3-boyutlu Minkowski uzayında paralel eğriler
Year 2022,
Volume: 12 Issue: 2, 480 - 486, 15.04.2022
Nural Yüksel
,
Burçin Saltık
,
Esra Damar
Abstract
Düzlemdeki her eğrisi için belli bir mesafesinde bulunan eğrisi mevcuttur (bazı dejenere durumlar hariç). eğrisi, merkezleri eğrisi boyunca hareket eden yarıçaplı dairelerin zarfı olarak alternatif şekilde üretilebilir. Sonuç olarak bu yapı, üç boyutlu uzay üzerine taşınırsa iki paralel eğri elde edilir. Bu çalışmada 3-boyutlu Minkowski uzayında time-like paralel eğriler tanımlanarak bunlarla ilgili bazı önemli teoremler ifade ve ispat edildi.
References
- Ali, A. T., & Lopez, R. (2011). Slant helices in Minkowski space E_1^3. Journal of the Korean Mathematical Society, 48(1), 159–167. https://doi.org/10.4134/jkms.2011.48.1.159
- Chrastinová, V. (2007). Parallel helices in three-dimensional space. Sborník 5. Konference o matematice a fyzice.
- Gálvez, A., Iglesias, A., & Puig-Pey, J. (2014). Computing parallel curves on parametric surfaces. Applied Mathematical Modelling, 38(9–10), 2398–2413. https://doi.org/10.1016/j.apm.2013.10.042
- Ikawa, T. (2003). Euler - Savary’s formula on Minkowski geometry. Balkan Journal of Geometry and Its Applications, 8(2), 31–36.
- Karacan, M. K., & Bükçü, B. (2008). Parallel (offset) curves in Lorentzian plane. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(1–2), 334–345.
- Keskin, Ö., Yüksel, N., Karacan, M. K., & İkiz, H. (2016). Characterization of the parallel curve of the adjoint curve in E³. General Mathematics Notes, 35(1), 9–18.
- Körpinar, T., Asil, V., Sariaydin, M. T., & İncesu, M. (2013). A characterization for Bishop equations of parallel curves according to Bishop frame in E³. Boletim Da Sociedade Paranaense de Matemática, 33(1), 33. https://doi.org/10.5269/bspm.v33i1.21712
- Kühnel, W. (2006). Differential geometry: Curves, surfaces, manifolds. American Mathematical Society.
López, R. (2014). Differential geometry of curves and surfaces in Lorentz-Minkowski space. International Electronic Journal of Geometry, 7(1), 44–107. https://doi.org/10.36890/iejg.594497
- Petrović-Torgašev, M., & Šućurović, E. (2001). Some characterizations of the Lorentzian spherical timelike and null curves. Matematicki Vesnik, 53, 21–27.
Parallel curves in Minkowski 3-space
Year 2022,
Volume: 12 Issue: 2, 480 - 486, 15.04.2022
Nural Yüksel
,
Burçin Saltık
,
Esra Damar
Abstract
For a curve on the plane, there exists the curve at a fixed distance (except for some degenerate cases). The curve can be alternatively produced as an envelope of circles with the radius moving along the curve . As a result, when this structure is translated to three-dimensional space two parallel curves are obtained. In this study defining some time-like parallel curves on 3-dimensional Minkowski space, some important theorems about these are stated and proved.
References
- Ali, A. T., & Lopez, R. (2011). Slant helices in Minkowski space E_1^3. Journal of the Korean Mathematical Society, 48(1), 159–167. https://doi.org/10.4134/jkms.2011.48.1.159
- Chrastinová, V. (2007). Parallel helices in three-dimensional space. Sborník 5. Konference o matematice a fyzice.
- Gálvez, A., Iglesias, A., & Puig-Pey, J. (2014). Computing parallel curves on parametric surfaces. Applied Mathematical Modelling, 38(9–10), 2398–2413. https://doi.org/10.1016/j.apm.2013.10.042
- Ikawa, T. (2003). Euler - Savary’s formula on Minkowski geometry. Balkan Journal of Geometry and Its Applications, 8(2), 31–36.
- Karacan, M. K., & Bükçü, B. (2008). Parallel (offset) curves in Lorentzian plane. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(1–2), 334–345.
- Keskin, Ö., Yüksel, N., Karacan, M. K., & İkiz, H. (2016). Characterization of the parallel curve of the adjoint curve in E³. General Mathematics Notes, 35(1), 9–18.
- Körpinar, T., Asil, V., Sariaydin, M. T., & İncesu, M. (2013). A characterization for Bishop equations of parallel curves according to Bishop frame in E³. Boletim Da Sociedade Paranaense de Matemática, 33(1), 33. https://doi.org/10.5269/bspm.v33i1.21712
- Kühnel, W. (2006). Differential geometry: Curves, surfaces, manifolds. American Mathematical Society.
López, R. (2014). Differential geometry of curves and surfaces in Lorentz-Minkowski space. International Electronic Journal of Geometry, 7(1), 44–107. https://doi.org/10.36890/iejg.594497
- Petrović-Torgašev, M., & Šućurović, E. (2001). Some characterizations of the Lorentzian spherical timelike and null curves. Matematicki Vesnik, 53, 21–27.