Research Article
BibTex RIS Cite

Akımsız kaplama yöntemi ile Cu-Ag bimetal parçacıkların üretimi ve karakterizasyonu

Year 2021, Volume: 11 Issue: 2, 586 - 596, 15.04.2021
https://doi.org/10.17714/gumusfenbil.770725

Abstract

Bimetalik veya katmanlı malzemeler ileri mühendislik malzemeleri içinde önemli bir grup olup bu malzemeler çekirdek konumundaki parçacığın fiziksel, mekanik ve termal özelliklerinin geliştirilebildiği malzemelerdir. Bundan dolayı bu çalışmada akımsız kaplama yöntemi ile gümüş kaplı bakır bimetalik parçacıkların üretimi araştırılmıştır. Bu çalışmada ayrıca, akımsız kaplama yönteminde iyon yakalayıcı/indirgeyici ajan miktarının kaplama sonucunda elde edilen bimetalik parçacıkların fiziksel özellikleri üzerine etkisi incelenmiştir. Gümüş kaplı bakır parçacıklarının morfolojisi, mikro yapısı ve gümüş tabaka kalınlığı taramalı elektron mikroskobu ve X-ışını kırınımı ile karakterize edilmiştir. SEM incelemeleri bakır parçacıklar üzerinde 0.873 – 2.3 μm aralığında gümüş kaplama tabakasının varlığını ortaya koymuştur. Bu sonuç akımsız kaplama yöntemiyle bakır parçacıkların üzerinde başarılı bir şekilde gümüş kaplama tabakasının sentezlenebildiğini göstermiştir. Böylece bakırın düşük maliyeti ile gümüşün yüksek termal iletkenliği ve oksidasyon direnci tek bir metal parçacık bünyesinde birleştirilmiştir.

Supporting Institution

TÜBİTAK

Project Number

119M398

Thanks

Bu çalışma, TÜBİTAK tarafından 119M398 numaralı proje ile maddi olarak desteklenmiştir. Makalenin inceleme ve değerlendirme aşamasında yapmış oldukları katkılardan dolayı editör ve hakem/hakemlere teşekkür ederiz.

References

  • Ang, T. P., Wee, T. S. A. and Chin, W. S. (2004). Three-dimensional self-assembled monolayer (3d sam) ofn-alkanethiols on copper nanoclusters. The Journal of Physical Chemistry B, 108(30), 11001-11010. https://doi.org/10.1021/jp049006r
  • Antler, M. (1985). Electrical effects of fretting connector contact materials: A review. Wear, 106(1-3), 5-33. https://doi.org/10.1016/0043-1648(85)90101-2
  • Biswas, N., Baranwal, R. K., Majumdar, G. and Brabazon, D. (2018). Review of duplex electroless coatings and their properties. Advances in Materials and Processing Technologies, 4(3), 448-465. https://doi.org/10.1080/2374068x.2018.1457298
  • Güler, O., Varol, T., Alver, Ü. and Çanakçı, A. (2019). The effect of flake-like morphology on the coating properties of silver coated copper particles fabricated by electroless plating. Journal of Alloys and Compounds, 782, 679-688. https://doi.org/10.1016/j.jallcom.2018.12.229
  • Huttunen-Saarivirta, E. and Tiainen, T. (2005). Autocatalytic tin plating in the fabrication of tin-coated copper tube. Journal of Materials Processing Technology, 170(1-2), 211-219. https://doi.org/10.1016/j.jmatprotec.2005.04.113
  • Lim, Y., Lee, C., Choi, H. and Bae, J. (2016). Fabrication of electrically conductive substrates using copper nanoparticles-deposited carbon black. Journal of Composite Materials, 51(18), 2597-2605. https://doi.org/:10.1177/0021998316674266
  • Lin, Y.-S. and Chiu, S.-S. (2008). Electrical properties of copper-filled electrically conductive adhesives and pressure-dependent conduction behavior of copper particles. Journal of Adhesion Science and Technology, 22(14), 1673-1697. https://doi.org/10.1163/156856108x320537
  • Meng, D. R., Wang, L. M., Zhang, J. G., Hu, Q., Wang, L. G. and Li, C. F. (2017). Process and properties of ultrafine silver-coated electrolytic copper powders. Materials Science Forum, 898, 898-907. https://doi.org/10.4028/www.scientific.net/MSF.898.898
  • Mu, Z., Geng, H.-R., Li, M.-M., Nie, G.-L. and Leng, J.-F. (2013). Effects of Y2O3 on the property of copper based contact materials. Composites Part B: Engineering, 52, 51-55. https://doi.org/10.1016/j.compositesb.2013.02.036
  • Perelaer, B. J., de Laat, A. W. M., Hendriks, C. E. and Schubert, U. S. (2008). Inkjet-printed silver tracks: low temperature curing and thermal stability investigation. Journal of Materials Chemistry, 18(27). https://doi.org/10.1039/b720032c
  • Polan, N. W. (1987). Copper and copper alloy, asm handbook - corrosion: ASM International
  • Poljanec, D. and Kalin, M. (2019). Effect of polarity and various contact pairing combinations of electrographite, polymer-bonded graphite and copper on the performance of sliding electrical contacts. Wear, 426-427, 1163-1175. https://doi.org/10.1016/j.wear.2019.01.002
  • Rigou, V. I., Marginean, G., Frunzăverde, D. and Câmpian, C. V. (2012). Silver based composite coatings with improved sliding wear behaviour. Wear, 290-291, 61-65. https://doi.org/:10.1016/j.wear.2012.05.014
  • Rudnik, E. and Jucha, T. (2013). Electroless and electrolytic deposition of Co–SiC composite coatings on aluminum. Surface and Coatings Technology, 232, 389-395. https://doi.org/10.1016/j.surfcoat.2013.05.040
  • Songping, W. (2007). Preparation of ultra fine nickel–copper bimetallic powder for BME-MLCC. Microelectronics Journal, 38(1), 41-46. https://doi.org/10.1016/j.mejo.2006.09.013
  • Wang J., Callahan J. and Lillie D. (2002). Method of forming chromium coated copper for printed circuit boards. CA Patent No. CA2352929A1.
  • Zhou, Y. X., Xue, Y. L. and Zhou, K. (2019). Failure analysis of arc ablated tungsten-copper electrical contacts. Vacuum, 164, 390-395. https://doi.org/10.1016/j.vacuum.2019.03.052

Fabrication and characterization of Cu-Ag bimetal particles by electroless coating method

Year 2021, Volume: 11 Issue: 2, 586 - 596, 15.04.2021
https://doi.org/10.17714/gumusfenbil.770725

Abstract

Bimetallic or layered materials are an important group of advanced engineering materials, which are the materials where the physical, mechanical and thermal properties of the core particle can be improved. Therefore, in this study, the fabrication of silver-plated copper bimetallic particles was investigated by electroless coating method. Moreover, in this study, the effect of the amount of ion trapping / reducing agent in the electroless coating method on the physical properties of the bimetallic particles obtained as a result of the coating was investigated. Morphology, microstructure and silver layer thickness of the silver coated copper particles were characterized by scanning electron microscope (SEM) and X-ray diffraction. SEM investigations revealed the presence of a silver coating layer on copper particles in the range of 0.873 – 2.3 μm. This result showed that the silver coating layer can be successfully synthesized on copper particles by using the electroless coating method. Thus, low cost of copper and high thermal conductivity and oxidation resistance of silver are combined in a single metal particle.

Project Number

119M398

References

  • Ang, T. P., Wee, T. S. A. and Chin, W. S. (2004). Three-dimensional self-assembled monolayer (3d sam) ofn-alkanethiols on copper nanoclusters. The Journal of Physical Chemistry B, 108(30), 11001-11010. https://doi.org/10.1021/jp049006r
  • Antler, M. (1985). Electrical effects of fretting connector contact materials: A review. Wear, 106(1-3), 5-33. https://doi.org/10.1016/0043-1648(85)90101-2
  • Biswas, N., Baranwal, R. K., Majumdar, G. and Brabazon, D. (2018). Review of duplex electroless coatings and their properties. Advances in Materials and Processing Technologies, 4(3), 448-465. https://doi.org/10.1080/2374068x.2018.1457298
  • Güler, O., Varol, T., Alver, Ü. and Çanakçı, A. (2019). The effect of flake-like morphology on the coating properties of silver coated copper particles fabricated by electroless plating. Journal of Alloys and Compounds, 782, 679-688. https://doi.org/10.1016/j.jallcom.2018.12.229
  • Huttunen-Saarivirta, E. and Tiainen, T. (2005). Autocatalytic tin plating in the fabrication of tin-coated copper tube. Journal of Materials Processing Technology, 170(1-2), 211-219. https://doi.org/10.1016/j.jmatprotec.2005.04.113
  • Lim, Y., Lee, C., Choi, H. and Bae, J. (2016). Fabrication of electrically conductive substrates using copper nanoparticles-deposited carbon black. Journal of Composite Materials, 51(18), 2597-2605. https://doi.org/:10.1177/0021998316674266
  • Lin, Y.-S. and Chiu, S.-S. (2008). Electrical properties of copper-filled electrically conductive adhesives and pressure-dependent conduction behavior of copper particles. Journal of Adhesion Science and Technology, 22(14), 1673-1697. https://doi.org/10.1163/156856108x320537
  • Meng, D. R., Wang, L. M., Zhang, J. G., Hu, Q., Wang, L. G. and Li, C. F. (2017). Process and properties of ultrafine silver-coated electrolytic copper powders. Materials Science Forum, 898, 898-907. https://doi.org/10.4028/www.scientific.net/MSF.898.898
  • Mu, Z., Geng, H.-R., Li, M.-M., Nie, G.-L. and Leng, J.-F. (2013). Effects of Y2O3 on the property of copper based contact materials. Composites Part B: Engineering, 52, 51-55. https://doi.org/10.1016/j.compositesb.2013.02.036
  • Perelaer, B. J., de Laat, A. W. M., Hendriks, C. E. and Schubert, U. S. (2008). Inkjet-printed silver tracks: low temperature curing and thermal stability investigation. Journal of Materials Chemistry, 18(27). https://doi.org/10.1039/b720032c
  • Polan, N. W. (1987). Copper and copper alloy, asm handbook - corrosion: ASM International
  • Poljanec, D. and Kalin, M. (2019). Effect of polarity and various contact pairing combinations of electrographite, polymer-bonded graphite and copper on the performance of sliding electrical contacts. Wear, 426-427, 1163-1175. https://doi.org/10.1016/j.wear.2019.01.002
  • Rigou, V. I., Marginean, G., Frunzăverde, D. and Câmpian, C. V. (2012). Silver based composite coatings with improved sliding wear behaviour. Wear, 290-291, 61-65. https://doi.org/:10.1016/j.wear.2012.05.014
  • Rudnik, E. and Jucha, T. (2013). Electroless and electrolytic deposition of Co–SiC composite coatings on aluminum. Surface and Coatings Technology, 232, 389-395. https://doi.org/10.1016/j.surfcoat.2013.05.040
  • Songping, W. (2007). Preparation of ultra fine nickel–copper bimetallic powder for BME-MLCC. Microelectronics Journal, 38(1), 41-46. https://doi.org/10.1016/j.mejo.2006.09.013
  • Wang J., Callahan J. and Lillie D. (2002). Method of forming chromium coated copper for printed circuit boards. CA Patent No. CA2352929A1.
  • Zhou, Y. X., Xue, Y. L. and Zhou, K. (2019). Failure analysis of arc ablated tungsten-copper electrical contacts. Vacuum, 164, 390-395. https://doi.org/10.1016/j.vacuum.2019.03.052
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Temel Varol 0000-0002-1159-5383

Serhat Akçay 0000-0002-7492-4287

Onur Güler 0000-0002-9696-3287

Project Number 119M398
Publication Date April 15, 2021
Submission Date July 17, 2020
Acceptance Date March 25, 2021
Published in Issue Year 2021 Volume: 11 Issue: 2

Cite

APA Varol, T., Akçay, S., & Güler, O. (2021). Akımsız kaplama yöntemi ile Cu-Ag bimetal parçacıkların üretimi ve karakterizasyonu. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(2), 586-596. https://doi.org/10.17714/gumusfenbil.770725