Research Article
BibTex RIS Cite

An investigation of the Trypan blue dye's biosorption on fungal biomass

Year 2023, Volume: 13 Issue: 3, 605 - 615, 15.07.2023
https://doi.org/10.17714/gumusfenbil.1254888

Abstract

Trypan blue (TB) is a commonly used hazardous and carcinogenic dye. The aim of this research was to remove TB using heat-inactivated Aspergilus niveus biomass. The biosorption of TB dye was studied as a function of pH, the concentration of TB dye, biosorbent amount, and time. In studies, the Langmuir, Freundlich, Redlich-Peterson, and Harkins-Jura isotherm models were evaluated for suitability. The biosorption of the TB dye on the used biomass was found to follow the Langmuir and Redlich-Peterson isotherm models. The pseudo second-order kinetic model was found to be more effective at explaining TB biosorption. The pseudo-second order model's theoretical Qe value (129.87 mg/g) was found to be close to the experimentally obtained value (128.1 mg/g) at 25 ℃. According to the studies, the highest biosorption capacity was found to be 141.79 mg/g at 45 ℃.

References

  • Akkaya, G., Uzun, İ., & Güzel, F. (2009). Adsorption of some highly toxic dyestuffs from aqueous solution by chitin and its synthesized derivatives. Desalination, 249(3), 1115–1123. https://doi.org/10.1016/j.desal.2009.05.014
  • Ayawei, N., Ebelegi, A. N., & Wankasi, D. (2017). Modelling and interpretation of adsorption isotherms. Journal of Chemistry, 2017, 1–11. https://doi.org/10.1155/2017/3039817
  • Bayramoglu, G., & Yilmaz, M. (2018). Azo dye removal using free and immobilized fungal biomasses: Isotherms, kinetics and thermodynamic studies. Fibers & Polymers, 19(4), 877–886. https://doi.org/10.1007/s12221-018-7875
  • Britos, C. N., Gianolini, J. E., Portillo, H., & Trelles, J. A. (2018). Biodegradation of industrial dyes by a solvent, metal and surfactant-stable extracellular bacterial laccase. Biocatalysis & Agricultural Biotechnology, 14, 221–227. https://doi.org/10.1016/j.bcab.2018.03.015
  • Bueno, B. Y. M., Torem, M. L., Molina, F., & de Mesquita, L. M. S. (2008). Biosorption of lead(II), chromium(III) and copper(II) by R. opacus: Equilibrium and kinetic studies. Minerals Engineering, 21(1), 65–75. https://doi.org/10.1016/j.mineng.2007.08.013
  • Cai, Z., Deng, X., Wang, Q., Lai, J., Xie, H., Chen, Y., Huang, B., & Lin, G. (2020). Core-shell granular activated carbon and its adsorption of trypan blue. Journal of Cleaner Production, 242, 118496. https://doi.org/10.1016/j.jclepro.2019.118496
  • Chung, K.-T. (2016). Azo dyes and human health: A review. Journal of Environmental Science & Health, Part C, 34(4), 233–261. https://doi.org/10.1080/10590501.2016.1236602
  • Aracagök, D. Y., Öğün, E., Torun, M., Akyıl, H., Cihangir, N., & Sanin, S. (2021). Fungal biosorption of cadmium(II) onto Fennelia nivea from aqueous solution: Equilibrium, thermodynamics, and kinetics. Desalination & Water Treatment, 222, 386–393. https://doi.org/10.5004/dwt.2021.27091
  • Dutta, A., Das, N., Sarkar, D., & Chakrabarti, S. (2019). Development and characterization of a continuous solar-collector-reactor for wastewater treatment by photo-Fenton process. Solar Energy, 177, 364–373. https://doi.org/10.1016/j.solener.2018.11.036
  • Eddy, N. O., Garg, R., Garg, R., Aikoye, A. O., & Ita, B. I. (2022). Waste to resource recovery: Mesoporous adsorbent from orange peel for the removal of trypan blue dye from aqueous solution. Biomass Conversion & Biorefinery, https://doi.org/10.1007/s13399-022-02571-5
  • El-Idreesy, T. T., Khoshala, O., Firouzi, A., & Elazab, H. A. (2021). Equilibrium and kinetic study on the biosorption of trypan blue from aqueous solutions using avocado seed powder. Biointerface Research in Applied Chemistry, 11(3), 11042–11053. https://doi.org/10.33263/BRIAC113.1104211053
  • Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2–10. https://doi.org/10.1016/j.cej.2009.09.013
  • Fu, Y., & Viraraghavan, T. (2001). Fungal decolorization of dye wastewaters: A review. Bioresource Technology, 79(3), 251–262. https://doi.org/10.1016/S0960-8524(01)00028-1
  • Galloni, M. G., Bortolotto, V., Falletta, E., & Bianchi, C. L. (2022). PH-Driven selective adsorption of multi-dyes solutions by loofah sponge and polyaniline-modified loofah sponge. Polymers, 14(22), 4897. https://doi.org/10.3390/polym14224897
  • Gemi̇Ci̇, B. T., & Özden, A. (2022). Isotherm, kinetics & thermodynamic analysis of dye removal from aqueous solutions using chestnut shell. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12(4), 1158-116. https://doi.org/10.17714/gumusfenbil.983162
  • Ghime, D., & Ghosh, P. (2020). Decolorization of diazo dye trypan blue by electrochemical oxidation: Kinetics with a model based on the Fermi’s equation. Journal of Environmental Chemical Engineering, 8(1), 102792. https://doi.org/10.1016/j.jece.2018.11.037
  • Ho, Y. S., & McKay, G. (1998). A Comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Safety & Environmental Protection, 76(4), 332–340. https://doi.org/10.1205/095758298529696
  • Hussain, S., Kamran, M., Khan, S. A., Shaheen, K., Shah, Z., Suo, H., Khan, Q., Shah, A. B., Rehman, W. U., Al-Ghamdi, Y. O., & Ghani, U. (2021). Adsorption, kinetics and thermodynamics studies of methyl orange dye sequestration through chitosan composites films. International Journal of Biological Macromolecules, 168, 383–394. https://doi.org/10.1016/j.ijbiomac.2020.12.054
  • Nadaroglu, H., Cicek, S., & Gungor, A. A. (2017). Removing trypan blue dye using Nano-Zn modified luffa sponge. Spectrochimica Acta Part A: Molecular & Biomolecular Spectroscopy, 172, 2–8. https://doi.org/10.1016/j.saa.2016.08.052
  • Olakunle, M. O., Inyinbor, A. A., Dada, A. O., & Bello, O. S. (2018). Combating dye pollution using cocoa pod husks: A sustainable approach. International Journal of Sustainable Engineering, 11(1), 4–15. https://doi.org/10.1080/19397038.2017.1393023
  • Plazinski, W., Rudzinski, W., & Plazinska, A. (2009). Theoretical models of sorption kinetics including a surface reaction mechanism: A review. Advances in Colloid & Interface Science, 152(1), 2–13. https://doi.org/10.1016/j.cis.2009.07.009
  • Priyadarshini, B., Patra, T., & Sahoo, T. R. (2021). An efficient and comparative adsorption of Congo red and trypan blue dyes on MgO nanoparticles: Kinetics, thermodynamics and isotherm studies. Journal of Magnesium & Alloys, 9(2), 478–488. https://doi.org/10.1016/j.jma.2020.09.004
  • Rauf, M. A., & Salman Ashraf, S. (2012). Survey of recent trends in biochemically assisted degradation of dyes. Chemical Engineering Journal, 209, 520–530. https://doi.org/10.1016/j.cej.2012.08.015
  • Sadhasivam, S., Saritha, E., Savitha, S., & Swaminathan, K. (2005). Comparison of the efficacy of live and autoclaved mycelium of Trichoderm harzianum on the removal of trypan bllue. Bulletin of Environmental Contamination & Toxicology, 75(5), 1046–1053. https://doi.org/10.1007/s00128-005-0855-0
  • Salleh, M. A. M., Mahmoud, D. K., Karim, W. A. W. A., & Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 280(1), 1–13. https://doi.org/10.1016/j.desal.2011.07.019
  • Sarkar, S., Banerjee, A., Halder, U., Biswas, R., & Bandopadhyay, R. (2017). Degradation of synthetic azo dyes of textile industry: A sustainable approach using microbial enzymes. Water Conservation Science and Engineering, 2(4), 121–131. https://doi.org/10.1007/s41101-017-0031-5
  • Vijayaraghavan, K., Padmesh, T., Palanivelu, K., & Velan, M. (2006). Biosorption of nickel(II) ions onto Sargassum wightii: Application of two-parameter and three-parameter isotherm models. Journal of Hazardous Materials, 133(13), 304–308. https://doi.org/10.1016/j.jhazmat.2005.10.016
  • Wu, F.-C., Liu, B.-L., Wu, K.-T., & Tseng, R.-L. (2010). A new linear form analysis of Redlich–Peterson isotherm equation for the adsorptions of dyes. Chemical Engineering Journal, 162(1), 21–27. https://doi.org/10.1016/j.cej.2010.03.006

Tripan mavi boyasının fungal biyokütle ile biyosorpsiyonu hakkında bir çalışma

Year 2023, Volume: 13 Issue: 3, 605 - 615, 15.07.2023
https://doi.org/10.17714/gumusfenbil.1254888

Abstract

Tripan mavisi (TB) yaygın olarak kullanılan tehlikeli ve kanserojen bir boyadır. Bu araştırmanın amacı, ısıyla inaktive edilmiş Aspergilus niveus biyokütlesi kullanarak TB'yi gidermektir. TB boyasının biyosorpsiyonu pH, TB boyası konsantrasyonu, biyosorbent miktarı ve zamanın bir fonksiyonu olarak incelenmiştir. Çalışmalarda Langmuir, Freundlich, Redlich-Peterson ve Harkins-Jura izoterm modelleri uygunluk açısından değerlendirilmiştir. TB boyasının kullanılan biyokütle üzerindeki biyosorpsiyonunun Langmuir ve Redlich-Peterson izoterm modellerini takip ettiği bulunmuştur. Yalancı ikinci dereceden kinetik modelin TB biyosorpsiyonunu açıklamada daha etkili olduğu bulunmuştur. Sözde ikinci dereceden modelin teorik Qe değerinin (129,87 mg/g) 25 ℃'de deneysel olarak elde edilen değere (128,1 mg/g) yakın olduğu bulunmuştur. Çalışmalara göre, en yüksek biyosorpsiyon kapasitesi 45 ℃'de 141,79 mg/g olarak bulunmuştur.

References

  • Akkaya, G., Uzun, İ., & Güzel, F. (2009). Adsorption of some highly toxic dyestuffs from aqueous solution by chitin and its synthesized derivatives. Desalination, 249(3), 1115–1123. https://doi.org/10.1016/j.desal.2009.05.014
  • Ayawei, N., Ebelegi, A. N., & Wankasi, D. (2017). Modelling and interpretation of adsorption isotherms. Journal of Chemistry, 2017, 1–11. https://doi.org/10.1155/2017/3039817
  • Bayramoglu, G., & Yilmaz, M. (2018). Azo dye removal using free and immobilized fungal biomasses: Isotherms, kinetics and thermodynamic studies. Fibers & Polymers, 19(4), 877–886. https://doi.org/10.1007/s12221-018-7875
  • Britos, C. N., Gianolini, J. E., Portillo, H., & Trelles, J. A. (2018). Biodegradation of industrial dyes by a solvent, metal and surfactant-stable extracellular bacterial laccase. Biocatalysis & Agricultural Biotechnology, 14, 221–227. https://doi.org/10.1016/j.bcab.2018.03.015
  • Bueno, B. Y. M., Torem, M. L., Molina, F., & de Mesquita, L. M. S. (2008). Biosorption of lead(II), chromium(III) and copper(II) by R. opacus: Equilibrium and kinetic studies. Minerals Engineering, 21(1), 65–75. https://doi.org/10.1016/j.mineng.2007.08.013
  • Cai, Z., Deng, X., Wang, Q., Lai, J., Xie, H., Chen, Y., Huang, B., & Lin, G. (2020). Core-shell granular activated carbon and its adsorption of trypan blue. Journal of Cleaner Production, 242, 118496. https://doi.org/10.1016/j.jclepro.2019.118496
  • Chung, K.-T. (2016). Azo dyes and human health: A review. Journal of Environmental Science & Health, Part C, 34(4), 233–261. https://doi.org/10.1080/10590501.2016.1236602
  • Aracagök, D. Y., Öğün, E., Torun, M., Akyıl, H., Cihangir, N., & Sanin, S. (2021). Fungal biosorption of cadmium(II) onto Fennelia nivea from aqueous solution: Equilibrium, thermodynamics, and kinetics. Desalination & Water Treatment, 222, 386–393. https://doi.org/10.5004/dwt.2021.27091
  • Dutta, A., Das, N., Sarkar, D., & Chakrabarti, S. (2019). Development and characterization of a continuous solar-collector-reactor for wastewater treatment by photo-Fenton process. Solar Energy, 177, 364–373. https://doi.org/10.1016/j.solener.2018.11.036
  • Eddy, N. O., Garg, R., Garg, R., Aikoye, A. O., & Ita, B. I. (2022). Waste to resource recovery: Mesoporous adsorbent from orange peel for the removal of trypan blue dye from aqueous solution. Biomass Conversion & Biorefinery, https://doi.org/10.1007/s13399-022-02571-5
  • El-Idreesy, T. T., Khoshala, O., Firouzi, A., & Elazab, H. A. (2021). Equilibrium and kinetic study on the biosorption of trypan blue from aqueous solutions using avocado seed powder. Biointerface Research in Applied Chemistry, 11(3), 11042–11053. https://doi.org/10.33263/BRIAC113.1104211053
  • Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2–10. https://doi.org/10.1016/j.cej.2009.09.013
  • Fu, Y., & Viraraghavan, T. (2001). Fungal decolorization of dye wastewaters: A review. Bioresource Technology, 79(3), 251–262. https://doi.org/10.1016/S0960-8524(01)00028-1
  • Galloni, M. G., Bortolotto, V., Falletta, E., & Bianchi, C. L. (2022). PH-Driven selective adsorption of multi-dyes solutions by loofah sponge and polyaniline-modified loofah sponge. Polymers, 14(22), 4897. https://doi.org/10.3390/polym14224897
  • Gemi̇Ci̇, B. T., & Özden, A. (2022). Isotherm, kinetics & thermodynamic analysis of dye removal from aqueous solutions using chestnut shell. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12(4), 1158-116. https://doi.org/10.17714/gumusfenbil.983162
  • Ghime, D., & Ghosh, P. (2020). Decolorization of diazo dye trypan blue by electrochemical oxidation: Kinetics with a model based on the Fermi’s equation. Journal of Environmental Chemical Engineering, 8(1), 102792. https://doi.org/10.1016/j.jece.2018.11.037
  • Ho, Y. S., & McKay, G. (1998). A Comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Safety & Environmental Protection, 76(4), 332–340. https://doi.org/10.1205/095758298529696
  • Hussain, S., Kamran, M., Khan, S. A., Shaheen, K., Shah, Z., Suo, H., Khan, Q., Shah, A. B., Rehman, W. U., Al-Ghamdi, Y. O., & Ghani, U. (2021). Adsorption, kinetics and thermodynamics studies of methyl orange dye sequestration through chitosan composites films. International Journal of Biological Macromolecules, 168, 383–394. https://doi.org/10.1016/j.ijbiomac.2020.12.054
  • Nadaroglu, H., Cicek, S., & Gungor, A. A. (2017). Removing trypan blue dye using Nano-Zn modified luffa sponge. Spectrochimica Acta Part A: Molecular & Biomolecular Spectroscopy, 172, 2–8. https://doi.org/10.1016/j.saa.2016.08.052
  • Olakunle, M. O., Inyinbor, A. A., Dada, A. O., & Bello, O. S. (2018). Combating dye pollution using cocoa pod husks: A sustainable approach. International Journal of Sustainable Engineering, 11(1), 4–15. https://doi.org/10.1080/19397038.2017.1393023
  • Plazinski, W., Rudzinski, W., & Plazinska, A. (2009). Theoretical models of sorption kinetics including a surface reaction mechanism: A review. Advances in Colloid & Interface Science, 152(1), 2–13. https://doi.org/10.1016/j.cis.2009.07.009
  • Priyadarshini, B., Patra, T., & Sahoo, T. R. (2021). An efficient and comparative adsorption of Congo red and trypan blue dyes on MgO nanoparticles: Kinetics, thermodynamics and isotherm studies. Journal of Magnesium & Alloys, 9(2), 478–488. https://doi.org/10.1016/j.jma.2020.09.004
  • Rauf, M. A., & Salman Ashraf, S. (2012). Survey of recent trends in biochemically assisted degradation of dyes. Chemical Engineering Journal, 209, 520–530. https://doi.org/10.1016/j.cej.2012.08.015
  • Sadhasivam, S., Saritha, E., Savitha, S., & Swaminathan, K. (2005). Comparison of the efficacy of live and autoclaved mycelium of Trichoderm harzianum on the removal of trypan bllue. Bulletin of Environmental Contamination & Toxicology, 75(5), 1046–1053. https://doi.org/10.1007/s00128-005-0855-0
  • Salleh, M. A. M., Mahmoud, D. K., Karim, W. A. W. A., & Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 280(1), 1–13. https://doi.org/10.1016/j.desal.2011.07.019
  • Sarkar, S., Banerjee, A., Halder, U., Biswas, R., & Bandopadhyay, R. (2017). Degradation of synthetic azo dyes of textile industry: A sustainable approach using microbial enzymes. Water Conservation Science and Engineering, 2(4), 121–131. https://doi.org/10.1007/s41101-017-0031-5
  • Vijayaraghavan, K., Padmesh, T., Palanivelu, K., & Velan, M. (2006). Biosorption of nickel(II) ions onto Sargassum wightii: Application of two-parameter and three-parameter isotherm models. Journal of Hazardous Materials, 133(13), 304–308. https://doi.org/10.1016/j.jhazmat.2005.10.016
  • Wu, F.-C., Liu, B.-L., Wu, K.-T., & Tseng, R.-L. (2010). A new linear form analysis of Redlich–Peterson isotherm equation for the adsorptions of dyes. Chemical Engineering Journal, 162(1), 21–27. https://doi.org/10.1016/j.cej.2010.03.006
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Yusuf Doruk Aracagök 0000-0002-0354-0817

Publication Date July 15, 2023
Submission Date February 22, 2023
Acceptance Date May 22, 2023
Published in Issue Year 2023 Volume: 13 Issue: 3

Cite

APA Aracagök, Y. D. (2023). Tripan mavi boyasının fungal biyokütle ile biyosorpsiyonu hakkında bir çalışma. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 13(3), 605-615. https://doi.org/10.17714/gumusfenbil.1254888