Research Article
BibTex RIS Cite

Kompleks sayılar kullanılarak yuvarlanma yöntemine göre düz dişli tasarımı, imalatı ve gürültü analizi

Year 2022, Volume: 12 Issue: 1, 78 - 89, 15.01.2022
https://doi.org/10.17714/gumusfenbil.854411

Abstract

Bu çalışmada, CAD ortamında karmaşık sayılar kullanılarak düz dişlilerin parametrik çizimi ve modellemesi için bir yazılım geliştirilmiştir. Yazılım geliştirmede AutoLISP programlama dili kullanılmıştır. Sistemde modül ve diş sayısı gibi parametreler kullanıcı tarafından girilerek CAD ortamında dişlilerin çizimi veya modellemesi otomatik olarak yapılabilmektedir. Bu çalışma, tasarımcıya dişli çizimi ve modellemesi için hızlı, işlevsel ve daha kesin bir fayda alternatifi sağlamaktadır. Ayrıca çalışma kapsamında klasik yöntemle AutoCAD paket programında aynı sayıda diş ve modülde düz dişli tasarlanmıştır. Geliştirilen paket programı ve klasik yöntemle AutoCAD programında tasarlanan düz dişliler, MasterCAM programında kesme kodları türetilerek tel erozyon makinesinde üretilmiştir. Üretilen düz dişli çiftlerinin gürültü analizi yapılmıştır. Çalışma kapsamında geliştirilen paket program ile tasarlanan ve üretilen düz dişli çiftinin, klasik yöntemle tasarlanan ve üretilen düz dişliye göre yaklaşık 8 dB daha az gürültü çalıştığı tespit edilmiştir. Bir takım ve standart takım parametreleri için gerekli performansı sağlamak üzere standart dışı diş şekilleri için kesici profilini değiştirerek dişliyi istenen profilde tasarlamak ve üretmek mümkündür. Daha ileri araştırmalar için, yuvarlak uçlu kesicilerle üretilen düz dişliler simetrik ve asimetrik olarak uygulanabilir.

References

  • Kalpakjian, S. and Schmid, S. R. (2006). Manufacturing Engineering and Technology, (5th ed.). Pearson Education Center
  • Karpat, F., Çavdar, K. and Babalık, F. C. (2002). Bilgisayar yardımıyla düz, helisel, konik ve sonsuz vida dişli mekanizmalarının boyutlandırılması ve analizi. Mühendis ve Makine Dergisi, 510.
  • Krishna, G. G. and Srinvas, K. (2012). Design of involute spur gears with asymmetric teeth and direct gear design. International Journal of Engineering Research, 1(6), 4.
  • Laczik, B., Zentay, P. and Horváth, R. (2014). A new approach for designing gear profiles using closed complex equations. Acta Polytechnica Hungarica, 11(6), 159–172.
  • Litvin, F. L. and Fuentes, A. (2004). Gear Geometry and Applied Theory. (2nd ed.). Cambridge: Cambridge University Press.
  • Nordiana, J. O., Ogbeide, S. O., Ehigiamusoe, N. N. and Anyasi, F. I. (2007). Computer aided design of a spur gear. Journal of Engineering and Applied Sciences, 2(12), 1743-1747.
  • Oladejo, K. A. and Ogunsade, A. A. (2014). Drafting of involute spur-gears in AutoCAD-VBA customized. Advancement in Sciences and Technology Research, 1(2), 18–26.
  • Patil, S. S., Karuppanan, S. and Atanasovska, I. (2019). A short review on frictional contact stress distribution in involute gears. Tribology in Industry, 41(2), 254-266. https://doi.org/10.24874/ti.2019.41.02.11
  • Reyes, O., Rebolledo, A. and Sanchez, G. (2008). Algorithm to describe the ideal spur gear profile. Proceedings of the World Congress on Engineering, 2(1), 978–988.
  • Suslin, A. and Pilla, C. (2017). Study of Loading in Point-Involute Gears. Procedia Engineering, 176, 12–18. https://doi.org/10.1016/j.proeng.2017.02.267.
  • Yiqiang, J., Li, H., Zhijun, S. and Huajun, X. (2014). Meshing features of involute arc teeth cylindrical gears. Journal of Chemical and Pharmaceutical Research, 6(7), 2387- 2393.
  • Zhao, X. and Vacca, A. (2017). Formulation and optimization of involute spur gear in external gear pump. Mechanism and Machine Theory, 117, 114–132. https://doi.org/10.1016/j.mechmachtheory.2017.06.020.

Spur gear design, manufacturing and noise analysis according to rolling method using complex numbers

Year 2022, Volume: 12 Issue: 1, 78 - 89, 15.01.2022
https://doi.org/10.17714/gumusfenbil.854411

Abstract

In this study, a software has been improved for parametric drawing and modeling of spur gear using complex numbers in the CAD setting. AutoLISP programming language was used in software development. In the system, parameters such as module and number of teeth can be entered by the user and drawing or modeling of the gears in the CAD environment can be done automatically. This study provides the designer with fast and functional and more precise utility alternative for gear drawing and modeling. In addition, within the scope of the study, the same number of teeth and at the module spur gear were designed in the AutoCAD package program with the classical method. Spur gears, designed in AutoCAD program with the developed package program and classical method, were produced on the wire EDM machine by deriving cutting codes in the MasterCAM program. Noise analysis of the produced spur gear pairs has been made. It was determined that the spur gear pair, designed and produced with the package program developed within the scope of the study, operates approximately 8 dB less noise than the spur gear designed and produced with the classical method. It is possible to design and manufacture the gear in the desired profile by changing the cutter profile for non-standard thread shapes to provide the performance required for a tool and standard tool parameters. For further investigations, spur gears produced by round-ended cutters can be applied symmetrically and asymmetrically.

References

  • Kalpakjian, S. and Schmid, S. R. (2006). Manufacturing Engineering and Technology, (5th ed.). Pearson Education Center
  • Karpat, F., Çavdar, K. and Babalık, F. C. (2002). Bilgisayar yardımıyla düz, helisel, konik ve sonsuz vida dişli mekanizmalarının boyutlandırılması ve analizi. Mühendis ve Makine Dergisi, 510.
  • Krishna, G. G. and Srinvas, K. (2012). Design of involute spur gears with asymmetric teeth and direct gear design. International Journal of Engineering Research, 1(6), 4.
  • Laczik, B., Zentay, P. and Horváth, R. (2014). A new approach for designing gear profiles using closed complex equations. Acta Polytechnica Hungarica, 11(6), 159–172.
  • Litvin, F. L. and Fuentes, A. (2004). Gear Geometry and Applied Theory. (2nd ed.). Cambridge: Cambridge University Press.
  • Nordiana, J. O., Ogbeide, S. O., Ehigiamusoe, N. N. and Anyasi, F. I. (2007). Computer aided design of a spur gear. Journal of Engineering and Applied Sciences, 2(12), 1743-1747.
  • Oladejo, K. A. and Ogunsade, A. A. (2014). Drafting of involute spur-gears in AutoCAD-VBA customized. Advancement in Sciences and Technology Research, 1(2), 18–26.
  • Patil, S. S., Karuppanan, S. and Atanasovska, I. (2019). A short review on frictional contact stress distribution in involute gears. Tribology in Industry, 41(2), 254-266. https://doi.org/10.24874/ti.2019.41.02.11
  • Reyes, O., Rebolledo, A. and Sanchez, G. (2008). Algorithm to describe the ideal spur gear profile. Proceedings of the World Congress on Engineering, 2(1), 978–988.
  • Suslin, A. and Pilla, C. (2017). Study of Loading in Point-Involute Gears. Procedia Engineering, 176, 12–18. https://doi.org/10.1016/j.proeng.2017.02.267.
  • Yiqiang, J., Li, H., Zhijun, S. and Huajun, X. (2014). Meshing features of involute arc teeth cylindrical gears. Journal of Chemical and Pharmaceutical Research, 6(7), 2387- 2393.
  • Zhao, X. and Vacca, A. (2017). Formulation and optimization of involute spur gear in external gear pump. Mechanism and Machine Theory, 117, 114–132. https://doi.org/10.1016/j.mechmachtheory.2017.06.020.
There are 12 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mehmet Yazar 0000-0003-3999-3233

Mithat Yanıkören 0000-0003-1075-313X

Publication Date January 15, 2022
Submission Date January 5, 2021
Acceptance Date October 27, 2021
Published in Issue Year 2022 Volume: 12 Issue: 1

Cite

APA Yazar, M., & Yanıkören, M. (2022). Spur gear design, manufacturing and noise analysis according to rolling method using complex numbers. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12(1), 78-89. https://doi.org/10.17714/gumusfenbil.854411