Review
BibTex RIS Cite

Atık lastiklerin, beton üretiminde agrega olarak kullanımının betonun taze ve mekanik özelliklerine etkisinin araştırılması

Year 2022, Volume: 12 Issue: 3, 982 - 999, 15.07.2022
https://doi.org/10.17714/gumusfenbil.1039104

Abstract

Kullanım ömrünü tamamlamış araç lastiklerinin geri dönüştürülmesi çözüm bekleyen global ölçekte bir sorundur. Bu lastiklerin depolanarak muhafaza edilmesi sorunu çözmek yerine olası problemlerle yüzleşmeyi geciktiren bir durumdur. Bu bağlamda atık lastiklerin çevreye zarar vermeden ve düşük maliyetlerle geri dönüştürülmesi birçok araştırmacının ilgili odağı olmuştur. 21. yy.ın başından buyana, bu lastiklerin öğütülerek beton üretiminde kullanılan agrega boyutlarına getirilip sonrasında beton üretiminde doğal agrega yerine kullanılabilirliği bu alanda çalışan bilim insanlarının araştırma konusu olmuştur. Literatürde bu konu ile ilgili çalışmaların sayısı da her geçen gün artmaktadır. Bu çalışma da temelinde bu alandaki son gelişmeleri derleyerek literatüre kazandırma amacına sahiptir. Bilindiği üzere betonun hem taze durumdaki hem de sertleşmiş durumdaki özellikleri çok geniş bir yelpazeye sahiptir. Buradaki çalışmanın amacına uygun bir şekilde sunulabilmesi için de atık lastiklerden elde edilmiş lastik agregalarının betonun taze özelliklerinden işlenebilirlik ve reolojik davranışı, sertleşmiş özelliklerinden ise basınç ve çekme dayanımı, elastik modül, kırılma parametreleri ve aşınma direnci üzerindeki etkisi araştırılmıştır. Derlenen bilgilerden elde edilen bulgular neticesinde lastik agregasının beton üretiminde kullanılması genel olarak betonun bahsedilen özelliklerini kötüleştirdiği sonucuna varılmıştır. Ayrıca, bu özelliklerin ne derece etkilendiği de lastik agreganın şekli, boyut, yüzey özellikleri ve ikame seviyesi ile ilişkilidir. Bundan dolayı bu tür betonların yapısal betonlarda kullanımı önerilmemekle beraber yapısal olmayan, kentsel peyzaj yapılarında, yol banket kenar bordürleri, kilit taşları, satıh kaplamaları vb. üretimlerde kullanılmasının iyi bir geri dönüşüm alternatifi olacağı vurgulanmaktadır.

References

  • Abdelmonem, A., El-Feky, M.S., Nasr, E.A.R., and Kohail, M. (2019). Performance of high strength concrete containing recycled rubber. Construction and Building Materials, 227, 116660. https://doi.org/10.1016/j.conbuildmat.2019.08.041
  • Achilleos, C., Hadjimitsis, D., Neocleous, K., Pilakoutas, K., Neophytou, P.O., and Kallis, S. (2011). Proportioning of steel fibre reinforced concrete mixes for pavement construction and their impact on enviroment and cost. Sustainability, 3, 965-983. https://doi.org/10.3390/su3070965
  • Al-Osta, M.A., Al-Tamimi, A.S., Al-Tarbi, S.M., Al-Amoudi, O.S.B., Al-Awsh, W.A., and Saleh, T.A. (2022). Development of sustainable concrete using recycled high-density polyethylene and crumb tires: Mechanical and thermal properties. Journal of Building Engineering, 45, 103399. https://doi.org/10.1016/j.jobe.2021.103399
  • Alwesabi, E.A.H., Bakar, B.H.A., Alshaikh, I.M.H., and Md Akil, H. (2020). Experimental investigation on mechanical properties of plain andrubberised concretes with steel–polypropylene hybrid fibre. Construction and Building Materials, 233, 117194. https://doi.org/10.1016/j.conbuildmat.2019.117194
  • Assaggaf, R.A., Ali, M.R., Al-Dulaijan, S.U., and Maslehuddin, M. (2021). Properties of concrete with untreated and treated crumb rubber – A review. Journal of Materials Research and Technology, 11, 1753-1798. https://doi.org/10.1016/j.jmrt.2021.02.019
  • Bisht, K. and Ramana, P.V. (2017). Evaluation of mechanical and durability properties of crumb rubber concrete. Construction and Building Materials, 155, 811-817. https://doi.org/10.1016/j.conbuildmat.2017.08.131
  • Continental: Tyre basics passenger car tyres. (2021, 20 October). Retrieved from https://blobs.continental-tires.com/www8/servlet/blob/606132/d2e4d4663a7c79ca81011ab47715e911/download-tire-basics-data.pdf
  • Dondi, G., Tataranni, P., Pettinari., M., Sangiorgi, C., Simone, A., and Vignali, V. (2014). Crumb Rubber in cold recycled bituminous mixes: comparison between traditional crumb rubber and cryogenic crumb rubber. Construction and Building Materials, 68, 370-375. https://doi.org/10.1016/j.conbuildmat.2014.06.093
  • EAPA: Asphalt in figures 2017. (2021, 20 October). Retrieved from https://eapa.org/eapa-asphalt-in-figures-2017/
  • Emiroğlu, M. (2006). Atık taşıt lastiğin beton içerisinde kullanımı ve betonun karakteristiklerine etkisi. Yüksek Lisans Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, Elazığ.
  • Emiroğlu, M., Aydın, M., ve Yıldız, S. (2011). Lastik Agregalı Betonların Yük Altındaki Gerilme Davranışlarının İncelenmesi. International Advanced Technologies Symposium, Elazığ, Turkey.
  • Epps, J.A. and Johnson., D. (2021, 20 October). The advancement of asphalt pavements over the last 50 years. The Magazine of the Asphalt Institute. http://asphaltmagazine.com/the-advancement-of-asphalt-pavements-over-the-last-50-years/
  • ERTMA - European Tyre & Rubber Manufacturers’ Association: Tyres. (2021, 20 October). Retrieved from http://www.etrma.org/tyres
  • Gesoğlu, G., Güneyisi, E., Hansu, O., İpek, S., and Asaad, D.S. (2015). Influence of waste rubber utilization on the fracture and steel–concrete bond strength properties of concrete. Construction and Building Materials, 101, 1113-1121. http://dx.doi.org/10.1016/j.conbuildmat.2015.10.030
  • Gesoğlu, M., Güneyisi, E., Khoshnaw, G., and İpek, S. (2014). Investigating properties of pervious concretes containing waste tire rubbers. Construction and Building Materials, 63, 206-213. http://dx.doi.org/10.1016/j.conbuildmat.2014.04.046
  • Güneyisi, E. (2010). Fresh properties of self-compacting rubberized concrete incorporated with fly ash. Materials and Structures, 43, 1037-1048. https://doi.org/10.1617/s11527-009-9564-1
  • Güneyisi, E., Gesoğlu, M., Mermerdaş, K., and İpek, S. (2014), Experimental investigation on durability performance of rubberized concrete. Advances in Concrete Construction, 2(3), 193-207. http://dx.doi.org/10.12989/acc.2014.2.3.193
  • Güneyisi, E., Gesoğlu, M., Naji, N., and İpek, S. (2016). Evaluation of the rheological behavior of fresh self-compacting rubberized concrete by using the Herschel–Bulkley and modified Bingham models. Archives of Civil and Mechanical Engineering, 16, 9-19. http://dx.doi.org/10.1016/j.acme.2015.09.003
  • Güneyisi, E., Gesoğlu, M., and Özturan, T. (2004). Properties of rubberized concretes containing silica füme. Cement and Concrete Research, 34(12), 2309-2317. https://doi.org/10.1016/j.cemconres.2004.04.005
  • Gupta, T., Chaudhary, S., and Sharma, R.K. (2014). Assessment of mechanical and durability properties of concrete containing waste rubber tire as fine aggregate. Construction and Building Materials, 73, 562-574. https://doi.org/10.1016/j.conbuildmat.2014.09.102
  • Hesami, S., Hikouei, I.S., and Emadi, S.A.A. (2016). Mechanical behavior of self-compacting concrete pavements incorporating recycled tire rubber crumb and reinforced with polypropylene fiber. Journal of Cleaner Production, 133, 228-234. https://doi.org/10.1016/j.jclepro.2016.04.079
  • Hilburg, J. (2021, 20 October). Concrete production produces eight percent of the world's carbon dioxide emissions, The Architects’ Newspaper. https://www.archpaper.com/2019/01/concrete-production-eight-percent-co2-emissions
  • Holka, H. and Jarzyna, T. (2017). Recycling of car tires by means of waterjet technologies. AIP Conference Proceedings, 1822, 020008. https://doi.org/10.1063/1.4977682.
  • İpek, S., Diri, A., and Mermerdaş, K. (2020). Recycling the low-density polyethylene pellets in the pervious concrete production. Journal of Materials Cycle and Waste Management, 23, 272-287. https://doi.org/10.1007/s10163-020-01127-x.
  • İpek, S. and Mermerdaş, K. (2020). Studying the impact of crumb rubber on the setting time of self-compacting mortar. 9th International Conference on Engineering & Natural Sciences, Ankara, Turkey.
  • İSO – İstanbul Sanayi Odası. (2018). Kauçuk ürünleri imalat sanayi: Küresel rekabette İstanbul Sanayi Odası meslek komiteleri sektör stratejileri projesi. Erişim adresi https://www.iso.org.tr/sites/1/upload/files/kaucuk_sanayi_raporu_web_v2-8712.pdf
  • Jokar, F., Khorram, M., Karimi, G., and Hataf, N. (2019). Experimental investigation of mechanical properties of crumbed rubberconcrete containing natural zeolite. Construction and Building Materials, 208, 651-658. https://doi.org/10.1016/j.conbuildmat.2019.03.063
  • Kang, J., Zhang, B., and Li, G. (2012). The abrasion-resistance investigation of rubberized concrete. Journal of Wuhan University of Technology-Mater. Sci. Ed., 27, 1144-1148. https://doi.org/10.1007/s11595-012-0619-8
  • Karger-Kocsis, J., Meszaros, L., and Barany, T. (2013). Ground tyre rubber (GTR) in thermoplastics, thermosets, and rubbers. Journal of Materials Science, 48(1), 1-38. https://doi.org/10.1007/s10853-012-6564-2
  • Karunarathna, S., Linforth, S., Kashani, A., Liu, X., and Ngo, T. (2021). Effect of recycled rubber aggregate size on fracture and other mechanical properties of structural concrete. Journal of Cleaner Production, 314, 128230. https://doi.org/10.1016/j.jclepro.2021.128230
  • Khaloo, A.R., Dehestani, M., and Rahmatabadi, P. (2008). Mechanical properties of concrete containing a high volume of tire–rubber particles. Waste Management, 28(12), 2472-2482. https://doi.org/10.1016/j.wasman.2008.01.015
  • Lv, J., Zhou, T., Du, Q., and Wu, H. (2015). Effects of rubber particles on mechanical properties of lightweight aggregate concrete. Construction and Building Materials, 91, 145-149. https://doi.org/10.1016/j.conbuildmat.2015.05.038
  • Martinez, J.D., Puy, N., Murillo, R., Garcia, T., Navarro, M.V., and Mastral, A.M. (2013). Waste tyre pyrolysis – A review. Renewable and Sustainable Energy Reviews, 23, 179-213. https://doi.org/10.1016/j.rser.2013.02.038
  • Mastral, A.M., Murıllo, R., Calle´n, M.S., Garcia, T., and Snape, C.E. (2000). Influence of process variables on oils from tire pyrolysis and hydropyrolysis in a swept fixed bed reactor. Energy Fuel, 14, 739-744. https://doi.org/10.1021/ef990183e
  • Medina, N.F., Medina, D.F., Hernandez-Olivares, F., and Navacerrada, M.A. (2017). Mechanical and thermal properties of concrete incorporating rubber and fibres from tyre recycling. Construction and Building Materials, 144, 563-573. https://doi.org/10.1016/j.conbuildmat.2017.03.196
  • Mhaya, A.M., Huseien, G.F., Abidin, A.R.Z., and Ismail, M. (2020). Long-term mechanical and durable properties of waste tires rubber crumbs replaced GBFS modified concretes. Construction and Building Materials, 256, 119505. https://doi.org/10.1016/j.conbuildmat.2020.119505
  • Mohammed, B.S. and Adamu, M. (2018). Mechanical performance of roller compacted concrete pavement containing crumb rubber and nano silica. Construction and Building Materials, 159, 234-251. https://doi.org/10.1016/j.conbuildmat.2017.10.098
  • Moustafa, A. and ElGawady, M.A. (2015). Mechanical properties of high strength concrete with scrap tire rubber, Construction and Building Materials, 93, 249-256. https://doi.org/10.1016/j.conbuildmat.2015.05.115
  • PAGEV. (2018). Türkiye kauçuk sektör izleme raporu – 2017. Erişim adresi https://pagev.org/upload/files/Hammadde%20Yeni%20Tebli%C4%9F%20Bilg.%203/Kau%C3%A7uk%20Sekt%C3%B6r%20%C4%B0zleme%20Raporu%202017.pdf
  • Pehlken, A. and Muller, D.H. (2009). Using information of the separation process of recycling scrap tires for process modeling. Resources, Conservation and Recycling, 54, 140-148. https://doi.org/10.1016/j.resconrec.2009.07.008
  • Shu, X. and Huang, B. (2014). Recycling of waste tire rubber in asphalt and portland cement concrete: An overview. Construction and Building Materials, 67, 217-224. https://doi.org/10.1016/j.conbuildmat.2013.11.027
  • Shulman, V.L. (2004), Tyre recycling. Rapra review reports, 15(7). Erişim adresi http://dl.mozh.org/up/Tyre_Recycling.pdf
  • Siddika, A., Al Mamun, Md A., Alyousef, R., Amran, Y.H.M., Aslani, F., and Alabduljabbar, H. (2019). Properties and utilizations of waste tire rubber in concrete: A review. Construction and Building Materials, 224, 711-731. https://doi.org/10.1016/j.conbuildmat.2019.07.108.
  • Sienkiewicz, M, Kucinska-Lipka, J., Janik, H., and Balas, A. (2012). Progress in used tyres management in the European Union: A review. Waste Management, 32, 1742-1751. https://doi.org/10.1016/j.wasman.2012.05.010
  • Singh, S., Nimmo, W., Gibbs, B.M., and Williams, P.T. (2009). Waste tyre rubber as a secondary fuel for power plants. Fuel, 88, 2473-2480. https://doi.org/10.1016/j.fuel.2009.02.026
  • Su, H., Yang, J., Ling, T.C., Ghataora, G.S., and Dirar, S. (2015). Properties of concrete prepared with waste tyre rubber particles of uniform and varying sizes. Journal of Cleaner Production, 91, 288-296. https://doi.org/10.1016/j.jclepro.2014.12.022
  • Sullivan Tire: Anatomy of a tire. (2021, 20 October). Retrieved from https://www.sullivantire.com/learn/tire-classroom/anatomy-of-a-tire
  • Tattersall, G.H., Banfill, P.F.G. (1983). The Rheology of Fresh Concrete. London: Pitman.
  • Thakare, A.A., Siddique, S., Sarode, S.N., Deewan, R., Gupta, V., Gupta, S., and Chaudhary, S. (2020). A study on rheological properties of rubber fiber dosed self-compacting mortar. Construction and Building Materials, 262, 120745. https://doi.org/10.1016/j.conbuildmat.2020.120745
  • Thakur, A., Senthil, K., Sharma, R., and Singh, A.P. (2020). Employment of crumb rubber tyre in concrete masonry bricks. Materials Today: Proceedings, 32(4), 553-559. https://doi.org/10.1016/j.matpr.2020.02.106
  • THBB: Dünyada sektör. (2021, 20 October). Erişim adresi https://www.thbb.org/sektor/dunyada-sektor/
  • Thomas, B.S. and Gupta, R.C. (2015). Long term behaviour of cement concrete containing discarded tire rubber. Journal of Cleaner Production, 102, 78-87. https://doi.org/10.1016/j.jclepro.2015.04.072
  • WBCSD: Managing end-of-life tires. (2021, 19 October). http://docs.wbcsd.org/2008/08/EndOfLifeTires-FullReport.pdf
  • Yang, G., Chen, X., Guo, S., and Xuan, W. (2019). Dynamic mechanical performance of self-compacting concrete containing crumb rubber under high strain rates. KSCE Journal of Civil Engineering, 23, 3669-3681. https://doi.org/10.1007/s12205-019-0024-3
  • Zaleska, M., Pavlikova, M., Citek, D., and Pavlik, Z. (2019). Mechanical and thermal properties of light-weight concrete with incorporated waste tire rubber as coarse aggregate. AIP Conference Proceedings, 2170, 020026. https://doi.org/10.1063/1.5132745

Investigating the effect of the use of waste tires as aggregate in concrete production on the fresh and mechanical properties of concrete

Year 2022, Volume: 12 Issue: 3, 982 - 999, 15.07.2022
https://doi.org/10.17714/gumusfenbil.1039104

Abstract

Recycling of end-of-life tires is a global problem that needs a solution. Storing and preserving these tires is a situation that delays facing potential problems instead of solving the problem. In this context, recycling of waste tires without harming the environment and at low costs has been the focus of many researchers. Since the beginning of the 21st century, the possibility of these tires to be granulated to the size of aggregate employed in concrete production and then to be used instead of natural aggregate in the manufacturing of the concrete has been the subject of research by scientists studying in this field. In the literature, the number of studies conducted on this subject has been increasing day by day. This study basically aims to compile the latest developments in this field and bring them to the literature. As it is known, the properties of concrete both in the fresh state and hardened state have a wide range. In order to present the study in accordance with its scope, the influence of tire aggregates obtained from waste tires on the fresh properties of concrete like workability and rheological behavior and the hardened properties such as the compressive and tensile strengths, elastic modulus, fracture parameters, and wear resistance were investigated. As a consequence of the findings achieved from the compiled information, it can be concluded that the incorporation of rubber aggregate in concrete production has generally adverse influences on the mentioned properties of concrete. In addition, the degree of affection of these properties is related to the shape, size, surface properties, and level of substitution of the rubber aggregate. Therefore, although the use of such concretes for structural purposes is not recommended, it is emphasized that it will be a good recycling alternative to use in non-structural like urban landscape structures, road shoulder side borders, keystones, surface coatings, etc.

References

  • Abdelmonem, A., El-Feky, M.S., Nasr, E.A.R., and Kohail, M. (2019). Performance of high strength concrete containing recycled rubber. Construction and Building Materials, 227, 116660. https://doi.org/10.1016/j.conbuildmat.2019.08.041
  • Achilleos, C., Hadjimitsis, D., Neocleous, K., Pilakoutas, K., Neophytou, P.O., and Kallis, S. (2011). Proportioning of steel fibre reinforced concrete mixes for pavement construction and their impact on enviroment and cost. Sustainability, 3, 965-983. https://doi.org/10.3390/su3070965
  • Al-Osta, M.A., Al-Tamimi, A.S., Al-Tarbi, S.M., Al-Amoudi, O.S.B., Al-Awsh, W.A., and Saleh, T.A. (2022). Development of sustainable concrete using recycled high-density polyethylene and crumb tires: Mechanical and thermal properties. Journal of Building Engineering, 45, 103399. https://doi.org/10.1016/j.jobe.2021.103399
  • Alwesabi, E.A.H., Bakar, B.H.A., Alshaikh, I.M.H., and Md Akil, H. (2020). Experimental investigation on mechanical properties of plain andrubberised concretes with steel–polypropylene hybrid fibre. Construction and Building Materials, 233, 117194. https://doi.org/10.1016/j.conbuildmat.2019.117194
  • Assaggaf, R.A., Ali, M.R., Al-Dulaijan, S.U., and Maslehuddin, M. (2021). Properties of concrete with untreated and treated crumb rubber – A review. Journal of Materials Research and Technology, 11, 1753-1798. https://doi.org/10.1016/j.jmrt.2021.02.019
  • Bisht, K. and Ramana, P.V. (2017). Evaluation of mechanical and durability properties of crumb rubber concrete. Construction and Building Materials, 155, 811-817. https://doi.org/10.1016/j.conbuildmat.2017.08.131
  • Continental: Tyre basics passenger car tyres. (2021, 20 October). Retrieved from https://blobs.continental-tires.com/www8/servlet/blob/606132/d2e4d4663a7c79ca81011ab47715e911/download-tire-basics-data.pdf
  • Dondi, G., Tataranni, P., Pettinari., M., Sangiorgi, C., Simone, A., and Vignali, V. (2014). Crumb Rubber in cold recycled bituminous mixes: comparison between traditional crumb rubber and cryogenic crumb rubber. Construction and Building Materials, 68, 370-375. https://doi.org/10.1016/j.conbuildmat.2014.06.093
  • EAPA: Asphalt in figures 2017. (2021, 20 October). Retrieved from https://eapa.org/eapa-asphalt-in-figures-2017/
  • Emiroğlu, M. (2006). Atık taşıt lastiğin beton içerisinde kullanımı ve betonun karakteristiklerine etkisi. Yüksek Lisans Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, Elazığ.
  • Emiroğlu, M., Aydın, M., ve Yıldız, S. (2011). Lastik Agregalı Betonların Yük Altındaki Gerilme Davranışlarının İncelenmesi. International Advanced Technologies Symposium, Elazığ, Turkey.
  • Epps, J.A. and Johnson., D. (2021, 20 October). The advancement of asphalt pavements over the last 50 years. The Magazine of the Asphalt Institute. http://asphaltmagazine.com/the-advancement-of-asphalt-pavements-over-the-last-50-years/
  • ERTMA - European Tyre & Rubber Manufacturers’ Association: Tyres. (2021, 20 October). Retrieved from http://www.etrma.org/tyres
  • Gesoğlu, G., Güneyisi, E., Hansu, O., İpek, S., and Asaad, D.S. (2015). Influence of waste rubber utilization on the fracture and steel–concrete bond strength properties of concrete. Construction and Building Materials, 101, 1113-1121. http://dx.doi.org/10.1016/j.conbuildmat.2015.10.030
  • Gesoğlu, M., Güneyisi, E., Khoshnaw, G., and İpek, S. (2014). Investigating properties of pervious concretes containing waste tire rubbers. Construction and Building Materials, 63, 206-213. http://dx.doi.org/10.1016/j.conbuildmat.2014.04.046
  • Güneyisi, E. (2010). Fresh properties of self-compacting rubberized concrete incorporated with fly ash. Materials and Structures, 43, 1037-1048. https://doi.org/10.1617/s11527-009-9564-1
  • Güneyisi, E., Gesoğlu, M., Mermerdaş, K., and İpek, S. (2014), Experimental investigation on durability performance of rubberized concrete. Advances in Concrete Construction, 2(3), 193-207. http://dx.doi.org/10.12989/acc.2014.2.3.193
  • Güneyisi, E., Gesoğlu, M., Naji, N., and İpek, S. (2016). Evaluation of the rheological behavior of fresh self-compacting rubberized concrete by using the Herschel–Bulkley and modified Bingham models. Archives of Civil and Mechanical Engineering, 16, 9-19. http://dx.doi.org/10.1016/j.acme.2015.09.003
  • Güneyisi, E., Gesoğlu, M., and Özturan, T. (2004). Properties of rubberized concretes containing silica füme. Cement and Concrete Research, 34(12), 2309-2317. https://doi.org/10.1016/j.cemconres.2004.04.005
  • Gupta, T., Chaudhary, S., and Sharma, R.K. (2014). Assessment of mechanical and durability properties of concrete containing waste rubber tire as fine aggregate. Construction and Building Materials, 73, 562-574. https://doi.org/10.1016/j.conbuildmat.2014.09.102
  • Hesami, S., Hikouei, I.S., and Emadi, S.A.A. (2016). Mechanical behavior of self-compacting concrete pavements incorporating recycled tire rubber crumb and reinforced with polypropylene fiber. Journal of Cleaner Production, 133, 228-234. https://doi.org/10.1016/j.jclepro.2016.04.079
  • Hilburg, J. (2021, 20 October). Concrete production produces eight percent of the world's carbon dioxide emissions, The Architects’ Newspaper. https://www.archpaper.com/2019/01/concrete-production-eight-percent-co2-emissions
  • Holka, H. and Jarzyna, T. (2017). Recycling of car tires by means of waterjet technologies. AIP Conference Proceedings, 1822, 020008. https://doi.org/10.1063/1.4977682.
  • İpek, S., Diri, A., and Mermerdaş, K. (2020). Recycling the low-density polyethylene pellets in the pervious concrete production. Journal of Materials Cycle and Waste Management, 23, 272-287. https://doi.org/10.1007/s10163-020-01127-x.
  • İpek, S. and Mermerdaş, K. (2020). Studying the impact of crumb rubber on the setting time of self-compacting mortar. 9th International Conference on Engineering & Natural Sciences, Ankara, Turkey.
  • İSO – İstanbul Sanayi Odası. (2018). Kauçuk ürünleri imalat sanayi: Küresel rekabette İstanbul Sanayi Odası meslek komiteleri sektör stratejileri projesi. Erişim adresi https://www.iso.org.tr/sites/1/upload/files/kaucuk_sanayi_raporu_web_v2-8712.pdf
  • Jokar, F., Khorram, M., Karimi, G., and Hataf, N. (2019). Experimental investigation of mechanical properties of crumbed rubberconcrete containing natural zeolite. Construction and Building Materials, 208, 651-658. https://doi.org/10.1016/j.conbuildmat.2019.03.063
  • Kang, J., Zhang, B., and Li, G. (2012). The abrasion-resistance investigation of rubberized concrete. Journal of Wuhan University of Technology-Mater. Sci. Ed., 27, 1144-1148. https://doi.org/10.1007/s11595-012-0619-8
  • Karger-Kocsis, J., Meszaros, L., and Barany, T. (2013). Ground tyre rubber (GTR) in thermoplastics, thermosets, and rubbers. Journal of Materials Science, 48(1), 1-38. https://doi.org/10.1007/s10853-012-6564-2
  • Karunarathna, S., Linforth, S., Kashani, A., Liu, X., and Ngo, T. (2021). Effect of recycled rubber aggregate size on fracture and other mechanical properties of structural concrete. Journal of Cleaner Production, 314, 128230. https://doi.org/10.1016/j.jclepro.2021.128230
  • Khaloo, A.R., Dehestani, M., and Rahmatabadi, P. (2008). Mechanical properties of concrete containing a high volume of tire–rubber particles. Waste Management, 28(12), 2472-2482. https://doi.org/10.1016/j.wasman.2008.01.015
  • Lv, J., Zhou, T., Du, Q., and Wu, H. (2015). Effects of rubber particles on mechanical properties of lightweight aggregate concrete. Construction and Building Materials, 91, 145-149. https://doi.org/10.1016/j.conbuildmat.2015.05.038
  • Martinez, J.D., Puy, N., Murillo, R., Garcia, T., Navarro, M.V., and Mastral, A.M. (2013). Waste tyre pyrolysis – A review. Renewable and Sustainable Energy Reviews, 23, 179-213. https://doi.org/10.1016/j.rser.2013.02.038
  • Mastral, A.M., Murıllo, R., Calle´n, M.S., Garcia, T., and Snape, C.E. (2000). Influence of process variables on oils from tire pyrolysis and hydropyrolysis in a swept fixed bed reactor. Energy Fuel, 14, 739-744. https://doi.org/10.1021/ef990183e
  • Medina, N.F., Medina, D.F., Hernandez-Olivares, F., and Navacerrada, M.A. (2017). Mechanical and thermal properties of concrete incorporating rubber and fibres from tyre recycling. Construction and Building Materials, 144, 563-573. https://doi.org/10.1016/j.conbuildmat.2017.03.196
  • Mhaya, A.M., Huseien, G.F., Abidin, A.R.Z., and Ismail, M. (2020). Long-term mechanical and durable properties of waste tires rubber crumbs replaced GBFS modified concretes. Construction and Building Materials, 256, 119505. https://doi.org/10.1016/j.conbuildmat.2020.119505
  • Mohammed, B.S. and Adamu, M. (2018). Mechanical performance of roller compacted concrete pavement containing crumb rubber and nano silica. Construction and Building Materials, 159, 234-251. https://doi.org/10.1016/j.conbuildmat.2017.10.098
  • Moustafa, A. and ElGawady, M.A. (2015). Mechanical properties of high strength concrete with scrap tire rubber, Construction and Building Materials, 93, 249-256. https://doi.org/10.1016/j.conbuildmat.2015.05.115
  • PAGEV. (2018). Türkiye kauçuk sektör izleme raporu – 2017. Erişim adresi https://pagev.org/upload/files/Hammadde%20Yeni%20Tebli%C4%9F%20Bilg.%203/Kau%C3%A7uk%20Sekt%C3%B6r%20%C4%B0zleme%20Raporu%202017.pdf
  • Pehlken, A. and Muller, D.H. (2009). Using information of the separation process of recycling scrap tires for process modeling. Resources, Conservation and Recycling, 54, 140-148. https://doi.org/10.1016/j.resconrec.2009.07.008
  • Shu, X. and Huang, B. (2014). Recycling of waste tire rubber in asphalt and portland cement concrete: An overview. Construction and Building Materials, 67, 217-224. https://doi.org/10.1016/j.conbuildmat.2013.11.027
  • Shulman, V.L. (2004), Tyre recycling. Rapra review reports, 15(7). Erişim adresi http://dl.mozh.org/up/Tyre_Recycling.pdf
  • Siddika, A., Al Mamun, Md A., Alyousef, R., Amran, Y.H.M., Aslani, F., and Alabduljabbar, H. (2019). Properties and utilizations of waste tire rubber in concrete: A review. Construction and Building Materials, 224, 711-731. https://doi.org/10.1016/j.conbuildmat.2019.07.108.
  • Sienkiewicz, M, Kucinska-Lipka, J., Janik, H., and Balas, A. (2012). Progress in used tyres management in the European Union: A review. Waste Management, 32, 1742-1751. https://doi.org/10.1016/j.wasman.2012.05.010
  • Singh, S., Nimmo, W., Gibbs, B.M., and Williams, P.T. (2009). Waste tyre rubber as a secondary fuel for power plants. Fuel, 88, 2473-2480. https://doi.org/10.1016/j.fuel.2009.02.026
  • Su, H., Yang, J., Ling, T.C., Ghataora, G.S., and Dirar, S. (2015). Properties of concrete prepared with waste tyre rubber particles of uniform and varying sizes. Journal of Cleaner Production, 91, 288-296. https://doi.org/10.1016/j.jclepro.2014.12.022
  • Sullivan Tire: Anatomy of a tire. (2021, 20 October). Retrieved from https://www.sullivantire.com/learn/tire-classroom/anatomy-of-a-tire
  • Tattersall, G.H., Banfill, P.F.G. (1983). The Rheology of Fresh Concrete. London: Pitman.
  • Thakare, A.A., Siddique, S., Sarode, S.N., Deewan, R., Gupta, V., Gupta, S., and Chaudhary, S. (2020). A study on rheological properties of rubber fiber dosed self-compacting mortar. Construction and Building Materials, 262, 120745. https://doi.org/10.1016/j.conbuildmat.2020.120745
  • Thakur, A., Senthil, K., Sharma, R., and Singh, A.P. (2020). Employment of crumb rubber tyre in concrete masonry bricks. Materials Today: Proceedings, 32(4), 553-559. https://doi.org/10.1016/j.matpr.2020.02.106
  • THBB: Dünyada sektör. (2021, 20 October). Erişim adresi https://www.thbb.org/sektor/dunyada-sektor/
  • Thomas, B.S. and Gupta, R.C. (2015). Long term behaviour of cement concrete containing discarded tire rubber. Journal of Cleaner Production, 102, 78-87. https://doi.org/10.1016/j.jclepro.2015.04.072
  • WBCSD: Managing end-of-life tires. (2021, 19 October). http://docs.wbcsd.org/2008/08/EndOfLifeTires-FullReport.pdf
  • Yang, G., Chen, X., Guo, S., and Xuan, W. (2019). Dynamic mechanical performance of self-compacting concrete containing crumb rubber under high strain rates. KSCE Journal of Civil Engineering, 23, 3669-3681. https://doi.org/10.1007/s12205-019-0024-3
  • Zaleska, M., Pavlikova, M., Citek, D., and Pavlik, Z. (2019). Mechanical and thermal properties of light-weight concrete with incorporated waste tire rubber as coarse aggregate. AIP Conference Proceedings, 2170, 020026. https://doi.org/10.1063/1.5132745
There are 55 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Reviews
Authors

Süleyman İpek 0000-0001-8891-949X

Kasım Mermerdaş 0000-0002-1274-6016

Alparslan Ulusoy 0000-0002-1376-2448

Yusuf Işıker 0000-0002-6777-0080

Publication Date July 15, 2022
Submission Date December 20, 2021
Acceptance Date April 29, 2022
Published in Issue Year 2022 Volume: 12 Issue: 3

Cite

APA İpek, S., Mermerdaş, K., Ulusoy, A., Işıker, Y. (2022). Atık lastiklerin, beton üretiminde agrega olarak kullanımının betonun taze ve mekanik özelliklerine etkisinin araştırılması. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12(3), 982-999. https://doi.org/10.17714/gumusfenbil.1039104