Research Article
BibTex RIS Cite

Düşük maliyetli ve özel tasarım çift ışınlı optik cımbızın performans özellikleri

Year 2024, Volume: 14 Issue: 3, 851 - 863, 15.09.2024
https://doi.org/10.17714/gumusfenbil.1385133

Abstract

Bu çalışmada, mikron boyutundaki partikülleri yakalamak ve manipüle etmek için paralel olarak konumlandırılmış iki adet He-Ne lazer (λ=632.8 nm) kullanan düşük bütçeli ve özel tasarlanmış bir optik cımbız geliştirilmiştir. Bu kapsamda örnek olarak sudaki polistiren boncuklar ve yoğurt kültüründeki maya hücreleri kullanılmıştır. Bu optik cımbızın özelliklerini belirlemek için sertlik ve yakalama kuvveti, Lazer 1, Lazer 2 ve her iki lazerin aynı anda kullanıldığı durum için Brownian Hareketi yöntemi kullanılarak belirlenmiştir. Optik bileşenlerde yapılan küçük ayarlamalar yakalama kuvvetini etkileyerek Lazer 2'nin yakalama kuvvetinin daha düşük olmasına neden olmuştur. Ek olarak, saçılma ortamının viskozitesinin yakalama kuvveti üzerinde önemli bir etkisi vardır; yoğurt kültürünün daha yüksek viskozitesi, maya hücrelerinin her iki lazerin aynı anda kullanılmasıyla yakalanmasını önlemektedir. İki lazerin paralel olarak kullanılması, bir lazerin parçacıkları yakalamak ve hareket ettirmek için kullanılırken diğerinin birden fazla parçacığı yakalamak için kullanılmasını sağlamaktadır. Farklı çalışma ortamlarında performansı incelenen bu özel tasarım optik cımbız, viskozite ölçümleri, hücre içi incelemeler, gıda mühendisliği ve ilaç dağıtım sistemleri gibi yaşambilim alanlarında uygulanma potansiyeline sahiptir.

Ethical Statement

Bu makalenin yazarları, bu çalışmada kullanılan materyal ve yöntemlerin etik kurul izni ve / veya yasal-özel izin gerektirmediğini beyan etmektedir.

Thanks

Bu çalışma İzmir Kâtip Çelebi Üniversitesi Fen Bilimleri Enstitüsü Nanobilim ve Nanoteknoloji Anabilim Dalı Yüksek Lisans Programı’nda, Dr. Öğr. Üyesi Aziz KOLKIRAN danışmanlığında Nur ÇOBANOĞLU’nun yüksek lisans tezinden üretilmiştir.

References

  • Ashkin, A. (1970). Acceleration and Trapping of Particles by Radiation Pressure. Physical Review Letters, 24(4), 156–159. https://doi.org/10.1103/PhysRevLett.24.156
  • Ashkin, A., & Dziedzic, J. M. (1987). Optical trapping and manipulation of viruses and bacteria. Science, 235(1984), 1517–1520. https://doi.org/10.1126/science.3547653
  • Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E., & Chu, S. (1986). Observation of a single-beam gradient force optical trap for dielectric particles. Optics Letters, 11(5), 288. https://doi.org/10.1364/OL.11.000288
  • Ashok, P. C., & Dholakia, K. (2012). Optical trapping for analytical biotechnology. Current opinion in biotechnology, 23(1), 16–21.
  • Baek, J.-H., Hwang, S.-U., & Lee, Y.-G. (2007). Trap stiffness in optical tweezers. Asian Symposium for Precision Engineering and Nanotechnology 2007, 6.
  • Castelain, M., Pignon, F., Piau, J. M., Magnin, A., Mercier-Bonin, M., & Schmitz, P. (2007). Removal forces and adhesion properties of Saccharomyces cerevisiae on glass substrates probed by optical tweezer. The Journal of chemical physics, 127(13).
  • Castelain, M., Pignon, F., Piau, J. M., & Magnin, A. (2008). The initial single yeast cell adhesion on glass via optical trapping and Derjaguin–Landau–Verwey–Overbeek predictions. The Journal of chemical physics, 128(13).
  • Castelain, M., Rouxhet, P. G., Pignon, F., Magnin, A., & Piau, J. M. (2012). Single-cell adhesion probed in-situ using optical tweezers: A case study with Saccharomyces cerevisiae. Journal of Applied Physics, 111(11).
  • Choudhary, D., Mossa, A., Jadhav, M., & Cecconi, C. (2019). Bio-molecular applications of recent developments in optical tweezers. Biomolecules, 9(1), 23.
  • Constable, A., Kim, J., Mervis, J., Zarinetchi, F., & Prentiss, M. (1993). Demonstration of a fiber-optical light-force trap. Optics letters, 18(21), 1867–1869.
  • Difato, F., Pinato, G., & Cojoc, D. (2013). Cell signaling experiments driven by optical manipulation. International Journal of Molecular Sciences, 14(5), 8963–8984.
  • Eom, N., Stevens, V., Wedding, A. B., Sedev, R., & Connor, J. N. (2014). Probing fluid flow using the force measurement capability of optical trapping. Advanced Powder Technology, 25(4), 1249–1253.
  • Ertugay, M. F., Baslar, M., Sengul, M., & Sallan, S. (2012). The effect of acoustic energy on viscosity and serum separation of traditional ayran, a Turkish yogurt drink. Gida, 37, 253–257.
  • Favre-Bulle, I. A., Stilgoe, A. B., Scott, E. K., & Rubinsztein-Dunlop, H. (2019). Optical trapping in vivo: theory, practice, and applications. Nanophotonics, 8(6), 1023–1040.
  • Firby, C. J., Smith, K. N., Gilroy, S. R., Porisky, A., & Elezzabi, A. Y. (2016). Design of a simple, low-cost, computer-controlled, dual-beam optical tweezer system. Optik, 127(1), 440-446.
  • Hofmeister, A., Thalhammer, G., Ritsch-Marte, M., & Jesacher, A. (2020). Adaptive illumination for optimal image quality in phase contrast microscopy. Optics Communications, 459, 124972.
  • Jia, D., Hamilton, J., Zaman, L. M., & Goonewardene, A. (2007). The time, size, viscosity, and temperature dependence of the Brownian motion of polystyrene microspheres. American Journal of Physics, 75(2), 111–115.
  • Kappel, K., & Lind, C. H. (2014). Trapping Polystyrene Beads with Optical Tweezers.
  • Keloth, A., Anderson, O., Risbridger, D., & Paterson, L. (2018). Single cell isolation using optical tweezers. Micromachines, 9(9), 434.
  • Lenton, I. C. D., Scott, E. K., Rubinsztein-Dunlop, H., & Favre-Bulle, I. A. (2020). Optical Tweezers Exploring Neuroscience. Içinde Frontiers in Bioengineering and Biotechnology (C. 8). https://www.frontiersin.org/articles/10.3389/fbioe.2020.602797
  • Liu, J., & Li, Z. (2018). Controlled mechanical motions of microparticles in optical tweezers. Micromachines, 9(5), 232.
  • Liu, Y., & Yu, M. (2017). Fiber optical tweezers for manipulation and sensing of bioparticles. Içinde Handbook of Photonics for Biomedical Engineering (ss. 683–715). Springer.
  • Mas Soler, J. (2008). Force calibration of optical traps by video-based methods. Universitat Politècnica de Catalunya.
  • Molloy, J. E., & Padgett, M. J. (2002). Lights, action: optical tweezers. Contemporary physics, 43(4), 241–258.
  • Nemet, B. A., & Cronin-Golomb, M. (2003). Measuring microscopic viscosity with optical tweezers as a confocal probe. Applied optics, 42(10), 1820–1832.
  • Pilát, Z., Jonáš, A., Ježek, J., & Zemánek, P. (2017). Effects of infrared optical trapping on saccharomyces cerevisiae in a microfluidic system. Sensors, 17(11), 2640.
  • Polimeno, P., Magazzu, A., Iati, M. A., Patti, F., Saija, R., Boschi, C. D. E., Donato, M. G., Gucciardi, P. G., Jones, P. H., & Volpe, G. (2018). Optical tweezers and their applications. Journal of Quantitative Spectroscopy and Radiative Transfer, 218, 131–150.
  • Rice, A., & Fischer, R. (y.y.). Calibration Of Optical Tweezers.
  • Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., & Schmid, B. (2012). Fiji: an open-source platform for biological-image analysis. Nature methods, 9(7), 676. https://doi.org/https://doi.org/10.1038/nmeth.2019
  • Statsenko, A., Inami, W., & Kawata, Y. (2017). Measurement of viscosity of liquids using optical tweezers. Optics Communications, 402, 9–13.
  • Torres, J. D., Tárrega, A., & Costell, E. (2010). Storage stability of starch-based dairy desserts containing long-chain inulin: Rheology and particle size distribution. International Dairy Journal, 20(1), 46–52. https://doi.org/https://doi.org/10.1016/j.idairyj.2009.08.001
  • Volpe, G., Maragò, O. M., Rubinsztein-Dunlop, H., Pesce, G., Stilgoe, A. B., Volpe, G., Tkachenko, G., Truong, V. G., Chormaic, S. N., & Kalantarifard, F. (2023). Roadmap for optical tweezers. Journal of Physics: Photonics, 5(2), 22501.
  • Wang, D., Zhou, E. H., Brake, J., Ruan, H., Jang, M., & Yang, C. (2015). Focusing through dynamic tissue with millisecond digital optical phase conjugation. Optica, 2(8), 728–735.
  • Zhang, H., & Liu, K. K. (2008). Optical tweezers for single cells. Journal of the Royal Society interface, 5(24), 671-690.
  • Zhu, R., Avsievich, T., Popov, A., & Meglinski, I. (2020). Optical Tweezers in Studies of Red Blood Cells. Içinde Cells (C. 9, Sayı 3). https://doi.org/10.3390/cells9030545
  • Zou, X., Zheng, Q., Wu, D., & Lei, H. (2020). Controllable cellular micromotors based on optical tweezers. Advanced Functional Materials, 30(27), 2002081.

The performance characteristics of low-cost and custom-designed dual beam optical tweezer

Year 2024, Volume: 14 Issue: 3, 851 - 863, 15.09.2024
https://doi.org/10.17714/gumusfenbil.1385133

Abstract

In this work is a low-cost and custom-designed optical tweezers using two He-Ne lasers (λ=632.8 nm) positioned in parallel is developed to trap and manipulate micron-sized particles. Polystyrene beads in water and yeast cells in yogurt culture were used as samples. To determine the characteristics of these optical tweezers, the stiffness and trapping force were determined using the Brownian Motion method for Laser 1, Laser 2 and the case where both lasers were used simultaneously. Small adjustments of the optical components affected the trapping force, resulting in a lower trapping force for Laser 2. In addition, the viscosity of the scattering medium has a significant effect on the trapping force; the higher viscosity of the yogurt culture prevents the capture of yeast cells with the simultaneous use of both lasers. The use of two lasers in parallel allows one laser to be used to capture and move particles while the other is used to capture multiple particles. This custom-designed optical tweezer, whose performance was investigated for different samples, has the potential to be applied in life science fields such as viscosity measurements, intracellular investigations, food engineering and drug delivery systems.

References

  • Ashkin, A. (1970). Acceleration and Trapping of Particles by Radiation Pressure. Physical Review Letters, 24(4), 156–159. https://doi.org/10.1103/PhysRevLett.24.156
  • Ashkin, A., & Dziedzic, J. M. (1987). Optical trapping and manipulation of viruses and bacteria. Science, 235(1984), 1517–1520. https://doi.org/10.1126/science.3547653
  • Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E., & Chu, S. (1986). Observation of a single-beam gradient force optical trap for dielectric particles. Optics Letters, 11(5), 288. https://doi.org/10.1364/OL.11.000288
  • Ashok, P. C., & Dholakia, K. (2012). Optical trapping for analytical biotechnology. Current opinion in biotechnology, 23(1), 16–21.
  • Baek, J.-H., Hwang, S.-U., & Lee, Y.-G. (2007). Trap stiffness in optical tweezers. Asian Symposium for Precision Engineering and Nanotechnology 2007, 6.
  • Castelain, M., Pignon, F., Piau, J. M., Magnin, A., Mercier-Bonin, M., & Schmitz, P. (2007). Removal forces and adhesion properties of Saccharomyces cerevisiae on glass substrates probed by optical tweezer. The Journal of chemical physics, 127(13).
  • Castelain, M., Pignon, F., Piau, J. M., & Magnin, A. (2008). The initial single yeast cell adhesion on glass via optical trapping and Derjaguin–Landau–Verwey–Overbeek predictions. The Journal of chemical physics, 128(13).
  • Castelain, M., Rouxhet, P. G., Pignon, F., Magnin, A., & Piau, J. M. (2012). Single-cell adhesion probed in-situ using optical tweezers: A case study with Saccharomyces cerevisiae. Journal of Applied Physics, 111(11).
  • Choudhary, D., Mossa, A., Jadhav, M., & Cecconi, C. (2019). Bio-molecular applications of recent developments in optical tweezers. Biomolecules, 9(1), 23.
  • Constable, A., Kim, J., Mervis, J., Zarinetchi, F., & Prentiss, M. (1993). Demonstration of a fiber-optical light-force trap. Optics letters, 18(21), 1867–1869.
  • Difato, F., Pinato, G., & Cojoc, D. (2013). Cell signaling experiments driven by optical manipulation. International Journal of Molecular Sciences, 14(5), 8963–8984.
  • Eom, N., Stevens, V., Wedding, A. B., Sedev, R., & Connor, J. N. (2014). Probing fluid flow using the force measurement capability of optical trapping. Advanced Powder Technology, 25(4), 1249–1253.
  • Ertugay, M. F., Baslar, M., Sengul, M., & Sallan, S. (2012). The effect of acoustic energy on viscosity and serum separation of traditional ayran, a Turkish yogurt drink. Gida, 37, 253–257.
  • Favre-Bulle, I. A., Stilgoe, A. B., Scott, E. K., & Rubinsztein-Dunlop, H. (2019). Optical trapping in vivo: theory, practice, and applications. Nanophotonics, 8(6), 1023–1040.
  • Firby, C. J., Smith, K. N., Gilroy, S. R., Porisky, A., & Elezzabi, A. Y. (2016). Design of a simple, low-cost, computer-controlled, dual-beam optical tweezer system. Optik, 127(1), 440-446.
  • Hofmeister, A., Thalhammer, G., Ritsch-Marte, M., & Jesacher, A. (2020). Adaptive illumination for optimal image quality in phase contrast microscopy. Optics Communications, 459, 124972.
  • Jia, D., Hamilton, J., Zaman, L. M., & Goonewardene, A. (2007). The time, size, viscosity, and temperature dependence of the Brownian motion of polystyrene microspheres. American Journal of Physics, 75(2), 111–115.
  • Kappel, K., & Lind, C. H. (2014). Trapping Polystyrene Beads with Optical Tweezers.
  • Keloth, A., Anderson, O., Risbridger, D., & Paterson, L. (2018). Single cell isolation using optical tweezers. Micromachines, 9(9), 434.
  • Lenton, I. C. D., Scott, E. K., Rubinsztein-Dunlop, H., & Favre-Bulle, I. A. (2020). Optical Tweezers Exploring Neuroscience. Içinde Frontiers in Bioengineering and Biotechnology (C. 8). https://www.frontiersin.org/articles/10.3389/fbioe.2020.602797
  • Liu, J., & Li, Z. (2018). Controlled mechanical motions of microparticles in optical tweezers. Micromachines, 9(5), 232.
  • Liu, Y., & Yu, M. (2017). Fiber optical tweezers for manipulation and sensing of bioparticles. Içinde Handbook of Photonics for Biomedical Engineering (ss. 683–715). Springer.
  • Mas Soler, J. (2008). Force calibration of optical traps by video-based methods. Universitat Politècnica de Catalunya.
  • Molloy, J. E., & Padgett, M. J. (2002). Lights, action: optical tweezers. Contemporary physics, 43(4), 241–258.
  • Nemet, B. A., & Cronin-Golomb, M. (2003). Measuring microscopic viscosity with optical tweezers as a confocal probe. Applied optics, 42(10), 1820–1832.
  • Pilát, Z., Jonáš, A., Ježek, J., & Zemánek, P. (2017). Effects of infrared optical trapping on saccharomyces cerevisiae in a microfluidic system. Sensors, 17(11), 2640.
  • Polimeno, P., Magazzu, A., Iati, M. A., Patti, F., Saija, R., Boschi, C. D. E., Donato, M. G., Gucciardi, P. G., Jones, P. H., & Volpe, G. (2018). Optical tweezers and their applications. Journal of Quantitative Spectroscopy and Radiative Transfer, 218, 131–150.
  • Rice, A., & Fischer, R. (y.y.). Calibration Of Optical Tweezers.
  • Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., & Schmid, B. (2012). Fiji: an open-source platform for biological-image analysis. Nature methods, 9(7), 676. https://doi.org/https://doi.org/10.1038/nmeth.2019
  • Statsenko, A., Inami, W., & Kawata, Y. (2017). Measurement of viscosity of liquids using optical tweezers. Optics Communications, 402, 9–13.
  • Torres, J. D., Tárrega, A., & Costell, E. (2010). Storage stability of starch-based dairy desserts containing long-chain inulin: Rheology and particle size distribution. International Dairy Journal, 20(1), 46–52. https://doi.org/https://doi.org/10.1016/j.idairyj.2009.08.001
  • Volpe, G., Maragò, O. M., Rubinsztein-Dunlop, H., Pesce, G., Stilgoe, A. B., Volpe, G., Tkachenko, G., Truong, V. G., Chormaic, S. N., & Kalantarifard, F. (2023). Roadmap for optical tweezers. Journal of Physics: Photonics, 5(2), 22501.
  • Wang, D., Zhou, E. H., Brake, J., Ruan, H., Jang, M., & Yang, C. (2015). Focusing through dynamic tissue with millisecond digital optical phase conjugation. Optica, 2(8), 728–735.
  • Zhang, H., & Liu, K. K. (2008). Optical tweezers for single cells. Journal of the Royal Society interface, 5(24), 671-690.
  • Zhu, R., Avsievich, T., Popov, A., & Meglinski, I. (2020). Optical Tweezers in Studies of Red Blood Cells. Içinde Cells (C. 9, Sayı 3). https://doi.org/10.3390/cells9030545
  • Zou, X., Zheng, Q., Wu, D., & Lei, H. (2020). Controllable cellular micromotors based on optical tweezers. Advanced Functional Materials, 30(27), 2002081.
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Classical and Physical Optics
Journal Section Articles
Authors

Nur Çobanoğlu 0000-0002-5092-7897

Aziz Kolkıran 0000-0002-7440-5428

Publication Date September 15, 2024
Submission Date November 2, 2023
Acceptance Date June 11, 2024
Published in Issue Year 2024 Volume: 14 Issue: 3

Cite

APA Çobanoğlu, N., & Kolkıran, A. (2024). Düşük maliyetli ve özel tasarım çift ışınlı optik cımbızın performans özellikleri. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 14(3), 851-863. https://doi.org/10.17714/gumusfenbil.1385133