.
  • Zhang, H., Fei, C., Zhang, D., Tang, F., 2007. Degradation of 4-nitrophenol in aqueous medium by electro-Fenton method. J. Hazard. Mater., 145, 227-232.
  • Liu, N., Cai, X., Zhang, Q., Lei, Y., Chan-Park, M.B., 2008. Real-time nitrophenol detection using single-walled carbon nanotube based devices. Electroanalysis, 20, 558-562.
  • Puig, D., Silgoner, I., Grasserbauer, M., Barceló, D., 1997. Part-per-trillion level determination of priority methyl-, nitro-, and chlorophenols in river water samples by automated on-line liquid/solid extraction followed by liquid chromatography/mass spectrometry using atmospheric pressure. Chemical Ionization and, Anal. Chem., 69, 2756-2761.
  • Norwitz, G., Nataro, N., Keliher, P.N., 1986. Study of the steam distillation of phenolic compounds using ultraviolet spectrometry. Anal. Chem., 58, 639-641.
  • Nistor, C., Oubiña, A., Marco, M.P., Barceló, D., Emnéus, J., 2001. Competitive flow immunoassay with fluorescence detection for determination of 4-nitrophenol. Anal. Chim. Acta., 426, 185-195.
  • Dağcı Kıranşan, K., Topçu, E., 2020. Conducting Polymer-Reduced Graphene Oxide Sponge Electrode for Electrochemical Detection Based on DNA Hybridization. ACS Appl. Nano Mater., https://doi.org/10.1021/acsanm.0c00782.
  • Topçu, E., Dağcı, K., Alanyalıoğlu, M., 2016. Free-standing Graphene/Poly(methylene blue)/AgNPs composite paper for electrochemical sensing of NADH. Electroanalysis, 28, 2058-2069.
  • Dağcı Kıranşan, K., Topçu, E., Alanyalıoğlu, M., 2017. Surface-confined electropolymerization of pyronin Y in the graphene composite paper structure for the amperometric determination of dopamine. J. Appl. Polym. Sci., 134, 1-10.
  • Ge, C., Li, H., Li, M., Li, C., Wu, X., Yang, B., 2015. Synthesis of a ZnO nanorod/CVD graphene composite for simultaneous sensing of dihydroxybenzene isomers. Carbon, 95, 1-9.
  • Dağcı Kıranşan, K., Topçu, E., 2018. Free-standing and flexible MoS2/iGrO paper electrode for amperometric detection of folic acid. Electroanalysis, 30, 810-818.
  • Dağcı Kıranşan, K., Aksoy, M., Topçu, E., 2018. Flexible and freestanding catalase-Fe3O4/reduced graphene oxide paper: Enzymatic hydrogen peroxide sensor applications. Mater. Res. Bull., 106, 57-65.
  • Yan, J. X., Leng, Y., Guo, Y., Wang, G. Q., Gong, H., Guo, P. Z., Tan, P. H., Long, Y. Z., Liu, X. L., Han, W. P., 2019. Highly conductive graphene paper with vertically aligned reduced graphene oxide sheets fabricated by ımproved electrospray deposition technique. ACS Appl. Mater. Interfaces, 11, 10810-10817.
  • Dağcı Kıranşan, K., Topçu, E., 2019. Graphene paper with sharp-edged nanorods of Fe-CuMOF as an xcellent electrode for the simultaneous detection of catechol and resorcinol. Electroanalysis, 31, 2518-2529.
  • Topçu, E., Kıranşan, K.D., 2019. Flexible gold nanoparticles/iGrO and thin film/iGrO papers: Novel electrocatalysts for hydrogen evolution reaction. J. Chem. Technol. Biotechnol., 94, 3895-3904.
  • Topçu, E., Kıranşan, K.D., 2020. Electrochemical simultaneous sensing of melatonin and ascorbic acid at a novel flexible B-RGO composite paper electrode. Diam. Relat. Mater., 105, 107811.
  • Topçu, E., 2020. Three-dimensional, free-standing, and flexible cobalt-based metal-organic frameworks/graphene composite paper: A novel electrochemical sensor for determination of resorcinol. Mater. Res. Bull., 121, 110629.
  • Topçu, E., Kıranşan, K.D., 2018. Flexible and free-standing PtNLs-MoS2/reduced graphene oxide composite paper: A high-performance rolled paper catalyst for hydrogen evolution reaction. ChemistrySelect. 3, 5941-5949.
  • Chi, K., Zhang, Z., Xi, J., Huang, Y., Xiao, F., Wang, S., Liu, Y., 2014. Freestanding graphene paper supported three-dimensional porous graphene-polyaniline nanocomposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor. ACS Appl. Mater. Interfaces, 6, 16312-16319.
  • Wang, D.W., Li, F., Zhao, J., Ren, W., Chen, Z.G., Tan, J., Wu, Z.S., Gentle, I., Lu, G.Q., Cheng, H.M., 2009. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano, 3, 1745-1752.
  • Dagci, K., Alanyalloglu, M., 2016. Preparation of free-standing and flexible graphene/Ag nanoparticles/poly(pyronin Y) hybrid paper electrode for amperometric determination of nitrite. ACS Appl. Mater. Interfaces, 8, 2713-2722.
  • Dağcı Kıranşan, K., 2019. Preparation and characterization of highly flexible, free-standing, three-dimensional and rough NiMOF/iGrO composite paper electrode for determination of catechol. ChemistrySelect, 4, 6488-6495.
  • Zhong, J., Li, L., Waqas, M., Wang, X., Fan, Y., Qi, J.,, Yang, B., Rong, C., Chen, W., Sun, S., 2019. Deep eutectic solvent-assisted synthesis of highly efficient PtCu alloy nanoclusters on carbon nanotubes for methanol oxidation reaction. Electrochimica Acta, 322, 134677.
  • Zhao, A., Zhang, Z., Zhang, P., Xiao, S., Wang, L., Dong, Y., Yuan, H., Li, P., Sun, Y., Jiang, X., Xiao, F., 2016. 3D nanoporous gold scaffold supported on graphene paper: Freestanding and flexible electrode with high loading of ultrafine PtCo alloy nanoparticles for electrochemical glucose sensing. Analytica Chimica Acta, 938, 63-71.
  • Sreeprasad, T.S., Samal, A.K., Pradeep, T., 2009. Tellurium nanowire-Induced room temperature conversion of graphite oxide to Leaf-like graphenic structures. J. Phys. Chem. C, 113, 1727-1737.
  • Kang, W., Li, R., Wei, D., Xu, S., Wei, S., Li, H., 2015. CTAB-reduced synthesis of urchin-like Pt–Cu alloy nanostructures and catalysis study towards the methanol oxidation reaction. RSC Adv., 5, 94210–94215.
  • Aksu, Z. ve Alanyalıoğlu, M., 2017. Fabrication of free-standing reduced graphene oxide composite papers doped with different dyes and comparison of their electrochemical performance for electrocatalytical oxidation of nitrite, Electrochimica Acta, 258,1376-1386.
  • Loudhaief, N., Ben Salem, M., Labiadh, H., Zouaoui, M., 2020. Electrical properties and fluctuation induced conductivity studies of Bi-based superconductors added by PtCu nanoparticles synthesized through the aqueous route. Mater. Chem. Phys., 242, 122464.
  • Song, D., Xia, J., Zhang,F., Bi, S., Xiang, W., Wang, Z., Xia, L., Xia, Y., Li, Y., Xia, L., 2015. Multiwall carbon nanotubes-poly(diallyldimethylammonium chloride)-graphene hybrid composite film for simultaneous determination of catechol and hydroquinone. Sensors and Actuators B 206, 111-118.
  • Saadati, F., Ghahramani, F., Shayani-jam, H., Piri, F., Yaftian, M.R., 2018. Synthesis and characterization of nanostructure molecularly imprinted polyaniline/graphene oxide composite as highly selective electrochemical sensor for detection of p-nitrophenol. J. Taiwan Inst. Chem. Eng., 86, 213-221.
  • Li, C., Wu, Z., Yang, H., Deng, L., Chen, X., 2017. Reduced graphene oxide-cyclodextrin-chitosan electrochemical sensor: Effective and simultaneous determination of o- and p-nitrophenols. Sensors Actuators, B Chem., 251, 446-454.
  • Hu,Y.F., Zhang, Z.H., Bin Zhang, H., Luo, L.J., Yao, S.Z., 2012. Sensitive and selective imprinted electrochemical sensor for p-nitrophenol based on ZnO nanoparticles/carbon nanotubes doped chitosan film. Thin Solid Films, 520, 5314-5321.
  • Zhang, C., Govindaraju, S., Giribabu, K., Huh, Y.S., Yun, K., 2017. AgNWs-PANI nanocomposite based electrochemical sensor for detection of 4-nitrophenol. Sensors Actuators, B Chem., 252, 616-623.
  • Guo, X., Zhou, H., Fan, T., Zhang, D., 2015. Electrochemical detection of p-nitrophenol on surface imprinted gold with lamellar-ridge architecture. Sensors Actuators, B Chem., 220, 33-39.
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Kader Dağcı Kıranşan 0000-0002-0764-9393

Ezgi Topçu 0000-0003-1506-9089

Publication Date January 15, 2021
Submission Date May 24, 2020
Acceptance Date December 10, 2020
Published in Issue Year 2021 Volume: 11 Issue: 1

Cite

APA Dağcı Kıranşan, K., & Topçu, E. (2021). P-nitrofenol’ün elektrokimyasal yöntemle belirlenmesi için esnek ve müstakil PtCu ile modifiye edilmiş grafen esaslı kağıt. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(1), 147-160. https://doi.org/10.17714/gumusfenbil.742208