Research Article
BibTex RIS Cite

Protatif anaerobik biyoreaktör tasarımı ve üretim denemeleri

Year 2022, Volume: 12 Issue: 4, 1146 - 1157, 15.10.2022
https://doi.org/10.17714/gumusfenbil.1115001

Abstract

Biyogaz organik atıkların anaerobik sindirimi ile üretilebilen yanıcı bir gaz karışımıdır. Biyogaz içerisinde % 50-65 metan gazı, % 35-50 karbondioksit (CO2) gazı ve 100-1000 ppm oranında hidrojen sülfür (H2S) gazı ihtiva etmektedir. Biyogaz üretim teknolojilerinde en büyük dezavantajlardan biri biyogazı biyometana çeviren saflaştırma teknolojilerinin maliyetidir. Bu çalışmada protatif, kesikli çalışan bir anaerobik biyoreaktör ve 20 litrelik bir gazometre tasarlanmıştır. Gazometre kullanmaktaki amaç biyoreaktörden çıkan ham biyogazın içinde bulunan H2S ve CO2 gazlarının dışarıdan herhangi bir müdahale gerektirmeden sadece biyogazın üretim gücünü kullanarak adsorpsiyonunu sağlamaktır. Bu kapsamda 5 litrelik etkili hacmi bulunan kesikli biyoreaktörün sadece üretilen biyogaz miktarı ve biyogaz içeriği iki tekrarlı test edilmiştir. Bu üretim kapsamında kesikli reaktörde gaz üretiminin başladığı andan itibaren her beş günde bir numune alınmış olup kimyasal oksijen ihtiyacının giderimi başlangıç durumuna göre kıyaslanmıştır. Her üretim denemesi 36 gün sürmüştür ve üretim denemeleri 2 tekrarlı yürütülmüştür. Daha sonra çalışmanın ikinci aşamasına geçilmiş olup biyogaz çıkışı doğrudan gazometre tankına bağlanmıştır. Bu aşamada gazometreden ve kesikli reaktörden her beş günde bir biyogaz ve organik atık numune örneği alınarak test edilmiştir. Gazometresiz denemeler sonucunda oluşan biyogazın H2S ve CO2 içerikleri sırasıyla 558 ± 55 ppm ve % 55.4 ± 2.9 iken gazometreli üretim sonucunda bu değerler sırasıyla 45 ppm ve % 24.5 olarak bulunmuştur. Sonuç olarak endüstriyel ölçekli bir gazometreli sistemin ekstra bir biyogaz saflaştırma ünitesi gerektirmeden biyogaz içerisindeki H2S’nin yaklaşık %88’ ini ve CO2’nin % 55’ ini adsorpladığı tespit edilmiştir. Sonraki çalışmalar için, gazometre hacminin değişimi ve gazometredeki suyun bekletme sürelerinin artırılması, CO2 ve H2S konsantrasyonlarının daha da azaltılabileceği için tavsiye edilmektedir.

Supporting Institution

Giresun Üniversitesi Bilimsel Araştırmalar Birimi

Project Number

FEN-BAP-A-150219-68

Thanks

Bu çalışma Giresun Üniversitesi Bilimsel Araştırmalar Birimi tarafından FEN-BAP-A-150219-68 numaralı proje kapsamında mali olarak desteklenmiştir. Yazarlar Giresun Üniversitesi BAP Birimi’ne ve Gümüşhane Üniversitesi Fen Bilimleri Dergisi Editör ve hakemlere çalışmanın inceleme ve değerlendirme aşamasında yapmış oldukları katkılarından dolayı teşekkür eder.

References

  • Alonso-Vicario, A., Ochoa-Gómez, J. R., Gil-Río, S., Gómez-Jiménez-Aberasturi, O., Ramírez-López, C., Torrecilla-Soria, J., & Domínguez, A. (2010). Purification and upgrading of biogas by pressure swing adsorption on synthetic and natural zeolites. Microporous and Mesoporous Materials, 134(1-3), 100-107. https://doi.org/10.1016/j.micromeso.2010.05.014
  • Angelidaki, I., Treu, L., Tsapekos, P., Luo, G., Campanaro, S., Wenzel, H., & Kougias, P. G. (2018). Biogas upgrading and utilization: Current status and perspectives. Biotechnology advances, 36(2), 452-466. https://doi.org/10.1016/j.biotechadv.2018.01.011
  • Atelge, M. R., Senol, H., Djaafri, M., Hansu, T. A., Krisa, D., Atabani, A., Eskicioglu, C., Muratcobanoglu, H., Unalan, S., Kolloum, S., Azbar, N., & Kıvrak, H. D. (2021). A Critical Overview of the state-of-the-art methods for biogas purification and utilization processes. Sustainability, 13(20), 11515. https://doi.org/10.3390/su132011515
  • Atelge, R. (2021a). Co-digestion of orange pulp and cattle manure with different C/N ratios and a new modeling of biogas production. Karadeniz Fen Bilimleri Dergisi, 11(2), 557-569. https://doi.org/10.31466/kfbd.937269
  • Atelge, R. (2021b). Türkiye'de Sığır Gübresinden Biyoyakıt Olarak Biyogaz Üretiminin Potansiyeli ve 2030 ve 2053 Yıllarında Karbon Emisyonlarının Azaltılmasına Öngörülen Etkisi. International Journal of Innovative Engineering Applications, 5(1), 56-64. https://doi.org/10.46460/ijiea.923792
  • Awe, O. W., Zhao, Y., Nzihou, A., Minh, D. P., & Lyczko, N. (2017). A review of biogas utilisation, purification and upgrading technologies. Waste and Biomass Valorization, 8(2), 267-283. https://doi.org/10.1007/s12649-016-9826-4
  • Baena-Moreno, F. M., Rodríguez-Galán, M., Vega, F., Vilches, L. F., & Navarrete, B. (2019). Recent advances in biogas purifying technologies. International Journal of Green Energy, 16(5), 401-412.https://doi.org/10.1080/15435075.2019.1572610
  • Bauer, F., Persson, T., Hulteberg, C., & Tamm, D. (2013). Biogas upgrading–technology overview, comparison and perspectives for the future. Biofuels, Bioproducts and Biorefining, 7(5), 499-511. https://doi.org/10.1002/bbb.1423
  • Chen, X. Y., Vinh-Thang, H., Ramirez, A. A., Rodrigue, D., & Kaliaguine, S. (2015). Membrane gas separation technologies for biogas upgrading. RSC advances, 5(31), 24399-24448. https://doi.org/10.1039/C5RA00666J
  • Collet, P., Flottes, E., Favre, A., Raynal, L., Pierre, H., Capela, S., & Peregrina, C. (2017). Techno-economic and Life Cycle Assessment of methane production via biogas upgrading and power to gas technology. Applied energy, 192, 282-295. https://doi.org/10.1016/j.apenergy.2016.08.181
  • Favre, E., Bounaceur, R., & Roizard, D. (2009). Biogas, membranes and carbon dioxide capture. Journal of Membrane Science, 328(1-2), 11-14. https://doi.org/10.1016/j.memsci.2008.12.017
  • Hosseinipour, S. A., & Mehrpooya, M. (2019). Comparison of the biogas upgrading methods as a transportation fuel. Renewable energy, 130, 641-655. https://doi.org/10.1016/j.renene.2018.06.089
  • Khan, I. U., Othman, M. H. D., Hashim, H., Matsuura, T., Ismail, A., Rezaei-DashtArzhandi, M., & Azelee, I. W. (2017). Biogas as a renewable energy fuel–A review of biogas upgrading, utilisation and storage. Energy Conversion and Management, 150, 277-294. https://doi.org/10.1016/j.enconman.2017.08.035
  • Koçar, G., Eryaşar, A., Ersöz, Ö., Arıcı, Ş., & Durmuş, A. (2010). Biyogaz teknolojileri. Ege Üniversitesi Basımevi, İzmir, 1-281.
  • Lasocki, J., Kołodziejczyk, K., & Matuszewska, A. (2015). Laboratory-scale investigation of biogas treatment by removal of hydrogen sulfide and carbon dioxide. Polish Journal of Environmental Studies, 24(3), 1427-1434. https://doi.org/10.15244/pjoes/35283
  • Makaruk, A., Miltner, M., & Harasek, M. (2010). Membrane biogas upgrading processes for the production of natural gas substitute. Separation and Purification Technology, 74(1), 83-92. https://doi.org/10.1016/j.seppur.2010.05.010
  • Malhautier, L., Gracian, C., Roux, J.-C., Fanlo, J.-L., & Le Cloirec, P. (2003). Biological treatment process of air loaded with an ammonia and hydrogen sulfide mixture. Chemosphere, 50(1), 145-153. https://doi.org/10.1016/S0045-6535(02)00395-8
  • Miltner, M., Makaruk, A., & Harasek, M. (2017). Review on available biogas upgrading technologies and innovations towards advanced solutions. Journal of Cleaner Production, 161, 1329-1337. https://doi.org/10.1016/j.jclepro.2017.06.045
  • Niesner, J., Jecha, D., & Stehlík, P. (2013). Biogas upgrading technologies: state of art review in European region. Chemical Engineering Transactions, 35(86), 517-522. https://doi.org/10.3303/CET1335086
  • Özarslan, S., Abut, S., Atelge, M., Kaya, M., & Unalan, S. (2021). Modeling and simulation of co-digestion performance with artificial neural network for prediction of methane production from tea factory waste with co-substrate of spent tea waste. Fuel, 306, 121715. Persson, M., Jönsson, O., & Wellinger, A. (2006). Biogas upgrading to vehicle fuel standards and grid injection. Paper presented at the IEA Bioenergy task.
  • Privalova, E., Rasi, S., Mäki-Arvela, P., Eränen, K., Rintala, J., Murzin, D. Y., & Mikkola, J.-P. (2013). CO 2 capture from biogas: Absorbent selection. RSC advances, 3(9), 2979-2994. https://doi.org/10.1039/C2RA23013E
  • Sahota, S., Shah, G., Ghosh, P., Kapoor, R., Sengupta, S., Singh, P., . . . Thakur, I. S. (2018). Review of trends in biogas upgradation technologies and future perspectives. Bioresource Technology Reports, 1, 79-88. https://doi.org/10.1016/j.biteb.2018.01.002
  • Scarlat, N., Fahl, F., Dallemand, J. F., Monforti, F., & Motola, V. (2018). A spatial analysis of biogas potential from manure in Europe. Renewable and Sustainable Energy Reviews, 94, 915-930. https://doi.org/10.1016/j.rser.2018.06.035
  • Selvaggi, R., Pappalardo, G., Chinnici, G., & Fabbri, C. I. (2018). Assessing land efficiency of biomethane industry: A case study of Sicily. Energy policy, 119, 689-695.https://doi.org/10.1016/j.enpol.2018.04.039
  • Şenol, H. (2019). Evsel organik atıklardan biyogaz üretiminin incelenmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 8(1), 132-142. https://doi.org/10.17798/bitlisfen.444079
  • Şenol, H. (2020). Enhancement in methane yield from anaerobic co‐digestion of walnut shells and cattle manure. Environmental Progress & Sustainable Energy, 39(6), e13524. https://doi.org/10.1002/ep.13524
  • Şenol, H. (2021). Effects of NaOH, thermal, and combined NaOH-thermal pretreatments on the biomethane yields from the anaerobic digestion of walnut shells. Environmental Science and Pollution Research, 28(17), 21661-21673. https://doi.org/10.1007/s11356-020-11984-6
  • Şenol, H., Açıkel, Ü., Demir, S., & Oda, V. (2020). Anaerobic digestion of cattle manure, corn silage and sugar beet pulp mixtures after thermal pretreatment and kinetic modeling study. Fuel, 263, 116651.https://doi.org/10.1016/j.fuel.2019.116651
  • Şenol, H., Açıkel, Ü., & Oda, V. (2021). Anaerobic digestion of sugar beet pulp after acid thermal and alkali thermal pretreatments. Biomass Conversion and Biorefinery, 11(3), 895-905. https://doi.org/10.1007/s13399-019-00539-6
  • Şenol, H., Dereli̇, M. A., & Özbilgin, F. (2021). Investigation of the distribution of bovine manure-based biomethane potential using an artificial neural network in Turkey to 2030. Renewable and Sustainable Energy Reviews, 149, 111338. https://doi.org/10.1016/j.rser.2021.111338
  • Şenol, H., Erşan, M., & Görgün, E. (2020). Optimization of temperature and pretreatments for methane yield of hazelnut shells using the response surface methodology. Fuel, 271, 117585. https://doi.org/10.1016/j.fuel.2020.117585
  • Voice, A. K., Closmann, F., & Rochelle, G. T. (2013). Oxidative degradation of amines with high-temperature cycling. Energy Procedia, 37, 2118-2132. https://doi.org/10.1016/j.egypro.2013.06.091.
  • Yamamoto, T., Endo, A., Ohmori, T., & Nakaiwa, M. (2004). Porous properties of carbon gel microspheres as adsorbents for gas separation. Carbon, 42(8-9), 1671-1676. https://doi.org/10.1016/j.carbon.2004.02.021

Portable anaerobic bioreactor design and production trials

Year 2022, Volume: 12 Issue: 4, 1146 - 1157, 15.10.2022
https://doi.org/10.17714/gumusfenbil.1115001

Abstract

Biogas is a flammable gas mixture that can be produced by anaerobic digestion of organic wastes. It contains 50-65% methane gas, 35-50% carbon dioxide (CO2) gas and 100-1000 ppm hydrogen sulfide (H2S) gas in biogas. One of the biggest disadvantages in biogas production technologies is the cost of purification technologies that convert biogas to biomethane. In this study, a portable, intermittent anaerobic bioreactor and a 20 liter gasometer were designed. The purpose of using gasometer is to ensure the adsorption of H2S and CO2 gases in the raw biogas coming out of the bioreactor, using only the production power of the biogas without requiring any external intervention. In this context, only the produced biogas amount and biogas content of the batch bioreactor with an effective volume of 5 liters were tested twice. Within the scope of this production, a sample was taken every five days from the start of gas production in the batch reactor and the removal of chemical oxygen demand was compared with the initial situation. Each production trial lasted 36 days. Then, the second stage of the study was started and the biogas outlet was directly connected to the gasometer tank. At this stage, biogas and organic waste samples were taken from the gasometer and batch reactor every five days and tested. While the H2S and CO2 contents of the biogas formed as a result of the experiments without gasometer were 558 ± 55 ppm and 55.4 ± 2.9%, respectively, these values were found to be 45 ppm and 24.5%, respectively, as a result of the production with gasometer. As a result, it has been determined that an industrial-scale gasometer system adsorbs approximately 88% of H2S and 55% of CO2 in biogas without requiring an extra biogas purification unit. For further studies, changing the gasometer volume and increasing the holding times of the water in the gasometer are recommended as CO2 and H2S concentrations can be further reduced.

Project Number

FEN-BAP-A-150219-68

References

  • Alonso-Vicario, A., Ochoa-Gómez, J. R., Gil-Río, S., Gómez-Jiménez-Aberasturi, O., Ramírez-López, C., Torrecilla-Soria, J., & Domínguez, A. (2010). Purification and upgrading of biogas by pressure swing adsorption on synthetic and natural zeolites. Microporous and Mesoporous Materials, 134(1-3), 100-107. https://doi.org/10.1016/j.micromeso.2010.05.014
  • Angelidaki, I., Treu, L., Tsapekos, P., Luo, G., Campanaro, S., Wenzel, H., & Kougias, P. G. (2018). Biogas upgrading and utilization: Current status and perspectives. Biotechnology advances, 36(2), 452-466. https://doi.org/10.1016/j.biotechadv.2018.01.011
  • Atelge, M. R., Senol, H., Djaafri, M., Hansu, T. A., Krisa, D., Atabani, A., Eskicioglu, C., Muratcobanoglu, H., Unalan, S., Kolloum, S., Azbar, N., & Kıvrak, H. D. (2021). A Critical Overview of the state-of-the-art methods for biogas purification and utilization processes. Sustainability, 13(20), 11515. https://doi.org/10.3390/su132011515
  • Atelge, R. (2021a). Co-digestion of orange pulp and cattle manure with different C/N ratios and a new modeling of biogas production. Karadeniz Fen Bilimleri Dergisi, 11(2), 557-569. https://doi.org/10.31466/kfbd.937269
  • Atelge, R. (2021b). Türkiye'de Sığır Gübresinden Biyoyakıt Olarak Biyogaz Üretiminin Potansiyeli ve 2030 ve 2053 Yıllarında Karbon Emisyonlarının Azaltılmasına Öngörülen Etkisi. International Journal of Innovative Engineering Applications, 5(1), 56-64. https://doi.org/10.46460/ijiea.923792
  • Awe, O. W., Zhao, Y., Nzihou, A., Minh, D. P., & Lyczko, N. (2017). A review of biogas utilisation, purification and upgrading technologies. Waste and Biomass Valorization, 8(2), 267-283. https://doi.org/10.1007/s12649-016-9826-4
  • Baena-Moreno, F. M., Rodríguez-Galán, M., Vega, F., Vilches, L. F., & Navarrete, B. (2019). Recent advances in biogas purifying technologies. International Journal of Green Energy, 16(5), 401-412.https://doi.org/10.1080/15435075.2019.1572610
  • Bauer, F., Persson, T., Hulteberg, C., & Tamm, D. (2013). Biogas upgrading–technology overview, comparison and perspectives for the future. Biofuels, Bioproducts and Biorefining, 7(5), 499-511. https://doi.org/10.1002/bbb.1423
  • Chen, X. Y., Vinh-Thang, H., Ramirez, A. A., Rodrigue, D., & Kaliaguine, S. (2015). Membrane gas separation technologies for biogas upgrading. RSC advances, 5(31), 24399-24448. https://doi.org/10.1039/C5RA00666J
  • Collet, P., Flottes, E., Favre, A., Raynal, L., Pierre, H., Capela, S., & Peregrina, C. (2017). Techno-economic and Life Cycle Assessment of methane production via biogas upgrading and power to gas technology. Applied energy, 192, 282-295. https://doi.org/10.1016/j.apenergy.2016.08.181
  • Favre, E., Bounaceur, R., & Roizard, D. (2009). Biogas, membranes and carbon dioxide capture. Journal of Membrane Science, 328(1-2), 11-14. https://doi.org/10.1016/j.memsci.2008.12.017
  • Hosseinipour, S. A., & Mehrpooya, M. (2019). Comparison of the biogas upgrading methods as a transportation fuel. Renewable energy, 130, 641-655. https://doi.org/10.1016/j.renene.2018.06.089
  • Khan, I. U., Othman, M. H. D., Hashim, H., Matsuura, T., Ismail, A., Rezaei-DashtArzhandi, M., & Azelee, I. W. (2017). Biogas as a renewable energy fuel–A review of biogas upgrading, utilisation and storage. Energy Conversion and Management, 150, 277-294. https://doi.org/10.1016/j.enconman.2017.08.035
  • Koçar, G., Eryaşar, A., Ersöz, Ö., Arıcı, Ş., & Durmuş, A. (2010). Biyogaz teknolojileri. Ege Üniversitesi Basımevi, İzmir, 1-281.
  • Lasocki, J., Kołodziejczyk, K., & Matuszewska, A. (2015). Laboratory-scale investigation of biogas treatment by removal of hydrogen sulfide and carbon dioxide. Polish Journal of Environmental Studies, 24(3), 1427-1434. https://doi.org/10.15244/pjoes/35283
  • Makaruk, A., Miltner, M., & Harasek, M. (2010). Membrane biogas upgrading processes for the production of natural gas substitute. Separation and Purification Technology, 74(1), 83-92. https://doi.org/10.1016/j.seppur.2010.05.010
  • Malhautier, L., Gracian, C., Roux, J.-C., Fanlo, J.-L., & Le Cloirec, P. (2003). Biological treatment process of air loaded with an ammonia and hydrogen sulfide mixture. Chemosphere, 50(1), 145-153. https://doi.org/10.1016/S0045-6535(02)00395-8
  • Miltner, M., Makaruk, A., & Harasek, M. (2017). Review on available biogas upgrading technologies and innovations towards advanced solutions. Journal of Cleaner Production, 161, 1329-1337. https://doi.org/10.1016/j.jclepro.2017.06.045
  • Niesner, J., Jecha, D., & Stehlík, P. (2013). Biogas upgrading technologies: state of art review in European region. Chemical Engineering Transactions, 35(86), 517-522. https://doi.org/10.3303/CET1335086
  • Özarslan, S., Abut, S., Atelge, M., Kaya, M., & Unalan, S. (2021). Modeling and simulation of co-digestion performance with artificial neural network for prediction of methane production from tea factory waste with co-substrate of spent tea waste. Fuel, 306, 121715. Persson, M., Jönsson, O., & Wellinger, A. (2006). Biogas upgrading to vehicle fuel standards and grid injection. Paper presented at the IEA Bioenergy task.
  • Privalova, E., Rasi, S., Mäki-Arvela, P., Eränen, K., Rintala, J., Murzin, D. Y., & Mikkola, J.-P. (2013). CO 2 capture from biogas: Absorbent selection. RSC advances, 3(9), 2979-2994. https://doi.org/10.1039/C2RA23013E
  • Sahota, S., Shah, G., Ghosh, P., Kapoor, R., Sengupta, S., Singh, P., . . . Thakur, I. S. (2018). Review of trends in biogas upgradation technologies and future perspectives. Bioresource Technology Reports, 1, 79-88. https://doi.org/10.1016/j.biteb.2018.01.002
  • Scarlat, N., Fahl, F., Dallemand, J. F., Monforti, F., & Motola, V. (2018). A spatial analysis of biogas potential from manure in Europe. Renewable and Sustainable Energy Reviews, 94, 915-930. https://doi.org/10.1016/j.rser.2018.06.035
  • Selvaggi, R., Pappalardo, G., Chinnici, G., & Fabbri, C. I. (2018). Assessing land efficiency of biomethane industry: A case study of Sicily. Energy policy, 119, 689-695.https://doi.org/10.1016/j.enpol.2018.04.039
  • Şenol, H. (2019). Evsel organik atıklardan biyogaz üretiminin incelenmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 8(1), 132-142. https://doi.org/10.17798/bitlisfen.444079
  • Şenol, H. (2020). Enhancement in methane yield from anaerobic co‐digestion of walnut shells and cattle manure. Environmental Progress & Sustainable Energy, 39(6), e13524. https://doi.org/10.1002/ep.13524
  • Şenol, H. (2021). Effects of NaOH, thermal, and combined NaOH-thermal pretreatments on the biomethane yields from the anaerobic digestion of walnut shells. Environmental Science and Pollution Research, 28(17), 21661-21673. https://doi.org/10.1007/s11356-020-11984-6
  • Şenol, H., Açıkel, Ü., Demir, S., & Oda, V. (2020). Anaerobic digestion of cattle manure, corn silage and sugar beet pulp mixtures after thermal pretreatment and kinetic modeling study. Fuel, 263, 116651.https://doi.org/10.1016/j.fuel.2019.116651
  • Şenol, H., Açıkel, Ü., & Oda, V. (2021). Anaerobic digestion of sugar beet pulp after acid thermal and alkali thermal pretreatments. Biomass Conversion and Biorefinery, 11(3), 895-905. https://doi.org/10.1007/s13399-019-00539-6
  • Şenol, H., Dereli̇, M. A., & Özbilgin, F. (2021). Investigation of the distribution of bovine manure-based biomethane potential using an artificial neural network in Turkey to 2030. Renewable and Sustainable Energy Reviews, 149, 111338. https://doi.org/10.1016/j.rser.2021.111338
  • Şenol, H., Erşan, M., & Görgün, E. (2020). Optimization of temperature and pretreatments for methane yield of hazelnut shells using the response surface methodology. Fuel, 271, 117585. https://doi.org/10.1016/j.fuel.2020.117585
  • Voice, A. K., Closmann, F., & Rochelle, G. T. (2013). Oxidative degradation of amines with high-temperature cycling. Energy Procedia, 37, 2118-2132. https://doi.org/10.1016/j.egypro.2013.06.091.
  • Yamamoto, T., Endo, A., Ohmori, T., & Nakaiwa, M. (2004). Porous properties of carbon gel microspheres as adsorbents for gas separation. Carbon, 42(8-9), 1671-1676. https://doi.org/10.1016/j.carbon.2004.02.021
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Halil Şenol 0000-0003-3056-5013

Selçuk Atasoy 0000-0003-0712-7904

Project Number FEN-BAP-A-150219-68
Publication Date October 15, 2022
Submission Date May 10, 2022
Acceptance Date September 11, 2022
Published in Issue Year 2022 Volume: 12 Issue: 4

Cite

APA Şenol, H., & Atasoy, S. (2022). Protatif anaerobik biyoreaktör tasarımı ve üretim denemeleri. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12(4), 1146-1157. https://doi.org/10.17714/gumusfenbil.1115001