Research Article
BibTex RIS Cite

Harran Ovasında Yaygın Bitkilerde Sulama Performanslarının Karşılaştırılması

Year 2019, Volume: 23 Issue: 4, 432 - 443, 23.12.2019
https://doi.org/10.29050/harranziraat.556962

Abstract

Harran Ovası’nda tam kuraklık trendi gösteren lokasyonda 2016
yılında II.ürün mısır ile I.ürün pamuk bitkisinde gönüllülük esasını kabul eden
üretici parsellerinde sulama performansı çalışılmıştır. Yetiştirme mevsiminde,
parsellere uygulanan sulama suyu ve yüzey akışla kaybedilen dönen suların
kanallarda hızları muline ile ölçülmüş, ölçülen değerlerden debi, hacim ve
derinlik cinsinden hesaplanmıştır. Elde edilen bulgular tarımda aşırı su
tüketimlerinin alışkanlık haline geldiğini göstermektedir. Çiftçiler tüm kültür
bitkilerinde fazla suyun fazla verim getirdiğine inanmaktadır.

Mısır veya pamuk bitkisinin sulanmasında aşırı su kullanımı
ve düşük sulama suyu uygulama randımanın sebepleri sırasıyla; sulama sistemin
tamamının açık kanal şebekesi olması, sulama ücret tarifesinde hacimsel
uygulama (m3) yerine dekar başına (alansal) ücretlendirme
uygulaması, gece sulamalarının kontrolsüz kalması, konvansiyonel sulamaların
tekniğe uygun gerçekleştirilmemesi, kontrolsüz ve aşırı yoğun ve aşırı sulama
uygulamalarına bağlı su kayıpları ve toprak erozyonunun meydana gelmesi gösterilebilir.
Elde edilen
bulgulardan Harran Ovası’nda sulama randımanı %34-38 arasında olduğu
söylenebilir.
Sulama suyu kullanım randımanının (IWUE) düşük olması
da bu sebep sonuç ilişkisine bağlanabilir.

References

  • Alexandratos, N., Bruinsma, J., (2012). World agriculture towards 2030/2050. The 2012 Revision, ESA Working Paper No. 12-03, Rome: Food and Agriculture Organization of the United Nations.
  • Anonymus, (2017). Part I Global Context of Freshwater Resources Chapter 1. Global Water Availability, Distribution and Use Springer International Publishing AG 2017. A. du Plessis, Freshwater Challenges of South Africa and its Upper Vaal River, Springer Water, DOI 10.1007/978-3-319-49502-6_1
  • Anonymus, (2019). Accessible on the Web at: http://www.worldometers.info/world-population. 11.02.2019
  • Bernstein, L., (1955). Salt tolerance of field crops=cotton. U.S. Salinity Lab. Report to Collaborators, Riverside, CA. pp.37-41.
  • Cassardo, C., and Anthony A. Jones. J., (2011). Managing Water in a Changing World. Water, 3: 618-628.
  • Comas, L.H., Trout, T. J., DeJonge, K.C., Zhang, H., Gleason, S. M., (2019). Water Productivity under Strategic Growth Stage-Based Deficit Irrigation in Maize. Agricultural Water Management 212: 433–440.
  • FAO., (Food and Agriculture Organization of the United Nations), (2014). Irrigation areas, irrigated crops, environment. Date of preparation: December 2014.
  • FAO., (Food and Agriculture Organization of the United Nations) (2012). Coping with Water Scarcity: An Action Framework for Agriculture and Food Security. FAO Water Reports 38, Rome: FAO.
  • Faurèsa,F-M., Hoogeveena, J., BruinsmabJ, J., (2019). The FAO irrigated area forecast for 2030. Accessible on the Web at: http://apps.fao.org/ and Accessible on the Web at: http://www.fao.org/ag/agl/aglw/aquastat/main/index.htm 11.02.2019
  • Frisvold, G., Sanchez, C., Gollehon, N., Megdal, S. B., Brown, P., (2018). Evaluating Gravity-Flow Irrigation with Lessons from Yuma, Arizona, USA. Sustainability, 10 (5), 1548.
  • Howell, T.A., (2003). Irrigation Efficiency. Encyclopedia of Water Science. DOI: 10.1081/E-EWS120010252. Published by Marcel Dekker.
  • Katerji N., van Hoorn J.W., Mastrorilli, M., Hamdy A., (2005). Crop sensitivity to salinity. Non-conventional water use: Bari: CIHEAM/EU DG Research, p. 43-51.
  • Kibona, D., Kidulile, G., Rwabukambara, F., (2009). Environment, Climate Warming and Water Management. Transit Stud Rev 16: 484–500.
  • Merriam and Farm, (1978). Irrigation System Evaluation: A Guide for Management; Utah State Univ.: Logan, 271.
  • Rao, S.S., Tanwar, S, P, S., Regar, P, L., (2016). Effect of deficit irrigation, phosphorous inoculation and cycocel sprayon root growth, seed cotton yield and water productivity of dripirrigated cotton in arid environment. Agricultural Water Management 169: 14–25
  • Ray, D.K., Ramankutty, N., Mueller, N.D., West, P.C., Foley, J.A., (2013). Yield trends are insufficient to double global crop production by 2050. PLOS ONE 8 (6): 1-8.
  • Rosegrant, M.W., Ringler, C., Zhu, T., (2009). Water for agriculture: maintaining food security under growing scarcity. Annual Review of Environment and Resources 34: 205-222.
  • Sandoval‐Solis, S., Orang, M., Richard L. Snyder, R. L., Orloff, S., Williams, K.E., Jenna, M., Rodriguez, M. S. J.E., (2013). Spatial Analysis of Application Efficiencies in Irrigation for the State of California Prepared for: United States Geological Survey and California Institute for Water Resources University of California, Davis. One Shield Ave. Dept. LAWR, Bldg. PES 1111 Davis, CA 95616 This document is available online via World Wide Web at http://watermanagement.ucdavis.edu/e‐library/ CA Water Plan Update 2013: Vol 4 Reference Guide, Page 1.
  • Segovia-Cardozo, D.A., Rodríguez-Sinobas, L., Zubelzu, S., (2019). Water use efficiency of corn among the irrigation districts across the Duero river basin (Spain): Estimation of local crop coefficients by satellite images. Agricultural Water Management, 212: 241–251.
  • U.S. Department of Agriculture. Farm and Ranch Irrigation Survey, (2013). Volume 3, Special Studies, Part 1 of the 2012 Census of Agriculture, AC-12-SS-1; National Agricultural Statistics Service: Washington, DC, USA, 2014.
  • Ward, F.A. Pulido-Velazquez, M., (2008). Water conservation in irrigation can increase water use. Proc. Natl. Acad. Sci. USA, 105 (47): 18215–18220.

Comparison of Irrigation Performance of Common Plants in Harran Plain

Year 2019, Volume: 23 Issue: 4, 432 - 443, 23.12.2019
https://doi.org/10.29050/harranziraat.556962

Abstract

In
2016, in the location showing a complete drought trend in the Harran Plain,
irrigation performances of cotton (first crop) and maize crops (second crop)
were studied in the volunteered farmer’s parcels. During the growing season,
the flow rates of irrigation water and the wastewater on the channels were
measured with current meter; and then, flow rate, volume and depth of water
were calculated from the measured values. Findings showed that excessive water
consumption became a habit in the region. Farmers believe that the excess water
results in excess yield.



The
reasons for the excessive water consumption and low yield in corn or cotton may
be due to open channel network construction; areal irrigation fee tariff
instead of volumetric based pricing, uncontrolled night irrigations,
conventional irrigation without the desired techniques, the undisciplined wild
irrigation and water losses and soil erosion due to excessive irrigation.
According to the findings, the irrigation efficiency in Harran Plain is between
34-38%. Low water use efficiency can also be attributed to the causal
relationships described above.

References

  • Alexandratos, N., Bruinsma, J., (2012). World agriculture towards 2030/2050. The 2012 Revision, ESA Working Paper No. 12-03, Rome: Food and Agriculture Organization of the United Nations.
  • Anonymus, (2017). Part I Global Context of Freshwater Resources Chapter 1. Global Water Availability, Distribution and Use Springer International Publishing AG 2017. A. du Plessis, Freshwater Challenges of South Africa and its Upper Vaal River, Springer Water, DOI 10.1007/978-3-319-49502-6_1
  • Anonymus, (2019). Accessible on the Web at: http://www.worldometers.info/world-population. 11.02.2019
  • Bernstein, L., (1955). Salt tolerance of field crops=cotton. U.S. Salinity Lab. Report to Collaborators, Riverside, CA. pp.37-41.
  • Cassardo, C., and Anthony A. Jones. J., (2011). Managing Water in a Changing World. Water, 3: 618-628.
  • Comas, L.H., Trout, T. J., DeJonge, K.C., Zhang, H., Gleason, S. M., (2019). Water Productivity under Strategic Growth Stage-Based Deficit Irrigation in Maize. Agricultural Water Management 212: 433–440.
  • FAO., (Food and Agriculture Organization of the United Nations), (2014). Irrigation areas, irrigated crops, environment. Date of preparation: December 2014.
  • FAO., (Food and Agriculture Organization of the United Nations) (2012). Coping with Water Scarcity: An Action Framework for Agriculture and Food Security. FAO Water Reports 38, Rome: FAO.
  • Faurèsa,F-M., Hoogeveena, J., BruinsmabJ, J., (2019). The FAO irrigated area forecast for 2030. Accessible on the Web at: http://apps.fao.org/ and Accessible on the Web at: http://www.fao.org/ag/agl/aglw/aquastat/main/index.htm 11.02.2019
  • Frisvold, G., Sanchez, C., Gollehon, N., Megdal, S. B., Brown, P., (2018). Evaluating Gravity-Flow Irrigation with Lessons from Yuma, Arizona, USA. Sustainability, 10 (5), 1548.
  • Howell, T.A., (2003). Irrigation Efficiency. Encyclopedia of Water Science. DOI: 10.1081/E-EWS120010252. Published by Marcel Dekker.
  • Katerji N., van Hoorn J.W., Mastrorilli, M., Hamdy A., (2005). Crop sensitivity to salinity. Non-conventional water use: Bari: CIHEAM/EU DG Research, p. 43-51.
  • Kibona, D., Kidulile, G., Rwabukambara, F., (2009). Environment, Climate Warming and Water Management. Transit Stud Rev 16: 484–500.
  • Merriam and Farm, (1978). Irrigation System Evaluation: A Guide for Management; Utah State Univ.: Logan, 271.
  • Rao, S.S., Tanwar, S, P, S., Regar, P, L., (2016). Effect of deficit irrigation, phosphorous inoculation and cycocel sprayon root growth, seed cotton yield and water productivity of dripirrigated cotton in arid environment. Agricultural Water Management 169: 14–25
  • Ray, D.K., Ramankutty, N., Mueller, N.D., West, P.C., Foley, J.A., (2013). Yield trends are insufficient to double global crop production by 2050. PLOS ONE 8 (6): 1-8.
  • Rosegrant, M.W., Ringler, C., Zhu, T., (2009). Water for agriculture: maintaining food security under growing scarcity. Annual Review of Environment and Resources 34: 205-222.
  • Sandoval‐Solis, S., Orang, M., Richard L. Snyder, R. L., Orloff, S., Williams, K.E., Jenna, M., Rodriguez, M. S. J.E., (2013). Spatial Analysis of Application Efficiencies in Irrigation for the State of California Prepared for: United States Geological Survey and California Institute for Water Resources University of California, Davis. One Shield Ave. Dept. LAWR, Bldg. PES 1111 Davis, CA 95616 This document is available online via World Wide Web at http://watermanagement.ucdavis.edu/e‐library/ CA Water Plan Update 2013: Vol 4 Reference Guide, Page 1.
  • Segovia-Cardozo, D.A., Rodríguez-Sinobas, L., Zubelzu, S., (2019). Water use efficiency of corn among the irrigation districts across the Duero river basin (Spain): Estimation of local crop coefficients by satellite images. Agricultural Water Management, 212: 241–251.
  • U.S. Department of Agriculture. Farm and Ranch Irrigation Survey, (2013). Volume 3, Special Studies, Part 1 of the 2012 Census of Agriculture, AC-12-SS-1; National Agricultural Statistics Service: Washington, DC, USA, 2014.
  • Ward, F.A. Pulido-Velazquez, M., (2008). Water conservation in irrigation can increase water use. Proc. Natl. Acad. Sci. USA, 105 (47): 18215–18220.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering, Agricultural, Veterinary and Food Sciences
Journal Section Araştırma Makaleleri
Authors

Yakup Karaaslan 0000-0001-8993-4771

Mehmet Şimşek 0000-0002-9552-1743

Sabri Akın 0000-0002-9196-3157

Publication Date December 23, 2019
Submission Date April 22, 2019
Published in Issue Year 2019 Volume: 23 Issue: 4

Cite

APA Karaaslan, Y., Şimşek, M., & Akın, S. (2019). Harran Ovasında Yaygın Bitkilerde Sulama Performanslarının Karşılaştırılması. Harran Tarım Ve Gıda Bilimleri Dergisi, 23(4), 432-443. https://doi.org/10.29050/harranziraat.556962

Indexing and Abstracting 

13435  19617 13436 13440 13441 13442 13443

13445 13447 13449 13464 13466


10749  Harran Journal of Agricultural and Food Science is licensed under Creative Commons 4.0 International License.