Research Article
BibTex RIS Cite

Farklı açılardaki çeşitli çokgen delikli kare plakların burkulma analizi

Year 2024, Volume: 14 Issue: 1, 149 - 163, 15.03.2024
https://doi.org/10.17714/gumusfenbil.1330261

Abstract

Plakların burkulması, yapıların tasarımında büyük önem taşımaktadır. Plakta zorunlu olarak bir delik olması gerekiyorsa, delik alanı ve şekli de kritik burkulma yüklerini etkileyecektir. Bu çalışmada, çeşitli delik şekillerine ve farklı yükleme tiplerine sahip delikli basit mesnetli kare plakaların burkulma analizleri incelenmiştir. Farklı dönme açılarına sahip dairesel, altıgen ve kare olmak üzere üç farklı delik şekli modeli dikkate alınmıştır. Narinlik oranı etkisini araştırmak için ise örnekler 100, 20 ve 10 olmak üzere üç farklı narinlik oranı değeri ile hesaplanmıştır. Yükleme tipinin etkisini incelemek için numuneler dört farklı düzlem içi yük ile yüklenmiştir. Analizler genel amaçlı bir sonlu elemanlar programı kullanılarak gerçekleştirilmiş ve farklı çokgen deliklere sahip kare plak modelleri için dönme açılarına bağlı olarak kritik burkulma yükleri belirlenmiştir. Kritik burkulma yükü, dairesel delikli plakalar için dönme açısından bağımsızdır, ancak altıgen ve kare delikli delikler için bağımlı olacaktır. Bu plaklar için 0 dereceden 90 dereceye kadar farklı dönme açıları için burkulma analizleri yapılmıştır. Sonuçlar, delik alanları aynı olmasına rağmen hesaplanan kritik burkulma yüklerinin aynı kalmadığını göstermektedir.

References

  • Al Qablan, H. (2022). Applicable formulas for shear and thermal buckling of perforated rectangular panels. Advances in Civil Engineering, 2022, https://doi.org/10.1155/2022/3790462
  • Al Qablan, H., Rabab’ah, S., Abu Alfoul, B., & Al Hattamleh, O. (2022). Semi-empirical buckling analysis of perforated composite panel. Mechanics Based Design of Structures and Machines, 50(8), 2635-2652 https://doi.org/10.1080/15397734.2020.1784198
  • Albayrak, U., & Saraçoğlu, M. H. (2018). Analysis of regular perforated metal ceiling tiles. International Journal of Engineering and Technology, 10(6), 440–446. https://doi.org/10.7763/ijet.2018.v10.1099
  • Baumgardt, G. R., Fragassa, C., Rocha, L. A. O., dos Santos, E. D., da Silveira, T., & Isoldi, L. A. (2023). Computational model verification and validation of elastoplastic buckling due to combined loads of thin plates. Metals, 13(4), 731–751. https://doi.org/ 10.3390/MET13040731
  • Brown, C. J., Yettram, A. L., & Burnett, M. (1987). Stability of plates with rectangular holes. Journal of Structural Engineering, 113(5), 1111–1116. https://doi.org/10.1061/(ASCE)0733-9445(1987)113:5(1111)
  • Bryan, G. H. (1891). On the stability of a plane plate under thrusts in its own plane with applications to the buckling of the sides of a ship. Proceedings of London Mathematics Society, s1-22(1), 54–67. https://doi.org/10.1112/plms/s1-22.1.54
  • Chow, F.-Y., & Narayanan, R. (1984). Buckling of plates containing openings. 7th International Specialty Conference on Cold-Formed Steel Structures, 39–53. https://scholarsmine.mst.edu/isccss/7iccfss/7iccfss-session2/1
  • Dehadray, P.M., Alampally, S., & Lokavarapu, B. R. (2021). Buckling analysis of thin isotropic square plate with rectangular cut-out. International Conference on Innovations in Mechanical Engineering, 71–86. https://doi.org/10.1007/978-981-16-7282-8_6
  • Fu, W. & Wang, B. (2022). A semi-analytical model on the critical buckling load of perforated plates with opposite free edges. Original Research Article Proc IMechE Part C: J Mechanical Engineering Science, 236(9), 4885–4894. https://doi.org/10.1177/09544062211056890
  • Guo, Y. & Yao, X. (2021). Buckling behavior and effective width design method for thin plates with holes under stress gradient. Mathematical Problems in Engineering, 2021. https://doi.org/10.1155/2021/5550749
  • Jayabalan, J., Dominic, M., Ebid, A. M., Soleymani, A., Onyelowe, K. C., & Jahangir, H. (2022). Estimating the buckling load of steel plates with center cut-outs by ANN, GEP and EPR techniques. Designs, 6(5), 84-96. https://doi.org/10.3390/DESIGNS6050084
  • Karakaya, C. (2022). Numerical investigation on perforated sheet metals under tension loading. Open Chemistry, 20(1), 244–253. https://doi.org/10.1515/chem-2022-0142
  • Kharchenko, S., Kharchenko, F., Samborski, S., Paśnik, J., Kovalyshyn, S., & Sirovitskiy, K. (2022). Influence of physical and constructive parameters on durability of sieves of grain cleaning machines. Advances in Science and Technology Research Journal, 16(6), 156–165. https://doi.org/10.12913/22998624/156128
  • Saraçoğlu, M. H., Uslu, F., & Albayrak, U. (2021). Investigation of hole shape effect on static analysis of perforated plates with staggered holes. International Journal of Engineering and Innovative Research, 3. https://doi.org/10.47933/ijeir.883510
  • Silveira, T., Neufeld, J. P. S., Rocha, L. A. O., Santos, E. D., & Isoldi, L. A. (2021). Numerical analysis of biaxial elasto-plastic buckling of perforated rectangular steel plates applying the Constructal Design method. IOP Conference Series: Materials Science and Engineering, 1048(1), 012017. https://doi.org/10.1088/1757-899X/1048/1/012017
  • Swanson Analysis System Inc., A. (2005). ANSYS User’s manual.
  • Timoshenko, S., & Woinowsky-Krieger, S. (1959). Theory of plates and shells. In McGraw-Hill, Inc. McGraw-Hill, Inc.
  • Uslu, F., Saraçoğlu, M. H., & Albayrak, U. (2022). Buckling of square and circular perforated square plates under uniaxial loading. Journal of Innovations in Civil Engineering and Technology, 4(2), 61–75. https://dergipark.org.tr/en/pub/jiciviltech/issue/74932/1190956

Buckling analysis of perforated square plates with different oriented various shaped polygon holes

Year 2024, Volume: 14 Issue: 1, 149 - 163, 15.03.2024
https://doi.org/10.17714/gumusfenbil.1330261

Abstract

Buckling of the plates is of great importance in design of structures. If the plate has a hole because of necessity, hole area and shape also affect the critical buckling loads. In this study, buckling analyses of perforated simply supported square plates with various perforation patterns and different loading types were investigated. Three different perforation patterns as circular, hexagonal and square with different orientations were considered. In order to investigate the slenderness ratio effect, samples were calculated with three different ratio values of 100, 20 and 10. The samples were loaded with four different in-plane loads to examine the effect of loading type. Analyses were performed by using a general purpose finite element program and critical buckling loads were determined depending on the orientation angles for square plate models with different hole perforations. The critical buckling load is independent from the orientation angle for circular perforated plates but depends on for hexagonal and square hole perforations. For these plates buckling analyses were performed for different orientation angles of 0 degrees to 90 degrees. The results show that the calculated critical buckling loads did not remain the same although the hole areas were the same.

References

  • Al Qablan, H. (2022). Applicable formulas for shear and thermal buckling of perforated rectangular panels. Advances in Civil Engineering, 2022, https://doi.org/10.1155/2022/3790462
  • Al Qablan, H., Rabab’ah, S., Abu Alfoul, B., & Al Hattamleh, O. (2022). Semi-empirical buckling analysis of perforated composite panel. Mechanics Based Design of Structures and Machines, 50(8), 2635-2652 https://doi.org/10.1080/15397734.2020.1784198
  • Albayrak, U., & Saraçoğlu, M. H. (2018). Analysis of regular perforated metal ceiling tiles. International Journal of Engineering and Technology, 10(6), 440–446. https://doi.org/10.7763/ijet.2018.v10.1099
  • Baumgardt, G. R., Fragassa, C., Rocha, L. A. O., dos Santos, E. D., da Silveira, T., & Isoldi, L. A. (2023). Computational model verification and validation of elastoplastic buckling due to combined loads of thin plates. Metals, 13(4), 731–751. https://doi.org/ 10.3390/MET13040731
  • Brown, C. J., Yettram, A. L., & Burnett, M. (1987). Stability of plates with rectangular holes. Journal of Structural Engineering, 113(5), 1111–1116. https://doi.org/10.1061/(ASCE)0733-9445(1987)113:5(1111)
  • Bryan, G. H. (1891). On the stability of a plane plate under thrusts in its own plane with applications to the buckling of the sides of a ship. Proceedings of London Mathematics Society, s1-22(1), 54–67. https://doi.org/10.1112/plms/s1-22.1.54
  • Chow, F.-Y., & Narayanan, R. (1984). Buckling of plates containing openings. 7th International Specialty Conference on Cold-Formed Steel Structures, 39–53. https://scholarsmine.mst.edu/isccss/7iccfss/7iccfss-session2/1
  • Dehadray, P.M., Alampally, S., & Lokavarapu, B. R. (2021). Buckling analysis of thin isotropic square plate with rectangular cut-out. International Conference on Innovations in Mechanical Engineering, 71–86. https://doi.org/10.1007/978-981-16-7282-8_6
  • Fu, W. & Wang, B. (2022). A semi-analytical model on the critical buckling load of perforated plates with opposite free edges. Original Research Article Proc IMechE Part C: J Mechanical Engineering Science, 236(9), 4885–4894. https://doi.org/10.1177/09544062211056890
  • Guo, Y. & Yao, X. (2021). Buckling behavior and effective width design method for thin plates with holes under stress gradient. Mathematical Problems in Engineering, 2021. https://doi.org/10.1155/2021/5550749
  • Jayabalan, J., Dominic, M., Ebid, A. M., Soleymani, A., Onyelowe, K. C., & Jahangir, H. (2022). Estimating the buckling load of steel plates with center cut-outs by ANN, GEP and EPR techniques. Designs, 6(5), 84-96. https://doi.org/10.3390/DESIGNS6050084
  • Karakaya, C. (2022). Numerical investigation on perforated sheet metals under tension loading. Open Chemistry, 20(1), 244–253. https://doi.org/10.1515/chem-2022-0142
  • Kharchenko, S., Kharchenko, F., Samborski, S., Paśnik, J., Kovalyshyn, S., & Sirovitskiy, K. (2022). Influence of physical and constructive parameters on durability of sieves of grain cleaning machines. Advances in Science and Technology Research Journal, 16(6), 156–165. https://doi.org/10.12913/22998624/156128
  • Saraçoğlu, M. H., Uslu, F., & Albayrak, U. (2021). Investigation of hole shape effect on static analysis of perforated plates with staggered holes. International Journal of Engineering and Innovative Research, 3. https://doi.org/10.47933/ijeir.883510
  • Silveira, T., Neufeld, J. P. S., Rocha, L. A. O., Santos, E. D., & Isoldi, L. A. (2021). Numerical analysis of biaxial elasto-plastic buckling of perforated rectangular steel plates applying the Constructal Design method. IOP Conference Series: Materials Science and Engineering, 1048(1), 012017. https://doi.org/10.1088/1757-899X/1048/1/012017
  • Swanson Analysis System Inc., A. (2005). ANSYS User’s manual.
  • Timoshenko, S., & Woinowsky-Krieger, S. (1959). Theory of plates and shells. In McGraw-Hill, Inc. McGraw-Hill, Inc.
  • Uslu, F., Saraçoğlu, M. H., & Albayrak, U. (2022). Buckling of square and circular perforated square plates under uniaxial loading. Journal of Innovations in Civil Engineering and Technology, 4(2), 61–75. https://dergipark.org.tr/en/pub/jiciviltech/issue/74932/1190956
There are 18 citations in total.

Details

Primary Language English
Subjects Structural Engineering
Journal Section Articles
Authors

Mustafa Halûk Saraçoğlu 0000-0003-3842-5699

Fethullah Uslu 0000-0001-8057-5119

Uğur Albayrak 0000-0001-7326-3213

Publication Date March 15, 2024
Submission Date July 20, 2023
Acceptance Date November 3, 2023
Published in Issue Year 2024 Volume: 14 Issue: 1

Cite

APA Saraçoğlu, M. H., Uslu, F., & Albayrak, U. (2024). Buckling analysis of perforated square plates with different oriented various shaped polygon holes. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 14(1), 149-163. https://doi.org/10.17714/gumusfenbil.1330261