Research Article
BibTex RIS Cite

Potential controlled electrochemical coating and characterization of nanocrystalline Sn-Zn based thin films

Year 2024, Volume: 14 Issue: 2, 526 - 537, 15.06.2024
https://doi.org/10.17714/gumusfenbil.1269155

Abstract

Sn-Zn thin films are commonly used in many areas of the industry, and the facile production of these layers is vital. This study aims to produce Sn-Zn layers via potentially controlled electrochemically deposited coatings. The potentially controlled mode was used to eliminate the extensive hydrogen evolution reaction during the electrochemical processes. The electrochemical reduction and oxidation reactions were first investigated with cyclic voltammetry to determine the applied potential sets. Later, cathodic pulse potential electrodeposition of the layers was performed. The characterization of the coated Sn-Zn thin films was performed with an X-ray diffraction device (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), four-point probe, potentiodynamic polarization measurements, and electrochemical impedance spectrometry. As the cathodic pulse potential value increased, the ratio of Zn in the Sn-Zn alloy increased, and the microstructure of the layers was also affected. Electrochemical studies showed that the corrosion resistance of the Sn-Zn thin films increased with the increasing Zn amount in the coating.

Project Number

Destekleyen herhangi bir kurum bulunmamaktadır.

References

  • Alesary, H. F., Ismail, H. K., Shiltagh, N. M., Alattar, R. A., Ahmed, L. M., Watkins, M. J., & Ryder, K. S. (2020). Effects of additives on the electrodeposition of Zn–Sn alloys from choline chloride/ethylene glycol-based deep eutectic solvent. Journal of Electroanalytical Chemistry, 874, 114517. https://doi.org/10.1016/j.jelechem.2020.114517
  • Baines, T., Brown, S., Benedettini, O., & Ball, P. (2012). Examining green production and its role within the competitive strategy of manufacturers. Journal of Industrial Engineering and Management, 5(1), 53–87. https://doi.org/10.3926/jiem.405
  • Benidir, S., Madani, A., Baka, O., Kherfi, A., Delhalle, J., & Mekhalif, Z. (2022). Influence of applied potential on tin content in electrodeposition of Zn–Sn alloy coatings and its effect on corrosion protection. Inorganic and Nano-Metal Chemistry, 0(0), 1–11. https://doi.org/10.1080/24701556.2021.2025105
  • Choi, Y. S., Ganesan, P., Kumaraguru, S. P., & Popov, B. N. (2006). Development of sacrificial Zn-Sn coatings by pulse electrodeposition process. National Association for Surface Finishing Annual Technical Conference 2006, SUR/FIN 2006, 1(803), 335–350.
  • Dybeł, A., & Pstruś, J. (2023). New Solder Based on the Sn-Zn Eutectic with Addition of Ag, Al, and Li. Journal of Materials Engineering and Performance, 32(July), 5710–5722. https://doi.org/10.1007/s11665-023-08103-0
  • Esfahani, M., Zhang, J., Wong, Y. C., Durandet, Y., & Wang, J. (2018). Electrodeposition of nanocrystalline zinc‑tin alloy from aqueous electrolyte containing gluconate in the presence of polyethylene glycol and hexadecyltrimethylammonium bromide. Journal of Electroanalytical Chemistry, 813, 143–151. https://doi.org/10.1016/j.jelechem.2018.02.021
  • Fashu, S., Gu, C. D., Zhang, J. L., Bai, W. Q., Wang, X. L., & Tu, J. P. (2015). Electrodeposition and characterization of Zn-Sn alloy coatings from a deep eutectic solvent based on choline chloride for corrosion protection. Surface and Interface Analysis, 47(3), 403–412. https://doi.org/10.1002/sia.5728
  • Gerhátová, Ž., Babincová, P., Drienovský, M., Pašák, M., Černičková, I., Ďuriška, L., Havlík, R., & Palcut, M. (2022). Microstructure and Corrosion Behavior of Sn–Zn Alloys. Materials, 15(20). https://doi.org/10.3390/ma15207210
  • Hadi Wijaya, R., & Soegijono, B. (2019). Corrosion Resistance of Sn-Zn Coated on Low Carbon Steel Material in Wet Gas Pipeline. IOP Conference Series: Materials Science and Engineering, 694(1). https://doi.org/10.1088/1757-899X/694/1/012029
  • Hairin, A. L. N., OTHMAN, R., REZAL, F., & DAUD, F. D. M. (2018). Physiochemical Characterization of Sn-Zn Coatings Electrodeposited from an Acidic Chloride Bath in the Absence of Complexing Agent. International Journal of Current Research in Science, Engineering & Technology, 1(Spl-1), 493. https://doi.org/10.30967/ijcrset.1.s1.2018.493-498
  • Hou, Z., Niu, T., Zhao, X., Liu, Y., & Yang, T. (2019). Intermetallic compounds formation and joints properties of electroplated Sn–Zn solder bumps with Cu substrates. Journal of Materials Science: Materials in Electronics, 30(22), 20276–20284. https://doi.org/10.1007/s10854-019-02412-8
  • Jung, H. Y., Huang, S. Y., Ganesan, P., & Popov, B. N. (2009). Performance of gold-coated titanium bipolar plates in unitized regenerative fuel cell operation. Journal of Power Sources, 194(2), 972–975. https://doi.org/10.1016/j.jpowsour.2009.06.030
  • Kazimierczak, H., & Ozga, P. (2013). Electrodeposition of Sn-Zn and Sn-Zn-Mo layers from citrate solutions. Surface Science, 607, 33–38. https://doi.org/10.1016/j.susc.2012.08.010
  • Kazimierczak, H., Ozga, P., Jałowiec, A., & Kowalik, R. (2014). Tin-zinc alloy electrodeposition from aqueous citrate baths. Surface and Coatings Technology, 240, 311–319. https://doi.org/10.1016/j.surfcoat.2013.12.046
  • Khan, S., Rasheed, M. A., Waheed, A., Shah, A., Mahmood, A., Ali, T., Nisar, A., Ahmad, M., Karim, S., & Ali, G. (2020). The role of electrodeposition current density in the synthesis and non-enzymatic glucose sensing of oxidized zinc-tin hybrid nanostructures. Materials Science in Semiconductor Processing, 109(September 2019), 104953. https://doi.org/10.1016/j.mssp.2020.104953
  • Liu, J. C., Wang, Z. H., Xie, J. Y., Ma, J. S., Zhang, G., & Suganuma, K. (2016). Understanding corrosion mechanism of Sn-Zn alloys in NaCl solution via corrosion products characterization. Materials and Corrosion, 67(5), 522–530. https://doi.org/10.1002/maco.201508605
  • Méndez, C. M., Scheiber, V. L., Rozicki, R. S., Kociubczyk, A. I., & Ares, A. E. (2018). Electrochemical behavior of Sn-Zn alloys with different grain structures in chloride-containing solutions. Arabian Journal of Chemistry, 11(7), 1084–1096. https://doi.org/10.1016/j.arabjc.2016.12.019
  • Mohd Nazeri, M. F., Yahaya, M. Z., Gursel, A., Cheani, F., Masri, M. N., & Mohamad, A. A. (2019). Corrosion characterization of Sn-Zn solder: a review. Soldering and Surface Mount Technology, 31(1), 52–67. https://doi.org/10.1108/SSMT-05-2018-0013
  • Munir, K. S., Esfahani, M., Wen, C., Zhang, J., Durandet, Y., Wang, J., & Wong, Y. C. (2018). Mechanical properties of electrodeposited nanocrystalline and ultrafine-grained Zn-Sn coatings. Surface and Coatings Technology, 333(October 2017), 71–80. https://doi.org/10.1016/j.surfcoat.2017.10.059
  • Peng, H. T., Che, C. S., & Kong, G. (2017). Effect of minor Cu addition on corrosion behavior of Sn-Zn-xCu touch-up solder alloys. Materials and Corrosion, 68(7), 791–798. https://doi.org/10.1002/maco.201609313
  • Pereira, J. C., dos Santos, L. P. M., Alcanfor, A. A. C., de Sant’Ana, H. B., Feitosa, F. X., Campos, O. S., Correia, A. N., Casciano, P. N. S., & de Lima-Neto, P. (2021). Effects of electrodeposition parameters on corrosion resistance of ZnSn coatings on carbon steel obtained from eutectic mixture based on choline chloride and ethylene glycol. Journal of Alloys and Compounds, 886, 161159. https://doi.org/10.1016/j.jallcom.2021.161159
  • Pereira, Salomé, S., Pereira, C. M., & Silva, A. F. (2012). Zn-Sn electrodeposition from deep eutectic solvents containing EDTA, HEDTA, and Idranal VII. Journal of Applied Electrochemistry, 42(8), 561–571. https://doi.org/10.1007/s10800-012-0431-3
  • Salhi, Y., Cherrouf, S., Cherkaoui, M., & Abdelouahdi, K. (2016). Electrodeposition of nanostructured Sn-Zn coatings. Applied Surface Science, 367, 64–69. https://doi.org/10.1016/j.apsusc.2016.01.132
  • Taguchi, A. D. S., Bento, F. R., & Mascaro, L. H. (2008). Nucleation and growth of tin-zinc electrodeposits on a polycrystalline platinum electrode in tartaric acid. Journal of the Brazilian Chemical Society, 19(4), 727–733. https://doi.org/10.1590/S0103-50532008000400017
  • Tsurusaki, T., & Ohgai, T. (2020). Mechanical properties of solder-jointed copper rods with electrodeposited Sn-Zn alloy films. Materials, 13(6), 1–12. https://doi.org/10.3390/ma13061330
  • Yamada, M., & Usami, H. (2022). Tribological Properties of Tin-Zinc Hybrid Coating on Bronze in Lubricated Condition. Tribology Online, 17(1), 54–58. https://doi.org/10.2474/trol.17.54
  • Zangari, G. (2015). Electrodeposition of alloys and compounds in the era of microelectronics and energy conversion technology. Coatings, 5(2), 195–218. https://doi.org/10.3390/coatings5020195
  • Zhai, C., Zhao, D., He, Y., Huang, H., Chen, B., Wang, X., & Guo, Z. (2022). Electrolyte Additive Strategies for Suppression of Zinc Dendrites in Aqueous Zinc-Ion Batteries. Batteries, 8(10). https://doi.org/10.3390/batteries8100153
  • Zhirnov, A. D., Karimova, S. A., Ovsyannikova, L. V., & Gubenko, O. A. (2003). New protective coatings for replacing cadmium coatings on steel parts. Metal Science and Heat Treatment, 45(1–2), 23–25. https://doi.org/10.1023/A:1023939928052

Nanokristal Sn-Zn bazlı ince filmlerinin gerilim kontrollü elektrokimyasal kaplanması ve karakterizasyonu

Year 2024, Volume: 14 Issue: 2, 526 - 537, 15.06.2024
https://doi.org/10.17714/gumusfenbil.1269155

Abstract

Sn-Zn ince filmler endüstrinin birçok alanında yaygın olarak kullanılmaktadır ve bu katmanların kolay üretimi önem taşımaktadır. Bu çalışma, potansiyel olarak kontrollü elektrokimyasal olarak biriktirilmiş kaplamalar yoluyla Sn-Zn katmanları üretmeyi amaçlamaktadır. Potansiyel olarak kontrol edilen mod, elektrokimyasal işlemler sırasında şiddetli hidrojen oluşumu reaksiyonunu ortadan kaldırmak için kullanılmıştır. İlk olarak, elektrokimyasal indirgeme ve oksidasyon reaksiyonları, uygulanan potansiyel setlerini belirlemek için döngüsel voltametri ile araştırılmıştır. Daha sonra katmanların katodik darbe potansiyelli elektrokaplaması gerçekleştirilmiştir. Kaplanmış Sn-Zn ince filmlerin karakterizasyonu X-ışını kırınım cihazı (XRD), taramalı elektron mikroskobu (SEM), enerji dağılımlı spektroskopi (EDS), dört noktalı prob, potansiyodinamik polarizasyon ölçümleri ve elektrokimyasal empedans spektrometrisi ile gerçekleştirilmiştir. Katodik darbe potansiyeli değeri arttıkça Sn-Zn alaşımındaki Zn oranı artmış ve katmanların mikro yapısı da etkilenmiştir. Elektrokimyasal çalışmalar, Sn-Zn ince filmlerinin korozyon direncinin, kaplamadaki Zn miktarının artmasıyla arttığını göstermiştir.

Supporting Institution

Destekleyen herhangi bir kurum bulunmamaktadır.

Project Number

Destekleyen herhangi bir kurum bulunmamaktadır.

Thanks

Gümüşhane Üniversitesi Fen Bilimleri Dergisi kuruluna ve katkıda bulunan hakemlere teşekkürlerimi sunarım.

References

  • Alesary, H. F., Ismail, H. K., Shiltagh, N. M., Alattar, R. A., Ahmed, L. M., Watkins, M. J., & Ryder, K. S. (2020). Effects of additives on the electrodeposition of Zn–Sn alloys from choline chloride/ethylene glycol-based deep eutectic solvent. Journal of Electroanalytical Chemistry, 874, 114517. https://doi.org/10.1016/j.jelechem.2020.114517
  • Baines, T., Brown, S., Benedettini, O., & Ball, P. (2012). Examining green production and its role within the competitive strategy of manufacturers. Journal of Industrial Engineering and Management, 5(1), 53–87. https://doi.org/10.3926/jiem.405
  • Benidir, S., Madani, A., Baka, O., Kherfi, A., Delhalle, J., & Mekhalif, Z. (2022). Influence of applied potential on tin content in electrodeposition of Zn–Sn alloy coatings and its effect on corrosion protection. Inorganic and Nano-Metal Chemistry, 0(0), 1–11. https://doi.org/10.1080/24701556.2021.2025105
  • Choi, Y. S., Ganesan, P., Kumaraguru, S. P., & Popov, B. N. (2006). Development of sacrificial Zn-Sn coatings by pulse electrodeposition process. National Association for Surface Finishing Annual Technical Conference 2006, SUR/FIN 2006, 1(803), 335–350.
  • Dybeł, A., & Pstruś, J. (2023). New Solder Based on the Sn-Zn Eutectic with Addition of Ag, Al, and Li. Journal of Materials Engineering and Performance, 32(July), 5710–5722. https://doi.org/10.1007/s11665-023-08103-0
  • Esfahani, M., Zhang, J., Wong, Y. C., Durandet, Y., & Wang, J. (2018). Electrodeposition of nanocrystalline zinc‑tin alloy from aqueous electrolyte containing gluconate in the presence of polyethylene glycol and hexadecyltrimethylammonium bromide. Journal of Electroanalytical Chemistry, 813, 143–151. https://doi.org/10.1016/j.jelechem.2018.02.021
  • Fashu, S., Gu, C. D., Zhang, J. L., Bai, W. Q., Wang, X. L., & Tu, J. P. (2015). Electrodeposition and characterization of Zn-Sn alloy coatings from a deep eutectic solvent based on choline chloride for corrosion protection. Surface and Interface Analysis, 47(3), 403–412. https://doi.org/10.1002/sia.5728
  • Gerhátová, Ž., Babincová, P., Drienovský, M., Pašák, M., Černičková, I., Ďuriška, L., Havlík, R., & Palcut, M. (2022). Microstructure and Corrosion Behavior of Sn–Zn Alloys. Materials, 15(20). https://doi.org/10.3390/ma15207210
  • Hadi Wijaya, R., & Soegijono, B. (2019). Corrosion Resistance of Sn-Zn Coated on Low Carbon Steel Material in Wet Gas Pipeline. IOP Conference Series: Materials Science and Engineering, 694(1). https://doi.org/10.1088/1757-899X/694/1/012029
  • Hairin, A. L. N., OTHMAN, R., REZAL, F., & DAUD, F. D. M. (2018). Physiochemical Characterization of Sn-Zn Coatings Electrodeposited from an Acidic Chloride Bath in the Absence of Complexing Agent. International Journal of Current Research in Science, Engineering & Technology, 1(Spl-1), 493. https://doi.org/10.30967/ijcrset.1.s1.2018.493-498
  • Hou, Z., Niu, T., Zhao, X., Liu, Y., & Yang, T. (2019). Intermetallic compounds formation and joints properties of electroplated Sn–Zn solder bumps with Cu substrates. Journal of Materials Science: Materials in Electronics, 30(22), 20276–20284. https://doi.org/10.1007/s10854-019-02412-8
  • Jung, H. Y., Huang, S. Y., Ganesan, P., & Popov, B. N. (2009). Performance of gold-coated titanium bipolar plates in unitized regenerative fuel cell operation. Journal of Power Sources, 194(2), 972–975. https://doi.org/10.1016/j.jpowsour.2009.06.030
  • Kazimierczak, H., & Ozga, P. (2013). Electrodeposition of Sn-Zn and Sn-Zn-Mo layers from citrate solutions. Surface Science, 607, 33–38. https://doi.org/10.1016/j.susc.2012.08.010
  • Kazimierczak, H., Ozga, P., Jałowiec, A., & Kowalik, R. (2014). Tin-zinc alloy electrodeposition from aqueous citrate baths. Surface and Coatings Technology, 240, 311–319. https://doi.org/10.1016/j.surfcoat.2013.12.046
  • Khan, S., Rasheed, M. A., Waheed, A., Shah, A., Mahmood, A., Ali, T., Nisar, A., Ahmad, M., Karim, S., & Ali, G. (2020). The role of electrodeposition current density in the synthesis and non-enzymatic glucose sensing of oxidized zinc-tin hybrid nanostructures. Materials Science in Semiconductor Processing, 109(September 2019), 104953. https://doi.org/10.1016/j.mssp.2020.104953
  • Liu, J. C., Wang, Z. H., Xie, J. Y., Ma, J. S., Zhang, G., & Suganuma, K. (2016). Understanding corrosion mechanism of Sn-Zn alloys in NaCl solution via corrosion products characterization. Materials and Corrosion, 67(5), 522–530. https://doi.org/10.1002/maco.201508605
  • Méndez, C. M., Scheiber, V. L., Rozicki, R. S., Kociubczyk, A. I., & Ares, A. E. (2018). Electrochemical behavior of Sn-Zn alloys with different grain structures in chloride-containing solutions. Arabian Journal of Chemistry, 11(7), 1084–1096. https://doi.org/10.1016/j.arabjc.2016.12.019
  • Mohd Nazeri, M. F., Yahaya, M. Z., Gursel, A., Cheani, F., Masri, M. N., & Mohamad, A. A. (2019). Corrosion characterization of Sn-Zn solder: a review. Soldering and Surface Mount Technology, 31(1), 52–67. https://doi.org/10.1108/SSMT-05-2018-0013
  • Munir, K. S., Esfahani, M., Wen, C., Zhang, J., Durandet, Y., Wang, J., & Wong, Y. C. (2018). Mechanical properties of electrodeposited nanocrystalline and ultrafine-grained Zn-Sn coatings. Surface and Coatings Technology, 333(October 2017), 71–80. https://doi.org/10.1016/j.surfcoat.2017.10.059
  • Peng, H. T., Che, C. S., & Kong, G. (2017). Effect of minor Cu addition on corrosion behavior of Sn-Zn-xCu touch-up solder alloys. Materials and Corrosion, 68(7), 791–798. https://doi.org/10.1002/maco.201609313
  • Pereira, J. C., dos Santos, L. P. M., Alcanfor, A. A. C., de Sant’Ana, H. B., Feitosa, F. X., Campos, O. S., Correia, A. N., Casciano, P. N. S., & de Lima-Neto, P. (2021). Effects of electrodeposition parameters on corrosion resistance of ZnSn coatings on carbon steel obtained from eutectic mixture based on choline chloride and ethylene glycol. Journal of Alloys and Compounds, 886, 161159. https://doi.org/10.1016/j.jallcom.2021.161159
  • Pereira, Salomé, S., Pereira, C. M., & Silva, A. F. (2012). Zn-Sn electrodeposition from deep eutectic solvents containing EDTA, HEDTA, and Idranal VII. Journal of Applied Electrochemistry, 42(8), 561–571. https://doi.org/10.1007/s10800-012-0431-3
  • Salhi, Y., Cherrouf, S., Cherkaoui, M., & Abdelouahdi, K. (2016). Electrodeposition of nanostructured Sn-Zn coatings. Applied Surface Science, 367, 64–69. https://doi.org/10.1016/j.apsusc.2016.01.132
  • Taguchi, A. D. S., Bento, F. R., & Mascaro, L. H. (2008). Nucleation and growth of tin-zinc electrodeposits on a polycrystalline platinum electrode in tartaric acid. Journal of the Brazilian Chemical Society, 19(4), 727–733. https://doi.org/10.1590/S0103-50532008000400017
  • Tsurusaki, T., & Ohgai, T. (2020). Mechanical properties of solder-jointed copper rods with electrodeposited Sn-Zn alloy films. Materials, 13(6), 1–12. https://doi.org/10.3390/ma13061330
  • Yamada, M., & Usami, H. (2022). Tribological Properties of Tin-Zinc Hybrid Coating on Bronze in Lubricated Condition. Tribology Online, 17(1), 54–58. https://doi.org/10.2474/trol.17.54
  • Zangari, G. (2015). Electrodeposition of alloys and compounds in the era of microelectronics and energy conversion technology. Coatings, 5(2), 195–218. https://doi.org/10.3390/coatings5020195
  • Zhai, C., Zhao, D., He, Y., Huang, H., Chen, B., Wang, X., & Guo, Z. (2022). Electrolyte Additive Strategies for Suppression of Zinc Dendrites in Aqueous Zinc-Ion Batteries. Batteries, 8(10). https://doi.org/10.3390/batteries8100153
  • Zhirnov, A. D., Karimova, S. A., Ovsyannikova, L. V., & Gubenko, O. A. (2003). New protective coatings for replacing cadmium coatings on steel parts. Metal Science and Heat Treatment, 45(1–2), 23–25. https://doi.org/10.1023/A:1023939928052
There are 29 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Begüm Ünveroğlu Abdioğlu 0000-0003-2524-7803

Project Number Destekleyen herhangi bir kurum bulunmamaktadır.
Publication Date June 15, 2024
Submission Date March 22, 2023
Acceptance Date February 7, 2024
Published in Issue Year 2024 Volume: 14 Issue: 2

Cite

APA Ünveroğlu Abdioğlu, B. (2024). Potential controlled electrochemical coating and characterization of nanocrystalline Sn-Zn based thin films. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 14(2), 526-537. https://doi.org/10.17714/gumusfenbil.1269155