Research Article
BibTex RIS Cite

Trabzon yöresinde yetişen Sibirya kivisi (Actinidia arguta) meyvesinin fenolik bileşiklerinin karakterizasyonu ile antioksidan ve antimikrobiyal aktivitesinin belirlenmesi

Year 2021, Volume: 25 Issue: 3, 362 - 376, 23.09.2021
https://doi.org/10.29050/harranziraat.889594

Abstract

Bu çalışmada, literatürde hakkında sınırlı sayıda çalışma bulunan Sibirya kivisi meyvesinin farklı çözgenler (etanol ve metanol) kullanılarak elde edilen ekstraktlarında toplam fenolik madde içerikleri ve bu bileşiklerin dağılımı, antioksidan aktivite ve antimikrobiyal aktivitelerinin incelenmesi amaçlanmıştır. Bu amaçla, ilk aşamada bitkinin fenolik bileşikleri ekstrakte edilerek en etkin çözgen sistemi tespit edilmiştir. Çalışmanın ikinci aşamasında ise elde edilen ekstraktların çözgenleri uçurularak kalan kuru maddede kromatografik olarak fenolik bileşiklerinin dağılımı ile spektrofotometrik olarak antioksidan aktiviteleri ve son olarak önemli gıda patojenlerine karşı antimikrobiyal aktiviteleri belirlenmiştir. Meyvelerin etanol ve metanol ekstraktlarında toplam fenolik içeriği ve antioksidan aktivitesi Folin-Ciocalteu ve ABTS antioksidan aktivite metotlarına göre tespit edilmiştir. Kivi örneklerinin fenolik profili HPLC-UV ile belirlenmiştir. 2017 yılında hasat edilen etanol ve metanol ile ekstrakte edilen Sibirya kivi örneklerine ait toplam fenolik madde sonuçları sırasıyla 761.7 ve 899.7 mg GAE.100g-1 iken 2018 yılında hasat edilen örneklerin etanol ve metanol ile ekstraktları ise 783.5 ve 931.6 mg GAE.100g-1 olarak bulunmuştur. 2017 hasat edilen etanol ve metanol ile ekstrakte edilen Sibirya kivi örneklerine ait ABTS antioksidan aktivite değerleri ise sırasıyla 87.6, 94.2 µM TE.g-1 TA iken 2018 yılında hasat edilen örneklerin ise 111.4 ve 118.1 µM TE.g-1 TA olarak tespit edilmiştir. Antimikrobiyal aktive sonuçları değerlendirildiğinde kivi meyvesinin metanol ekstraktları, etanol ekstraktlarına kıyasla daha yüksek bir antimikrobiyal etki göstermiştir. 2017 yılının hasatı olan kivi metanol ekstraklarının en yüksek antimikrobiyal etkiyi 40 µL emdirilen disk ile, Vibrio parahemolyticus, Enterococcus faecalis, Salmonella Typhimurium ve Proteus vulgaris’e (12.5±0.7 mm) gösterdiği tespit edilmiştir. 2018 yılın hasatı olan kivi etanol ekstraktlarının ise Listeria monocytogenes’e (13.5±0.7 mm) karşı en yüksek antimikrobiyal aktiviteyi 40 µL emdirilen disk ile gösterdiği belirlenmiştir.

Supporting Institution

Giresun Üniversitesi

Project Number

FEN-BAP-A-230218-07

Thanks

Bu çalışma Giresun Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi’nce maddi olarak desteklenmiştir (Proje No:FEN-BAP-A-230218-07).

References

  • Akmeşe, O., Acet, T., & Özcan, K.(2020). Elazığ İlinde Yetişen Morus nigra L.’nin Antioksidan ve Antimikrobiyal Aktivitelerinin ve Antibiyotiklerle Sinerjistik Etkisinin Belirlenmesi. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(4), 983-995.
  • Alonso Borbalán, Á.M., Zorro, L., Guillén, D.A. & García Barroso, C. (2003). Study of the polyphenol content of red and white grape varieties by liquid chromatography-mass spectrometry and its relationship to antioxidant power. Journal of Chromatography A, 1012 (1), 31-38.
  • Bravo, L. (1998). Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews, 56, 317-333.
  • Bridle, P. (1996). A simple technique for the detection of red wine adulteration with elderberry pigments. Food Chemistry, 55, 111-113.
  • Briviba, K., & Sies,H. (1994). Natural Antioxidants in Human Health and Disease. London: Academic Press.
  • Chang, L.C., & Kinghorn, A.D. (2001). Flavonoids as cancer chemopreventive agents. In C. Tringali (Ed.), Bioactive Compounds from Natural Sources. London/New York: Taylor & Francis.
  • Chesoniene, L., Daubaras, R. & Viskelis, P. (2004). Biochemical composition of Berries of some Kolomikta Kiwi (Actinidia kolomikta) cultivars and detection of Harvest maturity. Acta Horticulturae, 663, 305-308.
  • Cordell, G.A., Lemos, T.L.G., Monte, F.J.Q. & de Mattos, M.C. (2007). Vegetables as chemical reagents. Journal of Natural Products, 70(3), 478-492.
  • Çelik, A., Ercisli, S. & Turgut, N. (2007). Some physical, pomological and nutritional properties of kiwifruit cv Hayward. International Journal of Food Sciences and Nutrition, 58, 411-418.
  • Davidson, P.M., & Naidu, A.S. (2000). Natural food antimicrobial systems. Boca Raton, Florida: CRC Press.
  • Dimitrios, B., (2006). Sources of natural phenolic antioxidants. Trends in Food Science & Technology, 17(9), 505-512.
  • Du, G., Li, M., Ma, F., & Liang, D. (2009). Antioxidant capacity and the relationship with polyphenol and vitamin C in Actinidia fruits. Food Chemistry, 113(2), 557–562.
  • Ekşi, A. & Özen, İ.T. (2012). Kivi meyvesinin kimyasal bileşenleri ve fonksiyonel özellikleri. Ordu Üniversitesi Bilim ve Teknoloji Dergisi, 2(2), 54-67.
  • Elliot, J.G. (1999). Application of antioxidant vitamins in foods and beverages. Food Technology, 53,46-48.
  • Engin, M. S., Kalkan, S., & Otağ, M.R. (2019). Gojiberry (Lycium barbarum L.) Meyvesinin Farklı Çözgenlerden Elde Edilen Ekstraktlarının Toplam Fenolik İçerikleri İle Antioksidan ve Antimikrobiyal Aktivitelerinin Karşılaştırılması. Journal of Anatolian Environmental and Animal Sciences, 4(3), 359-365.
  • Erkoç, Ş., Erkoç, F., & Keskin, N. (2003). Theoretical investigation of quercetin and its radical isomers. Journal of Molecular Structure:THEOCHEM, 631(1-3), 141-146.
  • Fabre, N., Rustan, I., de Hoffmann, E., & Quetin-Leclercq, J. (2001). Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. Journal of the American Society for Mass Spectrometry, 12(6), 707-715.
  • Ferguson, A.R. (1984). Kiwifruit: A botanical review. Horticultural Reviews, 6,1-64.
  • Ferguson, A.R. (1990). The genus Actinidia. In I.J. Warrington and G.C. Weston (Ed.) Kiwifruit Science and Management (pp. 15-35). Auckland: Richards Publisher.
  • Frankel, E.N., (1999). Food antioxidants and phytochemicals: present and paste. Fett/ Lipid, 101, 450-455.
  • Fridovich, I., (1999). Fundamental aspects of reactive oxygen species, or what’s the matter with oxygen? Annals of the New York Academy of Sciences, 893, 13-18.
  • Gorinstein, S., Poovarodom, S., Kruszewska, H., Leontowicz, M., Namieśnik, J., & Vearasilp, S., (2010). Antioxidant properties and bioactive constituents of some rare exotic Thai fruits and comparison with conventional fruits: In vitro and in vivo studies. Food Research International, 44, 2222-2232.
  • Gorinstein, S., Leontowicz, H., Leontowicz, M., Jesion, I., Namiesnik, J., Drzewiecki, J., & Trakhtenberg, S. (2011). Influence of two cultivars of persimmon on atherosclerosis indices in rats fed cholesterol-containing diets: Investigation in vitro and in vivo. Nutrition, 27, 838-846.
  • Gülçin, I., Oktay, M., Kirecci E., & Küfrevioğlu Ö.I., (2004). Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts. Food Chemistry, 83, 371-382.
  • Gümüşay, Ö. A., & Yalçın, M. Y. (2019). Effects of Freeze-Drying Process on Antioxidant and Some Physical Properties of Cherry Laurel and Kiwi Fruits. Akademik Gıda, 17(1), 9-15.
  • He, B., Chen, X. X., & Chen, Y. (2002). Protective Effects of Tea Polyphenol on Cerebral Ischemia Reperfusion Injury in Rats and Its Scavenging Oxy-radical and Anticerebral Lipid Peroxidation Efects. Journal of Chinese Pharmaceutical Sciences, 11(4), 167-171.
  • Hou, D.X. (2003). Potential mechanisms of cancer chemoprevention by anthocyanins. Current Molecular Medicine, 3,149–159.
  • Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53, 1841-1856.
  • Kabaluk, A.K., Kempler, C., & Toivonen, P.M.A. (1997). Actinidia arguta- characteristics relevant to commercial production. Fruit varieties journal, 51, 117-122.
  • Kalkan, S. (2016). Probiyotik Laktik Asit Bakterilerinin Staphylococcus aureus'a Karşı Antimikrobiyal Etkilerinin Farklı Matematiksel Modeller ile Analizi. Sinop Üniversitesi Fen Bilimleri Dergisi, 1(2), 155-164.
  • Kalt, W. (2005). Effects of production and processing factors on major fruit and vegetable antioxidants. Journal of Food Science, 70, R11–R19.
  • Kamei, H., Kojima, T., Hasegawa, M., Koide, T., Umeda, T., & Yukawa, T., (1995). Suppression of tumor cells by anthocyanins in vitro. Cancer Investigation, 13, 590-594.
  • Karaivanova, M., Drenska, D., & Ovcharov, R.A. (1990). Modification of the toxic effects of platinum complexes with anthocyanins. Eksperimentalna meditsina i morfologiia, 29, 19-24.
  • Kim, J.G., Beppua, K., & Kataokaa, I. (2009). Varietal differences in phenolic content and astringency in skin and flesh of hardy kiwifruit resources in Japan. Scientia Horticulturae, 120(4), 551-554.
  • Kong, J.M., Chia, L.S., Goh, N.K, Chia, T.F., & Brouillard, R. (2003). Analysis and biological activities of anthocyanins. Phytochemistry, 64, 923-933.
  • Krupa, T., Latocha, P.& Liwińska A. (2011). Changes of physiological quality, phenolics and vitamin C content in hardy kiwifruit (Actinidia aruguta and its hybrid) during storage. Scientia Horticulturae, 130, 410-417.
  • Langseth L., (1995). Oxidants, antioxidants and disease prevention. Brussels: ILSI Europe.
  • Macheix, J.J., Fleuriet, A., & Billot, J. (1990). Fruit Phenolics. Boca Raton, Florida: CRC Press, 390 p.
  • Mann, S., Sharma, A., Biswas, S., & Gupta, R. K. (2015). Identification and molecular docking analysis of active ingredients with medicinal properties from edible Baccaurea sapida. Bioinformation, 11(9), 437-443.
  • Matich, A.J., Young, H., Allen, J.M., Wang, M.Y., Fielder, S., McNeilage, M.A., & MacRae, E.A. (2003). Actinidia arguta: volatile compounds in fruit and flowers. Phytochemistry, 63, 285-301.
  • Mishra, N., Dubey, A. Singh, N. & Gupta, P. (2010). Antimicrobial, antioxidant and chemopreventive potential of vitamin C rich fruits. International Journal of Applied Biology and Pharmaceutical Technology, 1(3), 915-920.
  • Montanaro, G., Treutter, D., & Xiloyannis, C. (2007). Phenolic compounds in young developing kiwifruit in relation to light exposure: Implications for fruit calcium accumulation. Journal of Plant Interactions, 2(1), 63-69.
  • Mulero, J., Pardo, F., & Zafrilla, P. (2010). Antioxidant activity and phenolic composition of organic and conventional grapes and wines. Journal of Food Composition and Analysis, 23(6), 569–574.
  • Nessma, A. (2015). Antioxidant, Antitumor, Antimicrobial Studies and Quantitative Phytochemical Estimation of Ethanolic Extracts of Selected Fruit Peels. International Journal of Current Microbiology and Applied Sciences, 4(5), 298-309.
  • Ohashi, H., (1989). Actinidiaceae. In Y., Satake, H., Hara, S., Watari, T. Tominari, (Ed.), Wild Flowers of Japan: Woody plants (pp.135–137). Tokyo: Heibonsha Ltd.
  • Park, Y.S., Jung, S. T., Kang, S.-G., Drzewiecki, J., Namiesnik, J., Haruenkit, R., & Gorinstein, S. (2006). In vitro studies of polyphenols, antioxidants and other dietary indices in kiwifruit (Actinidia deliciosa). International Journal of Food Sciences and Nutrition, 57, 107-122.
  • Park, Y.S., Leontowicz, H., Leontowicz, M., Namiesnik, J., Suhaj, M., Cvikrov, M., & Gorinstein, S. (2011). Comparison of the contents of bioactive compounds and the level of antioxidant activity in different kiwifruit cultivars. Journal of Food Composition and Analysis, 24, 963-970.
  • Pietta, P.G. (2000). Flavonoids as antioxidants. Journal of Natural Products, 63, 1035-1042.
  • Prasain, J.K., Wang, C.C., & Barnes, S., (2004). Mass spectrometric methods for the determination of flavonoids in biological samples. Free Radical Biology and Medicine, 37 (9), 1324-1350.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C.A., (1999). Antioxidant activity applying animproved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26 (9–10), 1231-1237.
  • Rice-Evans, C.A., Miller, N.J., & Paganga, G., (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine, 20 (7), 933-956.
  • Roginsky, A.B., Ujiki, M.B., Ding, X.Z., & Adrian, T.E. (2005). On the potential use of flavonoids in the treatment and prevention of pancreatic cancer. In Vivo, 19,61-67.
  • Rush, E. C., Patel, M., Plank, L. D., Ferguson, L. R. (2002). Kiwifruit promotes laxation in the elderly. Asia Pacific Journal of Clinical Nutrition, 11(2), 164–168.
  • Samancı, H., (1990). Kivi (Actinidia) Yetistiriciliği, Yalova :TAV Yayınları.
  • Schuster, B., & Herrmann, K. (1985). Hydroxybenzoic and hydroxycinnamic acid derivatives in soft fruits. Phytochemistry, 24, 2761-2764.
  • Shahidi, F., & Naczk, M. (1995). Antioxidant Properties of Food Phenolics. In F. Shahidi & M. Naczk (Ed.), Food Phenolics: Sources, Chemistry, Effects and Applications (pp. 235–277). PA: Technomic Publishing Co.
  • Slinkard, K., & Singleton, V. L. (1997). Total phenol analysis: automation and comparison with manual methods. American Journal of Enology and Viticulture,28, 49–55.
  • Spacil, Z., Novakova, L., & Solich, P. (2008). Analysis of phenolic compounds by high performance liquid chromatography and ultra performance liquid chromatography. Talanta, 76(1), 189-199.
  • Stanley, R. Wegrzyn, T. & Saleh, Z. (2006). Kiwifruit processed product. Acta Horticulturae, 753, 795-800.
  • Strik, B., & Hummer, K., (2006). Ananasnaya’ hardy kiwifruit. Journal of the American Pomological Society, 60, 106-112.
  • Suschetet, M., Siess, M.H., Le Bon, A.M., & Canivenc-Lavier, M.C. (1998). Anticarcinogenic properties of some Favonoids. In J. Vercauteren, C. Cheze & J. Triau Polyphenols 96 (pp. 165-204). Paris: INRA.
  • Türkkan M., Erper I., Kılıçoğlu M.Ç., Yazıcıoğlu E. & Özcan, M. (2018). Characterization and pathogenicity of Rhizoctoniaspp. isolated from kiwifruit in the Middle and Eastern Black Sea region of Turkey. Journal of Phytopathology 166(11-12), 761-774.
  • Velioğlu, Y.S., Ekici, L., & Poyrazoğlu, E.S., (2006). Phenolic composition of European Cranberry bush (ViburnumopulusL.)berries and astringency removal of its commercial juice. International Journal of Food Science and Technology , 41, 1011–1015.
  • Williams, M.H., Boyd, L.M., McNeilage, M.A., MacRae, E.A., Ferguson, A.R., Beatson, R.A., & Martin, P.J., (2003). Development and commercialization of ‘Baby Kiwi’ (Actinidia arguta Planch). Acta Horticulture, 610, 81–86.
  • Wollgast, J., & Anklam, E. (2000). Review on polyphenols in The obroma cacao: Changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Research International, 33, 423-447.
  • Yonat, H., & Kolören, O. (2017). Determination of Weed Species in Kiwifruit Orchards of Ordu Province-Turkey. Harran Tarım ve Gıda Bilimleri Dergisi, 21, 155-163.

Determination of the phenolic compound profile, antioxidant capacity and antimicrobial activity of Siberian kiwifruit (Actinidia arguta) grown in Trabzon Region

Year 2021, Volume: 25 Issue: 3, 362 - 376, 23.09.2021
https://doi.org/10.29050/harranziraat.889594

Abstract

The aim of this study is to investigate the total phenolic content and distribution of these compounds, antioxidant capacity and antimicrobial activities in the extracts of Siberian kiwifruit, which has not been studied much, using different solvents. At the first stage, the most effective solvent system of the kiwifruit to extract phenolic compounds was tried to be determined. In the second phase of the study, solvents were removed using a rotary evaporator to obtain extracts and the profiles of phenolic compounds in the remaining dry matter was tried to be determined by chromatographic, antioxidant activities by spectrophotometric method and finally antimicrobial activities were obtained by microbiologically. Phenolic profile of kiwi samples was determined by HPLC-UV. Total phenolic substance results of Siberian kiwi samples extracted with ethanol and methanol harvested in 2017 and 2018 were found to be 761.7, 899.7, 783.5 and 931.6 mg GAE. 100g-1, respectively. ABTS antioxidant activity values of Siberian kiwi samples extracted with ethanol and methanol harvested in 2017 and 2018 were determined as 87.6, 94.2, 111.4 and 118.1 µM TE g-1 TA, respectively. When the antimicrobial activity results were evaluated, the methanol extracts of kiwifruit showed a higher antimicrobial effect compared to ethanol extracts. It has been determined that kiwi methanol extracts (40 µL) harvested in 2017 showed the highest antimicrobial effect to Vibrio parahemolyticus, Enterococcus faecalis, Salmonella Typhimurium and Proteus vulgaris (12.5 ± 0.7 mm). And, it was determined that kiwi ethanol extracts (40 µL), harvested in 2018, showed the highest antimicrobial activity against Listeria monocytogenes (13.5 ± 0.7 mm).

Project Number

FEN-BAP-A-230218-07

References

  • Akmeşe, O., Acet, T., & Özcan, K.(2020). Elazığ İlinde Yetişen Morus nigra L.’nin Antioksidan ve Antimikrobiyal Aktivitelerinin ve Antibiyotiklerle Sinerjistik Etkisinin Belirlenmesi. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(4), 983-995.
  • Alonso Borbalán, Á.M., Zorro, L., Guillén, D.A. & García Barroso, C. (2003). Study of the polyphenol content of red and white grape varieties by liquid chromatography-mass spectrometry and its relationship to antioxidant power. Journal of Chromatography A, 1012 (1), 31-38.
  • Bravo, L. (1998). Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews, 56, 317-333.
  • Bridle, P. (1996). A simple technique for the detection of red wine adulteration with elderberry pigments. Food Chemistry, 55, 111-113.
  • Briviba, K., & Sies,H. (1994). Natural Antioxidants in Human Health and Disease. London: Academic Press.
  • Chang, L.C., & Kinghorn, A.D. (2001). Flavonoids as cancer chemopreventive agents. In C. Tringali (Ed.), Bioactive Compounds from Natural Sources. London/New York: Taylor & Francis.
  • Chesoniene, L., Daubaras, R. & Viskelis, P. (2004). Biochemical composition of Berries of some Kolomikta Kiwi (Actinidia kolomikta) cultivars and detection of Harvest maturity. Acta Horticulturae, 663, 305-308.
  • Cordell, G.A., Lemos, T.L.G., Monte, F.J.Q. & de Mattos, M.C. (2007). Vegetables as chemical reagents. Journal of Natural Products, 70(3), 478-492.
  • Çelik, A., Ercisli, S. & Turgut, N. (2007). Some physical, pomological and nutritional properties of kiwifruit cv Hayward. International Journal of Food Sciences and Nutrition, 58, 411-418.
  • Davidson, P.M., & Naidu, A.S. (2000). Natural food antimicrobial systems. Boca Raton, Florida: CRC Press.
  • Dimitrios, B., (2006). Sources of natural phenolic antioxidants. Trends in Food Science & Technology, 17(9), 505-512.
  • Du, G., Li, M., Ma, F., & Liang, D. (2009). Antioxidant capacity and the relationship with polyphenol and vitamin C in Actinidia fruits. Food Chemistry, 113(2), 557–562.
  • Ekşi, A. & Özen, İ.T. (2012). Kivi meyvesinin kimyasal bileşenleri ve fonksiyonel özellikleri. Ordu Üniversitesi Bilim ve Teknoloji Dergisi, 2(2), 54-67.
  • Elliot, J.G. (1999). Application of antioxidant vitamins in foods and beverages. Food Technology, 53,46-48.
  • Engin, M. S., Kalkan, S., & Otağ, M.R. (2019). Gojiberry (Lycium barbarum L.) Meyvesinin Farklı Çözgenlerden Elde Edilen Ekstraktlarının Toplam Fenolik İçerikleri İle Antioksidan ve Antimikrobiyal Aktivitelerinin Karşılaştırılması. Journal of Anatolian Environmental and Animal Sciences, 4(3), 359-365.
  • Erkoç, Ş., Erkoç, F., & Keskin, N. (2003). Theoretical investigation of quercetin and its radical isomers. Journal of Molecular Structure:THEOCHEM, 631(1-3), 141-146.
  • Fabre, N., Rustan, I., de Hoffmann, E., & Quetin-Leclercq, J. (2001). Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. Journal of the American Society for Mass Spectrometry, 12(6), 707-715.
  • Ferguson, A.R. (1984). Kiwifruit: A botanical review. Horticultural Reviews, 6,1-64.
  • Ferguson, A.R. (1990). The genus Actinidia. In I.J. Warrington and G.C. Weston (Ed.) Kiwifruit Science and Management (pp. 15-35). Auckland: Richards Publisher.
  • Frankel, E.N., (1999). Food antioxidants and phytochemicals: present and paste. Fett/ Lipid, 101, 450-455.
  • Fridovich, I., (1999). Fundamental aspects of reactive oxygen species, or what’s the matter with oxygen? Annals of the New York Academy of Sciences, 893, 13-18.
  • Gorinstein, S., Poovarodom, S., Kruszewska, H., Leontowicz, M., Namieśnik, J., & Vearasilp, S., (2010). Antioxidant properties and bioactive constituents of some rare exotic Thai fruits and comparison with conventional fruits: In vitro and in vivo studies. Food Research International, 44, 2222-2232.
  • Gorinstein, S., Leontowicz, H., Leontowicz, M., Jesion, I., Namiesnik, J., Drzewiecki, J., & Trakhtenberg, S. (2011). Influence of two cultivars of persimmon on atherosclerosis indices in rats fed cholesterol-containing diets: Investigation in vitro and in vivo. Nutrition, 27, 838-846.
  • Gülçin, I., Oktay, M., Kirecci E., & Küfrevioğlu Ö.I., (2004). Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts. Food Chemistry, 83, 371-382.
  • Gümüşay, Ö. A., & Yalçın, M. Y. (2019). Effects of Freeze-Drying Process on Antioxidant and Some Physical Properties of Cherry Laurel and Kiwi Fruits. Akademik Gıda, 17(1), 9-15.
  • He, B., Chen, X. X., & Chen, Y. (2002). Protective Effects of Tea Polyphenol on Cerebral Ischemia Reperfusion Injury in Rats and Its Scavenging Oxy-radical and Anticerebral Lipid Peroxidation Efects. Journal of Chinese Pharmaceutical Sciences, 11(4), 167-171.
  • Hou, D.X. (2003). Potential mechanisms of cancer chemoprevention by anthocyanins. Current Molecular Medicine, 3,149–159.
  • Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53, 1841-1856.
  • Kabaluk, A.K., Kempler, C., & Toivonen, P.M.A. (1997). Actinidia arguta- characteristics relevant to commercial production. Fruit varieties journal, 51, 117-122.
  • Kalkan, S. (2016). Probiyotik Laktik Asit Bakterilerinin Staphylococcus aureus'a Karşı Antimikrobiyal Etkilerinin Farklı Matematiksel Modeller ile Analizi. Sinop Üniversitesi Fen Bilimleri Dergisi, 1(2), 155-164.
  • Kalt, W. (2005). Effects of production and processing factors on major fruit and vegetable antioxidants. Journal of Food Science, 70, R11–R19.
  • Kamei, H., Kojima, T., Hasegawa, M., Koide, T., Umeda, T., & Yukawa, T., (1995). Suppression of tumor cells by anthocyanins in vitro. Cancer Investigation, 13, 590-594.
  • Karaivanova, M., Drenska, D., & Ovcharov, R.A. (1990). Modification of the toxic effects of platinum complexes with anthocyanins. Eksperimentalna meditsina i morfologiia, 29, 19-24.
  • Kim, J.G., Beppua, K., & Kataokaa, I. (2009). Varietal differences in phenolic content and astringency in skin and flesh of hardy kiwifruit resources in Japan. Scientia Horticulturae, 120(4), 551-554.
  • Kong, J.M., Chia, L.S., Goh, N.K, Chia, T.F., & Brouillard, R. (2003). Analysis and biological activities of anthocyanins. Phytochemistry, 64, 923-933.
  • Krupa, T., Latocha, P.& Liwińska A. (2011). Changes of physiological quality, phenolics and vitamin C content in hardy kiwifruit (Actinidia aruguta and its hybrid) during storage. Scientia Horticulturae, 130, 410-417.
  • Langseth L., (1995). Oxidants, antioxidants and disease prevention. Brussels: ILSI Europe.
  • Macheix, J.J., Fleuriet, A., & Billot, J. (1990). Fruit Phenolics. Boca Raton, Florida: CRC Press, 390 p.
  • Mann, S., Sharma, A., Biswas, S., & Gupta, R. K. (2015). Identification and molecular docking analysis of active ingredients with medicinal properties from edible Baccaurea sapida. Bioinformation, 11(9), 437-443.
  • Matich, A.J., Young, H., Allen, J.M., Wang, M.Y., Fielder, S., McNeilage, M.A., & MacRae, E.A. (2003). Actinidia arguta: volatile compounds in fruit and flowers. Phytochemistry, 63, 285-301.
  • Mishra, N., Dubey, A. Singh, N. & Gupta, P. (2010). Antimicrobial, antioxidant and chemopreventive potential of vitamin C rich fruits. International Journal of Applied Biology and Pharmaceutical Technology, 1(3), 915-920.
  • Montanaro, G., Treutter, D., & Xiloyannis, C. (2007). Phenolic compounds in young developing kiwifruit in relation to light exposure: Implications for fruit calcium accumulation. Journal of Plant Interactions, 2(1), 63-69.
  • Mulero, J., Pardo, F., & Zafrilla, P. (2010). Antioxidant activity and phenolic composition of organic and conventional grapes and wines. Journal of Food Composition and Analysis, 23(6), 569–574.
  • Nessma, A. (2015). Antioxidant, Antitumor, Antimicrobial Studies and Quantitative Phytochemical Estimation of Ethanolic Extracts of Selected Fruit Peels. International Journal of Current Microbiology and Applied Sciences, 4(5), 298-309.
  • Ohashi, H., (1989). Actinidiaceae. In Y., Satake, H., Hara, S., Watari, T. Tominari, (Ed.), Wild Flowers of Japan: Woody plants (pp.135–137). Tokyo: Heibonsha Ltd.
  • Park, Y.S., Jung, S. T., Kang, S.-G., Drzewiecki, J., Namiesnik, J., Haruenkit, R., & Gorinstein, S. (2006). In vitro studies of polyphenols, antioxidants and other dietary indices in kiwifruit (Actinidia deliciosa). International Journal of Food Sciences and Nutrition, 57, 107-122.
  • Park, Y.S., Leontowicz, H., Leontowicz, M., Namiesnik, J., Suhaj, M., Cvikrov, M., & Gorinstein, S. (2011). Comparison of the contents of bioactive compounds and the level of antioxidant activity in different kiwifruit cultivars. Journal of Food Composition and Analysis, 24, 963-970.
  • Pietta, P.G. (2000). Flavonoids as antioxidants. Journal of Natural Products, 63, 1035-1042.
  • Prasain, J.K., Wang, C.C., & Barnes, S., (2004). Mass spectrometric methods for the determination of flavonoids in biological samples. Free Radical Biology and Medicine, 37 (9), 1324-1350.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C.A., (1999). Antioxidant activity applying animproved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26 (9–10), 1231-1237.
  • Rice-Evans, C.A., Miller, N.J., & Paganga, G., (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine, 20 (7), 933-956.
  • Roginsky, A.B., Ujiki, M.B., Ding, X.Z., & Adrian, T.E. (2005). On the potential use of flavonoids in the treatment and prevention of pancreatic cancer. In Vivo, 19,61-67.
  • Rush, E. C., Patel, M., Plank, L. D., Ferguson, L. R. (2002). Kiwifruit promotes laxation in the elderly. Asia Pacific Journal of Clinical Nutrition, 11(2), 164–168.
  • Samancı, H., (1990). Kivi (Actinidia) Yetistiriciliği, Yalova :TAV Yayınları.
  • Schuster, B., & Herrmann, K. (1985). Hydroxybenzoic and hydroxycinnamic acid derivatives in soft fruits. Phytochemistry, 24, 2761-2764.
  • Shahidi, F., & Naczk, M. (1995). Antioxidant Properties of Food Phenolics. In F. Shahidi & M. Naczk (Ed.), Food Phenolics: Sources, Chemistry, Effects and Applications (pp. 235–277). PA: Technomic Publishing Co.
  • Slinkard, K., & Singleton, V. L. (1997). Total phenol analysis: automation and comparison with manual methods. American Journal of Enology and Viticulture,28, 49–55.
  • Spacil, Z., Novakova, L., & Solich, P. (2008). Analysis of phenolic compounds by high performance liquid chromatography and ultra performance liquid chromatography. Talanta, 76(1), 189-199.
  • Stanley, R. Wegrzyn, T. & Saleh, Z. (2006). Kiwifruit processed product. Acta Horticulturae, 753, 795-800.
  • Strik, B., & Hummer, K., (2006). Ananasnaya’ hardy kiwifruit. Journal of the American Pomological Society, 60, 106-112.
  • Suschetet, M., Siess, M.H., Le Bon, A.M., & Canivenc-Lavier, M.C. (1998). Anticarcinogenic properties of some Favonoids. In J. Vercauteren, C. Cheze & J. Triau Polyphenols 96 (pp. 165-204). Paris: INRA.
  • Türkkan M., Erper I., Kılıçoğlu M.Ç., Yazıcıoğlu E. & Özcan, M. (2018). Characterization and pathogenicity of Rhizoctoniaspp. isolated from kiwifruit in the Middle and Eastern Black Sea region of Turkey. Journal of Phytopathology 166(11-12), 761-774.
  • Velioğlu, Y.S., Ekici, L., & Poyrazoğlu, E.S., (2006). Phenolic composition of European Cranberry bush (ViburnumopulusL.)berries and astringency removal of its commercial juice. International Journal of Food Science and Technology , 41, 1011–1015.
  • Williams, M.H., Boyd, L.M., McNeilage, M.A., MacRae, E.A., Ferguson, A.R., Beatson, R.A., & Martin, P.J., (2003). Development and commercialization of ‘Baby Kiwi’ (Actinidia arguta Planch). Acta Horticulture, 610, 81–86.
  • Wollgast, J., & Anklam, E. (2000). Review on polyphenols in The obroma cacao: Changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Research International, 33, 423-447.
  • Yonat, H., & Kolören, O. (2017). Determination of Weed Species in Kiwifruit Orchards of Ordu Province-Turkey. Harran Tarım ve Gıda Bilimleri Dergisi, 21, 155-163.
There are 66 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Araştırma Makaleleri
Authors

Mustafa Otağ 0000-0001-5450-1546

Selin Kalkan 0000-0002-4142-3152

Mehmet Soner Engin 0000-0001-5954-5628

Project Number FEN-BAP-A-230218-07
Publication Date September 23, 2021
Submission Date March 2, 2021
Published in Issue Year 2021 Volume: 25 Issue: 3

Cite

APA Otağ, M., Kalkan, S., & Engin, M. S. (2021). Trabzon yöresinde yetişen Sibirya kivisi (Actinidia arguta) meyvesinin fenolik bileşiklerinin karakterizasyonu ile antioksidan ve antimikrobiyal aktivitesinin belirlenmesi. Harran Tarım Ve Gıda Bilimleri Dergisi, 25(3), 362-376. https://doi.org/10.29050/harranziraat.889594

Indexing and Abstracting 

13435  19617 13436 13440 13441 13442 13443

13445 13447 13449 13464 13466


10749  Harran Journal of Agricultural and Food Science is licensed under Creative Commons 4.0 International License.