Research Article
BibTex RIS Cite

Cu ve Fe Metalleri için tiyadiazol türevi bileşiklerin kuantum kimyasal hesaplamaları ve korozyon inhibisyon aktiviteleri

Year 2021, Volume: 11 Issue: 2, 629 - 636, 15.04.2021
https://doi.org/10.17714/gumusfenbil.866401

Abstract

Bu çalışmada, Tiyadiazol türevi bileşiklerin (L1, L2, L3 ve L4) Cu ve Fe metal atomları üzerindeki korozyon inhibisyonu etkisini araştırmak için teoriksel hesaplama çalışmaları gerçekleştirilmiştir. Tüm bileşiklerin moleküler modellemeleri, Gaussian 09 programı ile Yoğunluk Fonksiyonel Teorisi DFT/B3LYP ve 6-311G (d) baz seti kullanılmıştır. İnhibitör adayı olan bileşiklerin inhibisyon etkinliği, Fe ve Cu metalleri için; L3>L1>L4>L2 sırası gözlendi. Tiyadiazol türevi bileşiklerin inhibe edici etkisinin, bu bileşiklerde bulunan fonksiyonel grupların elektronik doğasına bağlı olduğu görülmüştür. Tüm bileşiklerin kuantum kimyasal parametreleri olan; HOMO ve LUMO yörünge enerjileri, bazı kuantum kimyasal parametreleri; elektron afinitesi (EA), iyonizasyon potansiyeli (IP), elektronegatiflik (χ), mutlak sertlik (η), mutlak yumuşaklık (S) ve kimyasal potansiyel (µ) değerleri hesaplandı. Bu parametreler kullanılarak, tüm bileşiklerin inhibitörden metale olan yük transferini ifade eden elektron transferlerinin kesri (N) hesaplanmıştır. Son olarak bileşiklerin hesaplanan korozyonu önleme etkileri birbirleriyle karşılaştırıldı.

References

  • Athar, M., Ali, H. and Quraishi M. (2002). Corrosion inhibition of carbon steel in hydrochloric acid by organic compounds containing heteroatoms. British Corrosion Journal, 37 (2), 155-158. https://doi.org/10.1179/000705902225002376
  • Ayers, Jr R.C. and Hackerman, N. (1963). Corrosion inhibition in HCl using methyl pyridines. Journal of the Electrochemical Society, 110 (6), 507. https://doi.org/10.1149/1.2425802
  • Becke, A.D. (1992). Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. The Journal of chemical physics, 96 (3), 2155-2160. https://doi.org/10.1063/1.462066
  • Buyukuslu, H., Akdogan, M., Yildirim, G. and Parlak, C. (2010). Ab initio Hartree-Fock and density functional theory study on characterization of 3-(5-methylthiazol-2-yldiazenyl)-2-phenyl-1H-indole. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75 (4), 1362-1369. https://doi.org/10.1016/j.saa.2010.01.003
  • Dennington, R., Keith T. and Millam, J. (2009). GaussView, version 5.
  • Er, M., Abounakhla, A.M., Tahtaci, H., Bawah, A.H., Çınaroğlu, S.S., Onaran, A. and Ece, A. (2018). An integrated approach towards the development of novel antifungal agents containing thiadiazole: synthesis and a combined similarity search, homology modelling, molecular dynamics and molecular docking study. Chemistry Central Journal, 12 (1), 121. https://doi.org/10.1186/s13065-018-0485-3
  • Foresman, J. and Frisch, A. (1996). Exploring Chemistry With Electronic Structure Methods: A Guide to Using Gaussian, Pittsburgh, PA: Gaussian. Inc,
  • Frisch, M., Trucks, G., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B. and Petersson, G. (2009). gaussian 09, Revision d. 01, Gaussian. Inc, Wallingford CT, 201 Fukui, K. (1982). Role of frontier orbitals in chemical reactions. Science, 218 (4574), 747-754
  • Gece, G. and Bilgiç, S. (2010). A theoretical study of some hydroxamic acids as corrosion inhibitors for carbon steel. Corrosion science, 52 (10), 3304-3308. https://doi.org/10.1016/j.corsci.2010.06.005
  • Hohenberg, P. and Kohn, W. (1964). Inhomogeneous electron gas. Physical review, 136 (3B), B864. ttps://doi.org/10.1103/PhysRev.136.B864
  • Lukovits, I., Kalman, E. and Palinkas, G. (1995). Nonlinear group-contribution models of corrosion inhibition. Corrosion, 51 (3), 201-205. https://doi.org/10.5006/1.3294362
  • Lukovits, I., Kalman, E. and Zucchi, F. (2001). Corrosion inhibitors—correlation between electronic structure and efficiency. Corrosion, 57 (1), 3-8. https://doi.org/10.5006/1.3290328
  • Martinez, S. (2003). Inhibitory mechanism of mimosa tannin using molecular modeling and substitutional adsorption isotherms. Materials Chemistry and Physics, 77 (1), 97-102. https://doi.org/10.1016/S0254-0584(01)00569-7
  • Obi-Egbedi, N., Obot, I., El-Khaiary, M., Umoren, S. and Ebenso, E. (2011). Computational simulation and statistical analysis on the relationship between corrosion inhibition efficiency and molecular structure of some phenanthroline derivatives on mild steel surface. Int J Electrochem Sci, 6 (5649), e5675
  • Parr, R.G., Donnelly, R.A., Levy, M. and Palke, W.E. (1978). Electronegativity: the density functional viewpoint. The Journal of Chemical Physics, 68 (8), 3801-3807. https://doi.org/10.1063/1.436185
  • Parr, R.G. and Pearson, R.G. (1983). Absolute hardness: companion parameter to absolute electronegativity. Journal of the American chemical society, 105 (26), 7512-7516. https://doi.org/10.1021/ja00364a005
  • Parr, R.G., Szentpaly L.V. and Liu, S. (1999). Electrophilicity index. Journal of the American Chemical Society, 121 (9),1922-1924. https://doi.org/10.1021/ja983494x
  • Pearson, R.G. (1988). Absolute electronegativity and hardness: application to inorganic chemistry. Inorganic chemistry, 27 (4), 734-740. https://doi.org/10.1021/ic00277a030
  • Quraishi, M., Ahamad, I., Singh, A.K., Shukla, S.K., Lal, B. and Singh, V. (2008). N-(Piperidinomethyl)-3-[(pyridylidene) amino] isatin: A new and effective acid corrosion inhibitor for mild steel. Materials chemistry and physics, 112 (3), 1035-1039. https://doi.org/10.1016/j.matchemphys.2008.07.011
  • Quraishi, M. and Ansari, F. (2003). Corrosion inhibition by fatty acid triazoles for mild steel in formic acid. Journal of applied electrochemistry, 33 (3-4), 233-238. https://doi.org/10.1023/A:1024106123577
  • Quraishi, M. and Khan, S. (2006). Inhibition of mild steel corrosion in sulfuric acid solution by thiadiazoles. Journal of applied electrochemistry, 36 (5), 539-544. https://doi.org/10.1007/s10800-005-9087-6
  • Quraishi, M. and Shukla, S.K. (2009). Poly (aniline-formaldehyde): a new and effective corrosion inhibitor for mild steel in hydrochloric acid. Materials Chemistry and Physics, 113 (2-3), 685-689. https://doi.org/10.1016/j.matchemphys.2008.08.028
  • Shukla, S.K. and Quraishi, M. (2009). Ceftriaxone: a novel corrosion inhibitor for mild steel in hydrochloric acid. Journal of Applied Electrochemistry, 39 (9), 1517-1523. https://doi.org/10.1007/s10800-009-9834-1
  • Shukla, S.K., Quraishi, M. and Prakash, R. (2008). A self-doped conducting polymer “polyanthranilic acid”: An efficient corrosion inhibitor for mild steel in acidic solution. Corrosion Science, 50 (10), 2867-2872. https://doi.org/10.1016/j.corsci.2008.07.025
  • Shukla, S.K., Singh, A.K., Ahamad, I. and Quraishi, M. (2009). Streptomycin: A commercially available drug as corrosion inhibitor for mild steel in hydrochloric acid solution. Materials Letters, 63 (9-10), 819-822. https://doi.org/10.1016/j.matlet.2009.01.020
  • Singh, A.K. and Quraishi, M. (2010). Effect of Cefazolin on the corrosion of mild steel in HCl solution. Corrosion Science, 52 (1), 152-160. https://doi.org/10.1016/j.corsci.2009.08.050
  • Singh, A.K., Shukla, S.K., Singh, M. and Quraishi, M. (2011). Inhibitive effect of ceftazidime on corrosion of mild steel in hydrochloric acid solution. Materials Chemistry and Physics, 129 (1-2), 68-76. https://doi.org/10.1016/j.matchemphys.2011.03.054
  • Stewart, J.J. (1989). Optimization of parameters for semiempirical methods II. Applications. Journal of computational chemistry, 10 (2), 221-264. https://doi.org/10.1002/jcc.540100209
  • Sulaiman, K.O. and Onawole, A.T. (2016). Quantum chemical evaluation of the corrosion inhibition of novel aromatic hydrazide derivatives on mild steel in hydrochloric acid. Computational and Theoretical Chemistry, 1093, 73-80. https://doi.org/10.1016/j.comptc.2016.08.014
  • Yang, W. and Parr, R.G. (1985). Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proceedings of the National Academy of Sciences, 82 (20), 6723-6726. https://doi.org/10.1073/pnas.82.20.6723. https://doi.org/10.1073/pnas.82.20.6723

Quantum chemical calculations and corrosion ınhibition activities of thiadiazole derivative compounds for Cu and Fe metals

Year 2021, Volume: 11 Issue: 2, 629 - 636, 15.04.2021
https://doi.org/10.17714/gumusfenbil.866401

Abstract

In this study, theoretical computational studies were carried out to investigate the corrosion inhibition effect of Thiadiazole derivative compounds on Cu and Fe metal atoms. Molecular modeling of all compounds was used with Gaussian 09 program, DFT/B3LYP theorem and 6-311G (d) base set. Inhibition activities of the compounds which are inhibitor candidate for Fe and Cu metals were observed in the order L3> L1> L4> L2. It has been found that the inhibitory effect of the Thiadiazole derivative compounds depends on the electronic nature of the functional groups present in these compounds. Quantum chemical parameters of all compounds; HOMO and LUMO orbital energies, some quantum chemical parameters; electron affinity (EA), ionization potential (IP), electronegativity (χ), global hardness (η), global softness (S) and chemical potential (µ) values were calculated. Using these parameters, the electron transfers fraction (N) of all compounds expressing the charge transfer from the inhibitor to the metal was calculated. Finally, the calculated anti-corrosion effects of the compounds were compared with each other.

References

  • Athar, M., Ali, H. and Quraishi M. (2002). Corrosion inhibition of carbon steel in hydrochloric acid by organic compounds containing heteroatoms. British Corrosion Journal, 37 (2), 155-158. https://doi.org/10.1179/000705902225002376
  • Ayers, Jr R.C. and Hackerman, N. (1963). Corrosion inhibition in HCl using methyl pyridines. Journal of the Electrochemical Society, 110 (6), 507. https://doi.org/10.1149/1.2425802
  • Becke, A.D. (1992). Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. The Journal of chemical physics, 96 (3), 2155-2160. https://doi.org/10.1063/1.462066
  • Buyukuslu, H., Akdogan, M., Yildirim, G. and Parlak, C. (2010). Ab initio Hartree-Fock and density functional theory study on characterization of 3-(5-methylthiazol-2-yldiazenyl)-2-phenyl-1H-indole. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75 (4), 1362-1369. https://doi.org/10.1016/j.saa.2010.01.003
  • Dennington, R., Keith T. and Millam, J. (2009). GaussView, version 5.
  • Er, M., Abounakhla, A.M., Tahtaci, H., Bawah, A.H., Çınaroğlu, S.S., Onaran, A. and Ece, A. (2018). An integrated approach towards the development of novel antifungal agents containing thiadiazole: synthesis and a combined similarity search, homology modelling, molecular dynamics and molecular docking study. Chemistry Central Journal, 12 (1), 121. https://doi.org/10.1186/s13065-018-0485-3
  • Foresman, J. and Frisch, A. (1996). Exploring Chemistry With Electronic Structure Methods: A Guide to Using Gaussian, Pittsburgh, PA: Gaussian. Inc,
  • Frisch, M., Trucks, G., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B. and Petersson, G. (2009). gaussian 09, Revision d. 01, Gaussian. Inc, Wallingford CT, 201 Fukui, K. (1982). Role of frontier orbitals in chemical reactions. Science, 218 (4574), 747-754
  • Gece, G. and Bilgiç, S. (2010). A theoretical study of some hydroxamic acids as corrosion inhibitors for carbon steel. Corrosion science, 52 (10), 3304-3308. https://doi.org/10.1016/j.corsci.2010.06.005
  • Hohenberg, P. and Kohn, W. (1964). Inhomogeneous electron gas. Physical review, 136 (3B), B864. ttps://doi.org/10.1103/PhysRev.136.B864
  • Lukovits, I., Kalman, E. and Palinkas, G. (1995). Nonlinear group-contribution models of corrosion inhibition. Corrosion, 51 (3), 201-205. https://doi.org/10.5006/1.3294362
  • Lukovits, I., Kalman, E. and Zucchi, F. (2001). Corrosion inhibitors—correlation between electronic structure and efficiency. Corrosion, 57 (1), 3-8. https://doi.org/10.5006/1.3290328
  • Martinez, S. (2003). Inhibitory mechanism of mimosa tannin using molecular modeling and substitutional adsorption isotherms. Materials Chemistry and Physics, 77 (1), 97-102. https://doi.org/10.1016/S0254-0584(01)00569-7
  • Obi-Egbedi, N., Obot, I., El-Khaiary, M., Umoren, S. and Ebenso, E. (2011). Computational simulation and statistical analysis on the relationship between corrosion inhibition efficiency and molecular structure of some phenanthroline derivatives on mild steel surface. Int J Electrochem Sci, 6 (5649), e5675
  • Parr, R.G., Donnelly, R.A., Levy, M. and Palke, W.E. (1978). Electronegativity: the density functional viewpoint. The Journal of Chemical Physics, 68 (8), 3801-3807. https://doi.org/10.1063/1.436185
  • Parr, R.G. and Pearson, R.G. (1983). Absolute hardness: companion parameter to absolute electronegativity. Journal of the American chemical society, 105 (26), 7512-7516. https://doi.org/10.1021/ja00364a005
  • Parr, R.G., Szentpaly L.V. and Liu, S. (1999). Electrophilicity index. Journal of the American Chemical Society, 121 (9),1922-1924. https://doi.org/10.1021/ja983494x
  • Pearson, R.G. (1988). Absolute electronegativity and hardness: application to inorganic chemistry. Inorganic chemistry, 27 (4), 734-740. https://doi.org/10.1021/ic00277a030
  • Quraishi, M., Ahamad, I., Singh, A.K., Shukla, S.K., Lal, B. and Singh, V. (2008). N-(Piperidinomethyl)-3-[(pyridylidene) amino] isatin: A new and effective acid corrosion inhibitor for mild steel. Materials chemistry and physics, 112 (3), 1035-1039. https://doi.org/10.1016/j.matchemphys.2008.07.011
  • Quraishi, M. and Ansari, F. (2003). Corrosion inhibition by fatty acid triazoles for mild steel in formic acid. Journal of applied electrochemistry, 33 (3-4), 233-238. https://doi.org/10.1023/A:1024106123577
  • Quraishi, M. and Khan, S. (2006). Inhibition of mild steel corrosion in sulfuric acid solution by thiadiazoles. Journal of applied electrochemistry, 36 (5), 539-544. https://doi.org/10.1007/s10800-005-9087-6
  • Quraishi, M. and Shukla, S.K. (2009). Poly (aniline-formaldehyde): a new and effective corrosion inhibitor for mild steel in hydrochloric acid. Materials Chemistry and Physics, 113 (2-3), 685-689. https://doi.org/10.1016/j.matchemphys.2008.08.028
  • Shukla, S.K. and Quraishi, M. (2009). Ceftriaxone: a novel corrosion inhibitor for mild steel in hydrochloric acid. Journal of Applied Electrochemistry, 39 (9), 1517-1523. https://doi.org/10.1007/s10800-009-9834-1
  • Shukla, S.K., Quraishi, M. and Prakash, R. (2008). A self-doped conducting polymer “polyanthranilic acid”: An efficient corrosion inhibitor for mild steel in acidic solution. Corrosion Science, 50 (10), 2867-2872. https://doi.org/10.1016/j.corsci.2008.07.025
  • Shukla, S.K., Singh, A.K., Ahamad, I. and Quraishi, M. (2009). Streptomycin: A commercially available drug as corrosion inhibitor for mild steel in hydrochloric acid solution. Materials Letters, 63 (9-10), 819-822. https://doi.org/10.1016/j.matlet.2009.01.020
  • Singh, A.K. and Quraishi, M. (2010). Effect of Cefazolin on the corrosion of mild steel in HCl solution. Corrosion Science, 52 (1), 152-160. https://doi.org/10.1016/j.corsci.2009.08.050
  • Singh, A.K., Shukla, S.K., Singh, M. and Quraishi, M. (2011). Inhibitive effect of ceftazidime on corrosion of mild steel in hydrochloric acid solution. Materials Chemistry and Physics, 129 (1-2), 68-76. https://doi.org/10.1016/j.matchemphys.2011.03.054
  • Stewart, J.J. (1989). Optimization of parameters for semiempirical methods II. Applications. Journal of computational chemistry, 10 (2), 221-264. https://doi.org/10.1002/jcc.540100209
  • Sulaiman, K.O. and Onawole, A.T. (2016). Quantum chemical evaluation of the corrosion inhibition of novel aromatic hydrazide derivatives on mild steel in hydrochloric acid. Computational and Theoretical Chemistry, 1093, 73-80. https://doi.org/10.1016/j.comptc.2016.08.014
  • Yang, W. and Parr, R.G. (1985). Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proceedings of the National Academy of Sciences, 82 (20), 6723-6726. https://doi.org/10.1073/pnas.82.20.6723. https://doi.org/10.1073/pnas.82.20.6723
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Tuncay Karakurt 0000-0001-6944-9883

Publication Date April 15, 2021
Submission Date January 22, 2021
Acceptance Date March 31, 2021
Published in Issue Year 2021 Volume: 11 Issue: 2

Cite

APA Karakurt, T. (2021). Cu ve Fe Metalleri için tiyadiazol türevi bileşiklerin kuantum kimyasal hesaplamaları ve korozyon inhibisyon aktiviteleri. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(2), 629-636. https://doi.org/10.17714/gumusfenbil.866401