Research Article
BibTex RIS Cite

Biochemical and molecular tolerance of Carpobrotus acinaciformis L. halophyte plants exposed to high level of NaCl stress

Year 2019, Volume: 23 Issue: 1, 99 - 107, 25.03.2019
https://doi.org/10.29050/harranziraat.464133

Abstract

Carpobrotus acinaciformis L. plant is a kind of halophyte that is able
to survive in high salt conditions. It is important to determine its
physiological, biochemical and molecular limit of NaCl stress if one aims to
use it for phytoremediation purpose. In this study, the alkaline protocol of
the modified plant comet assay were used for rapid detection of DNA damage in
C. acinaciformis L. plants exposed to a series of  NaCl stress concentrations (0-, 50-, 100-,
200-, 300-, 400 and 500 mmol L-1) in hydroponic conditions for 2
weeks. DNA damage was measured as the values of percentage of DNA in tails and
tail length. The halophyte C. acinaciformis L. did not show any dose response
up to 400 mmol L-1 NaCl level in terms of DNA damages. DNA integrity
measured via comet assay showed that DNA preserved its original shape up to 400
mmol L-1 NaCl level. However, the very high concentrations of NaCl
(400 and 500 mmol L-1) caused DNA damages.  When physiological and biochemical parameters
such as proline, chlorophyll a and b, peroxidase (POX), catalase (CAT), H2O2,
malondialdehyde (MDA) contents were examined, oxidant molecules such as H2O2
(0.912-3.72 µmol g-1 Fwt) and MDA (7.1-34 nmol g-1 Fwt)
gradually increased along with the increase of NaCl concentrations, p<0.05.
On the other hand, antioxidant enzyme POX and an osmolyte molecule proline
slightly increased up to 400 mmol L-1 NaCl level then slightly
decreased after that. Similar issues were obtained from that of protease enzyme
which indicates the power of protein hydrolysis in which a slight decrease
(182-95 Unit mg-1 protein) over a dose of NaCl was evident.
Chlorophyll contents and CAT activity were not affected upon increase of NaCl
concentrations. This study showed that the halophyte C. acinaciformis L. can be
easily used to remove salt up to 400 mmol L-1 NaCl concentrations
from a saline-affected soil. Measuring DNA damage is concluded as a very useful
parameter to find out what level of NaCl could be tolerated if a halophyte
plant is aimed to remediate the saline soils.

References

  • References
  • Agarwal, S., Pandey, V., 2004. Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biologia Plantarum, 48: 555–560.
  • Anjum, N.A., Gill, S.S., Ahmad, I., Tuteja, N., Soni, P., Pareek, A., 2012. Understanding stress-responsive mechanisms in plants: an overview of transcriptomics and proteomics approaches, in Improving Crop Resistance to Abiotic Stress, Vols. 1, 2, (Eds) Tuteja, N., Gill, S. S., Tiburcio, A.F., Tuteja R., (Weinheim: Wiley-VCH Verlag GmbH and Co. KGaA; ), 337–355 pp.
  • Arnon, D.L., 1949. A copper enzyme is isolated chloroplast polyphenol oxidase in Beta vulgaris. Plant Physiol., 24: 1-15.
  • Bates, L.S., Waldren R.P., Teare, I.D., 1973. Rapid determination of free proline for water-stress studies. Plant & Soil, 39: 205-207.
  • Collins, A.R., 2004 The comet assay for DNA damage and repair. Molecular Biotechnology, 26: 249.
  • Cvikrova, M., Hrubcova, M., Vagner, M., Machackova, I., Eder, J., 1994. Phenolic acids and peroxidase activity in Alfalfa (Medicago sativa) embryogenic cultures after ethephon treatment. Plant Physiological, 91(2): 226-233.
  • Dikilitaş, M., Collins, A.R., Koçyiğit A., EL Yamani, N., Karakaş S., 2015. DNA damage in potato plants exposed tohigh level of NaCl stress. ICAW 2015 - 11th International Comet Assay Workshop. 1-4 september 2015.
  • Flowers, T.J., Colmer, T.D., 2008. Salinity tolerance in halophytes. New Phytologist, 179: 945–963.
  • Flowers, T.J., Colmer, T.D., 2015. Plant salt tolerance: adaptations in halophytes. Ann. Bot. 115(3): 327–331.
  • Gichner, T., Žnidar, I., and Száková, J. (2008). Evaluation of DNA damage and mutagenicity induced by lead in tobacco plants. Mutation Research, 652: 186-190.
  • Girard, C., Michaud, D., 2002. Direct monitoring of extracellular protease activities in microbial cultures. Analytical Biochemistry, 308: 388–391.
  • Grigore, MN, Ivanescu, L., Toma, C., 2014. Halophytes. An integrative anatomical study. Springer, Cham, Heidelberg, New York, Dordrecht, London, 1-2 pp.
  • Gupta, B., Huang, B., 2014. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics, Article ID 701596, 18 pages.
  • He, Y., 2005. Changes in protein content, protease activity, and amino acid content associated with heath injury in creeping bentgrass. Journal of the American Society for Horticultural Science, 130(6):842-847.
  • Joshi, M., Mishra, A., Jha, B., 2011. Efficient genetic transformation of Jatropha curcas L. by microprojectile bombardment using embryo axes. Industrial Crops and Products, 33: 67-77.
  • Karakas, S., Cullu, M.A., Dikilitas, M., 2017. Comparison of two halophyte species (Salsola soda and Portulaca oleracea) for salt removal potential under different soil salinity conditions. Turkish Journal of Agriculture and Forestry, 41: 183-190.
  • Kassaye, Y.A., Salbu, B., Skipperud, L., Einset., John., 2013. High tolerance of aluminum in the grass species Cynodon aethiopicus. Acta Physiologiae Plantarum, 35: 1749-1761.
  • Lei, Y., Xu, Y., Hettenhausen C., Lu, C., Shen, G., Zhang, Cuiping., Li, J., Song, J., Lin, H., Wu, J., 2018. Comparative analysis of alfalfa (Medicago sativa L.) leaf transcriptomes reveals genotype-specific salt tolerance mechanisms. BMC Plant Biology, 18:35. Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R., Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant,Cell and Environment, 33, 453-467.
  • Milosevic, N., Slusarenko, A.J., 1996. Active Oxygen Metabolism and Lignifications in The Hypersensitive Response in Bean. Physiological and Molecular Plant Pathology, 49: 143-158.
  • Pirasteh Anosheh, H., Ranjbar, G., Pakniyat, H., Emam, Y., 2016. Physiological mechanis of salt stress tolerance in plants; an overview. Editors: Azooz, M.M., Ahmad. P., Plant-environment interaction: responses and approaches to mitigate stress. Chichester: John Wiley & Sons; p. 141–160.
  • Pourrut B., Pinelli E., Celiz Mendiola V., Silvestre J., Douay F. (2015). Recommendations for increasing alkaline comet assay reliability in plants. Mutagenesis 30, 37–43.
  • Sairam, R.K., Sexena, D., 2000. Oxidative stress and antioxidants in wheat genotypes: possible mechanism of water stress tolerance. Journal of Agronomy and Crop Science, 184: 55-61.
  • Sairam, R.K., Srivastava, G.C., Agarwal, S., Meena, R.C. 2005. Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol Plant, 49: 85-91.
  • Sharma, P, Jha, A.B, Dubey, R.S., Pessarakli, M., 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Hindawi Publishing Corporation Journal of Botany, Volume 2012, Article ID 217037.
  • Shetti, A.A., Kaliwal, B.B., 2017. Impact of imidacloprid intoxication on amylase and protease activity in soil isolate escherichia coli. Journal of Chemical and Pharmaceutical Research, 9(7):13-17.
  • Simova-Stoilova, L., Vassileva, V., Petrova, T., Tsenov, N., Demirevska, K., Feller, U., 2006. Proteolytic activity in wheat leaves during drought stress and recovery. General and Applied Plant Physioogy, Special Issue, 91-100.
  • Suo, J., Zhao, Q., David, L., Chen, S., Dai, S., 2017. Salinity Response in Chloroplasts: Insights from Gene Characterization. International Journal of Molecular Sciences, 18: 1011.
  • Tripathy, B.C., Oelmüller, R., 2012. Reactive oxygen species generation and signaling in plants. Plant Signaling Behavior, 7:12, 1621–1633. Velikova, V., Yordanov, I., Edreva, A., 2000. Oxidative Stress and Some Antioxidant Systems in Acid RainTreated Bean Plants: Protective Role of Exogenous Polyamines. Plant Science, 151, 59-66.

NaCl stresine maruz bırakılan Carpobrotus acinaciformis L. halofit bitkisinin biyokimyasal ve moleküler tepkileri

Year 2019, Volume: 23 Issue: 1, 99 - 107, 25.03.2019
https://doi.org/10.29050/harranziraat.464133

Abstract

Carpobrotus acinaciformis L. bitkisi yüksek tuz koşullarında yaşayabilen bir
çeşit halofit bitkidir.
Bu bitki fitoremediasyon
çalışmaları için kullanılmak üzere planlandığında, bu bitkinin tuz stresine
karşı fizyolojik, biyokimyasal ve moleküler sınırlarını belirlemek önem arz
etmektedir.
C.
acinaciformis
L.
bitkisinde DNA hasar seviyesini belirlemek için hidroponik koşullarda 2 hafta
süre ile tuz stresine
(0-, 50-, 100-,
200-, 300-, 400 and 500 mmol L-1)
maruz bırakılan bitkilerde modifiye edilmiş alkali bitki comet assay metodu
kullanılmıştır. DNA hasarı kuyruk uzunluğu ve kuyrukta DNA yüzdesi olarak ölçülmüştür.
Halofit
C.
acinaciformis
L 400 mmol L-1 NaCl
seviyesine kadar DNA hasarı ile ilgili olarak doz tepkisi göstermemiştir. Comet
assay ile ölçülen yönteme göre halofit bitkilerin DNA bütünlüğünü 400 mmol
L-1 NaCl  seviyesine kadar korunduğu gözlenmiştir. Fakat,
çok daha yüksek NaCl konsantrasyonları (400 ve 500 mmol L-1)
DNA hasarına yol açmıştır. Prolin, klorofil a
ve b, peroksidaz (POX), katalaz
(CAT), H2O2, malondialdehid (MDA) içerikleri gibi
fizyolojik ve biyokimyasal parametreler incelendiğinde, oksidant moleküllerden
H2O2 (0.912-3.72 µmol g-1 taze ağırlık)and
MDA (7.1-34 nmol g-1 taze ağırlık) artan tuz konsantrasyonu ile
paralel olarak sıralı artış göstermiştir, p<0.05. Diğer yandan, antioksidant enzimlerden POX ve bir osmolit olan prolin 400
mmol L-1 NaCl’ e kadar
hafifçe artış göstermiş daha sonra tekrar düşmüştür. Benzer durumlar protein
hidrolizini belirlemede kullanılan proteaz enzim (182-95 Unit mg-1
protein) seviyesinde de görülmüş, artan
NaCl dozuna bağlı olarak enzim miktarı kademeli olarak azalmıştır. Klorofil
miktarı ve CAT enzim seviyesi NaCI konsantrasyon artışına bağlı olarak değişim
göstermemiştir. Bu çalışma,
C. acinaciformis L. bitkisinin tuzdan
etkilenmiş topraklarda 400
mmol L-1 NaCl’ e kadar olan tuz konsantrasyonunu
uzaklaştırmada rahatlıkla kullanılabileceğini ortaya koymuştur. DNA hasarını
ölçmek, tuzlu alanları ıslah etmede kullanılacak halofit bitkinin hangi
seviyede NaCl stresine dayanabileceğini belirlemede çok kullanışlı bir
parametre olarak kaydedilmiştir.

References

  • References
  • Agarwal, S., Pandey, V., 2004. Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biologia Plantarum, 48: 555–560.
  • Anjum, N.A., Gill, S.S., Ahmad, I., Tuteja, N., Soni, P., Pareek, A., 2012. Understanding stress-responsive mechanisms in plants: an overview of transcriptomics and proteomics approaches, in Improving Crop Resistance to Abiotic Stress, Vols. 1, 2, (Eds) Tuteja, N., Gill, S. S., Tiburcio, A.F., Tuteja R., (Weinheim: Wiley-VCH Verlag GmbH and Co. KGaA; ), 337–355 pp.
  • Arnon, D.L., 1949. A copper enzyme is isolated chloroplast polyphenol oxidase in Beta vulgaris. Plant Physiol., 24: 1-15.
  • Bates, L.S., Waldren R.P., Teare, I.D., 1973. Rapid determination of free proline for water-stress studies. Plant & Soil, 39: 205-207.
  • Collins, A.R., 2004 The comet assay for DNA damage and repair. Molecular Biotechnology, 26: 249.
  • Cvikrova, M., Hrubcova, M., Vagner, M., Machackova, I., Eder, J., 1994. Phenolic acids and peroxidase activity in Alfalfa (Medicago sativa) embryogenic cultures after ethephon treatment. Plant Physiological, 91(2): 226-233.
  • Dikilitaş, M., Collins, A.R., Koçyiğit A., EL Yamani, N., Karakaş S., 2015. DNA damage in potato plants exposed tohigh level of NaCl stress. ICAW 2015 - 11th International Comet Assay Workshop. 1-4 september 2015.
  • Flowers, T.J., Colmer, T.D., 2008. Salinity tolerance in halophytes. New Phytologist, 179: 945–963.
  • Flowers, T.J., Colmer, T.D., 2015. Plant salt tolerance: adaptations in halophytes. Ann. Bot. 115(3): 327–331.
  • Gichner, T., Žnidar, I., and Száková, J. (2008). Evaluation of DNA damage and mutagenicity induced by lead in tobacco plants. Mutation Research, 652: 186-190.
  • Girard, C., Michaud, D., 2002. Direct monitoring of extracellular protease activities in microbial cultures. Analytical Biochemistry, 308: 388–391.
  • Grigore, MN, Ivanescu, L., Toma, C., 2014. Halophytes. An integrative anatomical study. Springer, Cham, Heidelberg, New York, Dordrecht, London, 1-2 pp.
  • Gupta, B., Huang, B., 2014. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics, Article ID 701596, 18 pages.
  • He, Y., 2005. Changes in protein content, protease activity, and amino acid content associated with heath injury in creeping bentgrass. Journal of the American Society for Horticultural Science, 130(6):842-847.
  • Joshi, M., Mishra, A., Jha, B., 2011. Efficient genetic transformation of Jatropha curcas L. by microprojectile bombardment using embryo axes. Industrial Crops and Products, 33: 67-77.
  • Karakas, S., Cullu, M.A., Dikilitas, M., 2017. Comparison of two halophyte species (Salsola soda and Portulaca oleracea) for salt removal potential under different soil salinity conditions. Turkish Journal of Agriculture and Forestry, 41: 183-190.
  • Kassaye, Y.A., Salbu, B., Skipperud, L., Einset., John., 2013. High tolerance of aluminum in the grass species Cynodon aethiopicus. Acta Physiologiae Plantarum, 35: 1749-1761.
  • Lei, Y., Xu, Y., Hettenhausen C., Lu, C., Shen, G., Zhang, Cuiping., Li, J., Song, J., Lin, H., Wu, J., 2018. Comparative analysis of alfalfa (Medicago sativa L.) leaf transcriptomes reveals genotype-specific salt tolerance mechanisms. BMC Plant Biology, 18:35. Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R., Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant,Cell and Environment, 33, 453-467.
  • Milosevic, N., Slusarenko, A.J., 1996. Active Oxygen Metabolism and Lignifications in The Hypersensitive Response in Bean. Physiological and Molecular Plant Pathology, 49: 143-158.
  • Pirasteh Anosheh, H., Ranjbar, G., Pakniyat, H., Emam, Y., 2016. Physiological mechanis of salt stress tolerance in plants; an overview. Editors: Azooz, M.M., Ahmad. P., Plant-environment interaction: responses and approaches to mitigate stress. Chichester: John Wiley & Sons; p. 141–160.
  • Pourrut B., Pinelli E., Celiz Mendiola V., Silvestre J., Douay F. (2015). Recommendations for increasing alkaline comet assay reliability in plants. Mutagenesis 30, 37–43.
  • Sairam, R.K., Sexena, D., 2000. Oxidative stress and antioxidants in wheat genotypes: possible mechanism of water stress tolerance. Journal of Agronomy and Crop Science, 184: 55-61.
  • Sairam, R.K., Srivastava, G.C., Agarwal, S., Meena, R.C. 2005. Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol Plant, 49: 85-91.
  • Sharma, P, Jha, A.B, Dubey, R.S., Pessarakli, M., 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Hindawi Publishing Corporation Journal of Botany, Volume 2012, Article ID 217037.
  • Shetti, A.A., Kaliwal, B.B., 2017. Impact of imidacloprid intoxication on amylase and protease activity in soil isolate escherichia coli. Journal of Chemical and Pharmaceutical Research, 9(7):13-17.
  • Simova-Stoilova, L., Vassileva, V., Petrova, T., Tsenov, N., Demirevska, K., Feller, U., 2006. Proteolytic activity in wheat leaves during drought stress and recovery. General and Applied Plant Physioogy, Special Issue, 91-100.
  • Suo, J., Zhao, Q., David, L., Chen, S., Dai, S., 2017. Salinity Response in Chloroplasts: Insights from Gene Characterization. International Journal of Molecular Sciences, 18: 1011.
  • Tripathy, B.C., Oelmüller, R., 2012. Reactive oxygen species generation and signaling in plants. Plant Signaling Behavior, 7:12, 1621–1633. Velikova, V., Yordanov, I., Edreva, A., 2000. Oxidative Stress and Some Antioxidant Systems in Acid RainTreated Bean Plants: Protective Role of Exogenous Polyamines. Plant Science, 151, 59-66.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering, Agricultural Engineering (Other), Soil Sciences and Ecology
Journal Section dp
Authors

Sema Karakaş Dikilitaş 0000-0003-1617-9407

Murat Dikilitaş 0000-0002-7399-4750

Rukiye Tıpırdamaz 0000-0003-2322-6646

Publication Date March 25, 2019
Submission Date September 26, 2018
Published in Issue Year 2019 Volume: 23 Issue: 1

Cite

APA Karakaş Dikilitaş, S., Dikilitaş, M., & Tıpırdamaz, R. (2019). Biochemical and molecular tolerance of Carpobrotus acinaciformis L. halophyte plants exposed to high level of NaCl stress. Harran Tarım Ve Gıda Bilimleri Dergisi, 23(1), 99-107. https://doi.org/10.29050/harranziraat.464133

Indexing and Abstracting 

13435  19617 13436 13440 13441 13442 13443

13445 13447 13449 13464 13466


10749  Harran Journal of Agricultural and Food Science is licensed under Creative Commons 4.0 International License.