Research Article
BibTex RIS Cite

Tuz stresi ve bor toksisitesi koşulları altında yetişen soya bitkisine yapılan bakteri ve melatonin uygulamasının toprak mikrobiyal aktivitesine etkisi

Year 2021, Volume: 25 Issue: 3, 336 - 348, 23.09.2021
https://doi.org/10.29050/harranziraat.929285

Abstract

Bu çalışmada, tuz stresi (TS) ve bor toksisitesi (BT) şartlarında soya bitkisine yapraktan yapılan melatonin (MT) uygulaması ve tohumdan bakteri aşılamasının bitki gelişimi ile topraktaki bazı mikrobiyal aktivitelere etkisi araştırılmıştır. Bu araştırma sera denemesi olarak toprak ortamında saksılarda yürütülmüştür. Araştırma konuları; kontrol, TS (100mM NaCl), BT (2mM B) ve TS+BT (100mM NaCl+2mM B) olarak belirlenmiştir. Araştırma sonuçlarına göre, soya bitkisinde en fazla zarar TS+BT birlikte uygulamasında görülmüştür. Genel olarak yapılan stres uygulamaları bitki yaş ve kuru ağırlıklarında ve DHA, MBC ve CO2 gibi toprak mikrobiyal aktivite içeriklerinde önemli azalmaya neden olmaktadır. Bunun yanı sıra, stres etkilerine karşı yapılan uygulamalardan özellikle bakteri aşılaması (BA) stresin etkilerini hafifletmede etkili olduğu belirlenmiştir. Bununla birlikte yapılan melatonin (MT) uygulaması ise, tek başına BA uygulaması kadar etkili olmamış fakat BA ile stres etkilerini daha fazla azaltmada destek görevi görmüştür. Yapılan BA ve MT uygulamaları ile soya bitkisinde, bitki yaş ve kuru ağırlıklarında ve toprak mikrobiyal aktivitelerinde (DHA, MBC ve CO2) artışlar olduğu tespit edilmiş ve bu artışlar istatistiki (P≤0.05) olarak önemli bulunmuştur.

Supporting Institution

Harran Üniversitesi BAP Koordinasyon Birimi

Project Number

19096

References

  • Adjei, M. B., Quesenberry, K. H., & Chambliss, C. G. (2002). Nitrogen fixation and inoculation of forage legumes. University of Florida. Ifas Extension. USA. Ahammed, G.J., Xu, W., Liu, A., Chen, S., 2018a. Endogenous melatonin deficiency aggravates high temperature-induced oxidative stress in Solanum lycopersicum.
  • Ahmad, P. (2010). Growth and antioxidant responses in mustard (Brassica juncea L.) plants subjected to combined effect of gibberellic acid and salinity. Archives of Agronomy and Soil Science, 56(5), 575-588.
  • Ahmad, P., Ozturk, M., Sharma, S., & Gucel, S. (2014). Effect of sodium carbonate-induced salinity–alkalinity on some key osmoprotectants, protein profile, antioxidant enzymes, and lipid peroxidation in two mulberry (Morus alba L.) cultivars. Journal of plant interactions, 9(1), 460-467.
  • Ahmed, I. M., Nadira, U. A., Bibi, N., Cao, F., He, X., Zhang, G., & Wu, F. (2015). Secondary metabolism and antioxidants are involved in the tolerance to drought and salinity, separately and combined, in Tibetan wild barley. Environmental and Experimental Botany, 111, 1-12.
  • Allegra, M., Reiter, R. J., Tan, D. X., Gentile, C., Tesoriere, L., & Livrea, M. A. (2003). The chemistry of melatonin's interaction with reactive species. Journal of pineal research, 34(1), 1-10.
  • Alpaslan, M., & Gunes, A. (2001). Interactive effects of boron and salinity stress on the growth, membrane permeability and mineral composition of tomato and cucumber plants. Plant and Soil, 236(1), 123-128.
  • Amirjani, M. R. (2010). Effect of salinity stress on growth, mineral composition, proline content, antioxidant enzymes of soybean. American Journal of Plant Physiology, 5(6), 350-360.
  • Ashraf, M. (2004). Some important physiological selection criteria for salt tolerance in plants. Flora-Morphology, Distribution, Functional Ecology of Plants, 199(5), 361-376.
  • Aydemir, O. (1997). Toprak Verimliliği II, Toprak-Bitki İlişkileri. Atatürk Üniversitesi Ziraat Fakültesi Yayınları, (192), 115.
  • Ben-Gal, A., & Shani, U. (2002). Yield, transpiration and growth of tomatoes under combined excess boron and salinity stress. Plant and soil, 247(2), 211-221.
  • Bordeleau, L. M., & Prévost, D. (1994). Nodulation and nitrogen fixation in extreme environments. Plant and soil, 161(1), 115-125.
  • Bremer, E., Van Kessel, C., Nelson, L. V., Rennie, R. J., & Rennie, D. A. (1990). Selection of Rhizobium leguminosarum strains for lentil (Lens culinaris) under growth room and field conditions. Plant and Soil, 121(1), 47-56.
  • Cao, S., Song, C., Shao, J., Bian, K., Chen, W., & Yang, Z. (2016). Exogenous melatonin treatment increases chilling tolerance and induces defense response in harvested peach fruit during cold storage. Journal of agricultural and food chemistry, 64(25), 5215-5222.
  • CÖMERT, A., & ÇELİK, S. K. (2017). Farklı toprak bünyelerinde sulama suyu bor düzeylerinin fasulye bitkisi verimi üzerine etkilerinin belirlenmesi. Harran Tarım ve Gıda Bilimleri Dergisi, 21(3), 323-331.
  • Coskan, A., & Dogan, K. (2011). Symbiotic nitrogen fixation in soybean. Soybean Physiology and Biochemistry, 307, 167-182.
  • Dardanelli, M. S., de Cordoba, F. J. F., Espuny, M. R., Carvajal, M. A. R., Díaz, M. E. S., Serrano, A. M. G., ... & Megías, M. (2008). Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biology and Biochemistry, 40(11), 2713-2721.
  • Doğan, K., Gök, M., & Coşkan, A. (2006, March). Denitrification rated soil respiration with respect to organic subsrate applications. In Proceedings of the International Workshop for the Research Project on the Impact of Climate Changes on Agricultural Production System in Arid Areas (ICCAP), Kyoto, Japan.
  • DOĞAN, K., SARIOĞLU, A., ŞAKAR, E., & KARANLIK, S. (2018). Zeytin Karasuyu, Isıl İşlem Görmüş Solucan Gübresi Ve Çiftlik Gübresi Uygulamalarının Toprak Mikrobiyal Aktivite Değişimlerine Etkisi. Ziraat Fakültesi Dergisi, 151-159.
  • Doğan, M. (2012). Investigation of the effect of salt stress on the antioxidant enzyme activities on the young and old leaves of salsola (Stenoptera) and tomato (Lycopersicon esculentum L.). African Journal of Plant Science, 6(2), 62-72.
  • Eggert, K., & von Wirén, N. (2017). Response of the plant hormone network to boron deficiency. New Phytologist, 216(3), 868-881.
  • Fritsche, K. L., & Johnston, P. V. (1990). Effect of dietary α-linolenic acid on growth, metastasis, fatty acid profile and prostaglandin production of two murine mammary adenocarcinomas. The Journal of nutrition, 120(12), 1601-1609.
  • Gök, M., Doğan, K., Coşkan, A., & ARIOĞLU, H. (2005). Yerfıstığı Bitkisinde Bakteriyel Aşılama ile Demir ve Molibden Uygulamalarının Nodülasyon, N2-Fiksasyonu ve Verime Etkisi. IV. Tarım Kongresi Bildiri Kitabı, 21-23.
  • Gök, M., Doğan, K., Coşkan, A., & ARIOĞLU, H. (2007). Çukurova bölgesi yerfıstığı ekim alanlarında rhizobiyal potansiyelin belirlenmesi ve bir model denemede bakteriyel aşılama ile demir uygulamalarının nodülasyon, bitki gelişimi ve verime etkisinin araştırılması. TÜBİTAKTOVAG-104 O, 363.
  • Grieve, C. M., & Poss, J. A. (2000). Wheat response to interactive effects of boron and salinity. Journal of Plant Nutrition, 23(9), 1217-1226.
  • GÜLLE, E. D. (2005). Değişik bakteri suşları ile aşılanan soya bitkisinde tuzluluğun n2 fiksasyonu ve besin elementi alımına etkisi/The effect of soil salinity on nitrogen fixation and nutrient uptake of soybean inoculated with different bacteria strains (Doctoral dissertation).
  • Gunes, A., Inal, A., Bagci, E. G., & Pilbeam, D. J. (2007). Silicon-mediated changes of some physiological and enzymatic parameters symptomatic for oxidative stress in spinach and tomato grown in sodic-B toxic soil. Plant and Soil, 290(1), 103-114.
  • Gunes, A., Inal, A., Bagci, E. G., Coban, S., & Sahin, O. (2007d). Silicon increases boron tolerance and reduces oxidative damage of wheat grown in soil with excess boron. Biologia Plantarum, 51(3), 571-574.
  • Gupta, U. C., Jame, Y. W., Campbell, C. A., Leyshon, A. J., & Nicholaichuk, W. (1985). Boron toxicity and deficiency: a review. Canadian Journal of Soil Science, 65(3), 381-409.
  • Herrera-Rodríguez, M. B., González-Fontes, A., Rexach, J., Camacho-Cristobal, J. J., Maldonado, J. M., & Navarro-Gochicoa, M. T. (2010).
  • Role of boron in vascular plants and response mechanisms to boron stresses. Plant Stress, 4(2), 115-122.
  • Hossain, M. F., Shenggang, P., Meiyang, D., Zhaowen, M., Karbo, M. B., Bano, A., & Xiangru, T. (2015). Photosynthesis and antioxidant response to winter rapeseed (Brassica napus L.) as affected by boron. Pak. J. Bot, 47(2), 675-684.
  • Huang, X., Xia, H., Shen, Y., Wang, Q., Xu, N., Lei, Z., & Liang, D. (2017, April). Effects of exogenous melatonin on antioxidant system in leaves of kiwifruit seedlings under cadmium stress. In 2017 6th International Conference on Energy, Environment and Sustainable Development (ICEESD 2017) (pp. 840-843). Atlantis Press.
  • Iriti, M., Rossoni, M., & Faoro, F. (2006). Melatonin content in grape: myth or panacea? Journal of the Science of Food and Agriculture, 86(10), 1432-1438.
  • Isermeyer, H. (1952). Eine einfache Methode zur Bestimmung der Bodenatmung und der Karbonate im Boden. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde, 56(1‐3), 26-38.
  • Kataria, S., Baghel, L., Jain, M., & Guruprasad, K. N. (2019). Magnetopriming regulates antioxidant defense system in soybean against salt stress. Biocatalysis and Agricultural Biotechnology, 18, 101090.
  • Kaya, C., Akram, N. A., & Ashraf, M. (2018). Kinetin and indole acetic acid promote antioxidant defense system and reduce oxidative stress in maize (Zea mays L.) plants grown at boron toxicity. Journal of Plant Growth Regulation, 37(4), 1258-1266.
  • Khan, A. S., Yu, S., & Liu, H. (2012). Deformation induced anisotropic responses of Ti–6Al–4V alloy Part II: A strain rate and temperature dependent anisotropic yield criterion. International Journal of Plasticity, 38, 14-26.
  • Kumari, S. R., Mridula, G., & Hema, K. (2013). Effect of growth regulators and weedicides as defoliants (harvest aids) on seed cotton yield of cotton. Journal of Cotton Research and Development, 27(1), 56-59.
  • Li, X. W., Liu, J. Y., Fang, J., Tao, L., Shen, R. F., Li, Y. L., ... & Yu, M. (2017). Boron supply enhances aluminum tolerance in root border cells of pea (Pisum sativum) by interacting with cell wall pectins. Frontiers in plant science, 8, 742.
  • Liang, B., Ma, C., Zhang, Z., Wei, Z., Gao, T., Zhao, Q., ... & Li, C. (2018). Long-term exogenous application of melatonin improves nutrient uptake fluxes in apple plants under moderate drought stress. Environmental and experimental botany, 155, 650-661.
  • Lindemann, W. C., & Glover, C. R. (2003). Nitrogen fixation by legumes. Liu, C., Lu, W., Ma, Q., & Ma, C. (2017). Effect of silicon on the alleviation of boron toxicity in wheat growth, boron accumulation, photosynthesis activities, and oxidative responses. Journal of Plant Nutrition, 40(17), 2458-2467.
  • Liu, J., Wang, W., Wang, L., & Sun, Y. (2015). Exogenous melatonin improves seedling health index and drought tolerance in tomato. Plant growth regulation, 77(3), 317-326.
  • Macho‐Rivero, M. Á., Camacho‐Cristóbal, J. J., Herrera‐Rodríguez, M. B., Müller, M., Munné‐Bosch, S., & González‐Fontes, A. (2017). Abscisic acid and transpiration rate are involved in the response to boron toxicity in Arabidopsis plants. Physiologia plantarum, 160(1), 21-32.
  • Martinez, V., Mestre, T. C., Rubio, F., Girones-Vilaplana, A., Moreno, D. A., Mittler, R., & Rivero, R. M. (2016). Accumulation of flavonols over hydroxycinnamic acids favors oxidative damage protection under abiotic stress. Frontiers in plant science, 7, 838.
  • McDonald, G. K., Eglinton, J. K., & Barr, A. R. (2010). Assessment of the agronomic value of QTL on chromosomes 2H and 4H linked to tolerance to boron toxicity in barley (Hordeum vulgare L.). Plant and Soil, 326(1), 275-290.
  • Mesquita, G. L., Zambrosi, F. C., Tanaka, F. A., Boaretto, R. M., Quaggio, J. A., Ribeiro, R. V., & Mattos Jr, D. (2016). Anatomical and physiological responses of citrus trees to varying boron availability are dependent on rootstock. Frontiers in Plant Science, 7, 224.
  • Molassiotis, A., Sotiropoulos, T., Tanou, G., Diamantidis, G., & Therios, I. (2006). Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM 9 (Malus domestica Borkh). Environmental and Experimental Botany, 56(1), 54-62.
  • Munns, R., & Termaat, A. (1986). Whole-plant responses salinity. Functional Plant Biology, 13(1), 143-160.
  • Nable, R. O., Bañuelos, G. S., & Paull, J. G. (1997). Boron toxicity. Plant and soil, 193(1), 181-198.
  • Öhlinger, R. (1993). Bestimmung des Biomasse-Kohlenstoffs mittels Fumigation-Exstraktion. Bodenbiologische Arbeitsmethoden, 2, 289-311.
  • Pandolfi, C., Mancuso, S., & Shabala, S. (2012). Physiology of acclimation to salinity stress in pea (Pisum sativum). Environmental and Experimental Botany, 84, 44-51.
  • Pardossi, A., Romani, M., Carmassi, G., Guidi, L., Landi, M., Incrocci, L., ... & Ziliani, M. (2015). Boron accumulation and tolerance in sweet basil (Ocimum basilicum L.) with green or purple leaves. Plant and soil, 395(1), 375-389.
  • Rebey, I. B., Bourgou, S., Rahali, F. Z., Msaada, K., Ksouri, R., & Marzouk, B. (2017). Relation between salt tolerance and biochemical changes in cumin (Cuminum cyminum L.) seeds. journal of food and drug analysis, 25(2), 391-402.
  • Reid, R. J., Hayes, J. E., Post, A., Stangoulis, J. C. R., & Graham, R. D. (2004). A critical analysis of the causes of boron toxicity in plants. Plant, Cell & Environment, 27(11), 1405-1414.
  • Roessner, U., Patterson, J. H., Forbes, M. G., Fincher, G. B., Langridge, P., & Bacic, A. (2006). An investigation of boron toxicity in barley using metabolomics. Plant physiology, 142(3), 1087-1101.
  • Ruiz-Lozano, J. M., Porcel, R., Azcón, C., & Aroca, R. (2012). Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. Journal of Experimental Botany, 63(11), 4033-4044.
  • Savić, J., Marjanović-Jeromela, A., Glamočlija, Đ., & Prodanović, S. (2013). Oilseed rape genotypes response to boron toxicity. Genetika, 45(2), 565-574.
  • Shah, A., Wu, X., Ullah, A., Fahad, S., Muhammad, R., Yan, L., & Jiang, C. (2017). Deficiency and toxicity of boron: alterations in growth, oxidative damage and uptake by citrange orange plants. Ecotoxicology and environmental safety, 145, 575-582.
  • Shi, Y., Ding, Y., & Yang, S. (2015). Cold signal transduction and its interplay with phytohormones during cold acclimation. Plant and Cell Physiology, 56(1), 7-15.
  • Shireen, F., Nawaz, M. A., Chen, C., Zhang, Q., Zheng, Z., Sohail, H., ... & Bie, Z. (2018). Boron: functions and approaches to enhance its availability in plants for sustainable agriculture. International Journal of Molecular Sciences, 19(7), 1856.
  • Singleton, P. W., & Bohlool, B. B. (1984). Effect of salinity on nodule formation by soybean. Plant Physiology, 74(1), 72-76.
  • Sprent, J. I. (1984). Effects of drought and salinity on heterotrophic nitrogen fixing bacteria and on infection of legumes by rhizobia. In Advances in nitrogen fixation research (pp. 295-302). Springer, Dordrecht.
  • Tas, I., Ozkay, F., Yeter, T., Gorgisen, C., & Cosge, B. (2016). Effects of high boron containing irrigation waters on plant characteristics of basil (Ocimum basilicum L.). Gaziosmanpașa Üniversitesi Ziraat Fakültesi Dergisi, 33(3), 46-54.
  • Thalmann. A. (1967). Über die mikrobielle Aktivitaet und ihre Beziehungen zur Fruchtbarkeit smerkmalen einiger Ackerböden unter besonderer Berücksichtigung der Dehydrogenase aktivitaet (TTC-Reduktion) Diss. Giessen (FRG).
  • Zahran, H. H. (1991). Conditions for successful Rhizobium-legume symbiosis in saline environments. Biology and Fertility of Soils, 12(1), 73-80.
  • Zuo, Z., Sun, L., Wang, T., Miao, P., Zhu, X., Liu, S., ... & Li, X. (2017). Melatonin improves the photosynthetic carbon assimilation and antioxidant capacity in wheat exposed to nano-ZnO stress. Molecules, 22(10), 1727.

Effect of bacteria and melatonin application on soil microbial activity on soybean plants grown under salt stress and boron toxicity conditions

Year 2021, Volume: 25 Issue: 3, 336 - 348, 23.09.2021
https://doi.org/10.29050/harranziraat.929285

Abstract

In this study, the effects of foliar melatonin (MT) application to soybean plant and bacterial inoculation from seed on plant growth and some microbial activities in soil were investigated under salt stress (SS) and boron toxicity (BT) conditions. This research was carried out in pots in the soil environment as a greenhouse experiment. Research topics; control was designated as SS (100mM NaCl), BT (2mM B) and SS+BT (100mM NaCl+2mM B). According to the results of the research, the most damage was seen in the combined application of SS+BT in soybean plant. In general, stress applications cause a significant decrease in plant fresh and dry weights and soil microbial activity contents such as DHA, MBC and CO2. In addition, it has been determined that especially bacterial inoculation (BA), which is one of the applications against the effects of stress, is effective in alleviating the effects of stress. However, the application of melatonin (MT) was not as effective as the application of BA alone, but it served as a support in further reducing the effects of stress with BA. It was determined that there were increases in plant fresh and dry weights and soil microbial activities (DHA, MBC and CO2) in soybean plant with BA and MT applications, and these increases were found to be statistically significant (P≤0.05).

Project Number

19096

References

  • Adjei, M. B., Quesenberry, K. H., & Chambliss, C. G. (2002). Nitrogen fixation and inoculation of forage legumes. University of Florida. Ifas Extension. USA. Ahammed, G.J., Xu, W., Liu, A., Chen, S., 2018a. Endogenous melatonin deficiency aggravates high temperature-induced oxidative stress in Solanum lycopersicum.
  • Ahmad, P. (2010). Growth and antioxidant responses in mustard (Brassica juncea L.) plants subjected to combined effect of gibberellic acid and salinity. Archives of Agronomy and Soil Science, 56(5), 575-588.
  • Ahmad, P., Ozturk, M., Sharma, S., & Gucel, S. (2014). Effect of sodium carbonate-induced salinity–alkalinity on some key osmoprotectants, protein profile, antioxidant enzymes, and lipid peroxidation in two mulberry (Morus alba L.) cultivars. Journal of plant interactions, 9(1), 460-467.
  • Ahmed, I. M., Nadira, U. A., Bibi, N., Cao, F., He, X., Zhang, G., & Wu, F. (2015). Secondary metabolism and antioxidants are involved in the tolerance to drought and salinity, separately and combined, in Tibetan wild barley. Environmental and Experimental Botany, 111, 1-12.
  • Allegra, M., Reiter, R. J., Tan, D. X., Gentile, C., Tesoriere, L., & Livrea, M. A. (2003). The chemistry of melatonin's interaction with reactive species. Journal of pineal research, 34(1), 1-10.
  • Alpaslan, M., & Gunes, A. (2001). Interactive effects of boron and salinity stress on the growth, membrane permeability and mineral composition of tomato and cucumber plants. Plant and Soil, 236(1), 123-128.
  • Amirjani, M. R. (2010). Effect of salinity stress on growth, mineral composition, proline content, antioxidant enzymes of soybean. American Journal of Plant Physiology, 5(6), 350-360.
  • Ashraf, M. (2004). Some important physiological selection criteria for salt tolerance in plants. Flora-Morphology, Distribution, Functional Ecology of Plants, 199(5), 361-376.
  • Aydemir, O. (1997). Toprak Verimliliği II, Toprak-Bitki İlişkileri. Atatürk Üniversitesi Ziraat Fakültesi Yayınları, (192), 115.
  • Ben-Gal, A., & Shani, U. (2002). Yield, transpiration and growth of tomatoes under combined excess boron and salinity stress. Plant and soil, 247(2), 211-221.
  • Bordeleau, L. M., & Prévost, D. (1994). Nodulation and nitrogen fixation in extreme environments. Plant and soil, 161(1), 115-125.
  • Bremer, E., Van Kessel, C., Nelson, L. V., Rennie, R. J., & Rennie, D. A. (1990). Selection of Rhizobium leguminosarum strains for lentil (Lens culinaris) under growth room and field conditions. Plant and Soil, 121(1), 47-56.
  • Cao, S., Song, C., Shao, J., Bian, K., Chen, W., & Yang, Z. (2016). Exogenous melatonin treatment increases chilling tolerance and induces defense response in harvested peach fruit during cold storage. Journal of agricultural and food chemistry, 64(25), 5215-5222.
  • CÖMERT, A., & ÇELİK, S. K. (2017). Farklı toprak bünyelerinde sulama suyu bor düzeylerinin fasulye bitkisi verimi üzerine etkilerinin belirlenmesi. Harran Tarım ve Gıda Bilimleri Dergisi, 21(3), 323-331.
  • Coskan, A., & Dogan, K. (2011). Symbiotic nitrogen fixation in soybean. Soybean Physiology and Biochemistry, 307, 167-182.
  • Dardanelli, M. S., de Cordoba, F. J. F., Espuny, M. R., Carvajal, M. A. R., Díaz, M. E. S., Serrano, A. M. G., ... & Megías, M. (2008). Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biology and Biochemistry, 40(11), 2713-2721.
  • Doğan, K., Gök, M., & Coşkan, A. (2006, March). Denitrification rated soil respiration with respect to organic subsrate applications. In Proceedings of the International Workshop for the Research Project on the Impact of Climate Changes on Agricultural Production System in Arid Areas (ICCAP), Kyoto, Japan.
  • DOĞAN, K., SARIOĞLU, A., ŞAKAR, E., & KARANLIK, S. (2018). Zeytin Karasuyu, Isıl İşlem Görmüş Solucan Gübresi Ve Çiftlik Gübresi Uygulamalarının Toprak Mikrobiyal Aktivite Değişimlerine Etkisi. Ziraat Fakültesi Dergisi, 151-159.
  • Doğan, M. (2012). Investigation of the effect of salt stress on the antioxidant enzyme activities on the young and old leaves of salsola (Stenoptera) and tomato (Lycopersicon esculentum L.). African Journal of Plant Science, 6(2), 62-72.
  • Eggert, K., & von Wirén, N. (2017). Response of the plant hormone network to boron deficiency. New Phytologist, 216(3), 868-881.
  • Fritsche, K. L., & Johnston, P. V. (1990). Effect of dietary α-linolenic acid on growth, metastasis, fatty acid profile and prostaglandin production of two murine mammary adenocarcinomas. The Journal of nutrition, 120(12), 1601-1609.
  • Gök, M., Doğan, K., Coşkan, A., & ARIOĞLU, H. (2005). Yerfıstığı Bitkisinde Bakteriyel Aşılama ile Demir ve Molibden Uygulamalarının Nodülasyon, N2-Fiksasyonu ve Verime Etkisi. IV. Tarım Kongresi Bildiri Kitabı, 21-23.
  • Gök, M., Doğan, K., Coşkan, A., & ARIOĞLU, H. (2007). Çukurova bölgesi yerfıstığı ekim alanlarında rhizobiyal potansiyelin belirlenmesi ve bir model denemede bakteriyel aşılama ile demir uygulamalarının nodülasyon, bitki gelişimi ve verime etkisinin araştırılması. TÜBİTAKTOVAG-104 O, 363.
  • Grieve, C. M., & Poss, J. A. (2000). Wheat response to interactive effects of boron and salinity. Journal of Plant Nutrition, 23(9), 1217-1226.
  • GÜLLE, E. D. (2005). Değişik bakteri suşları ile aşılanan soya bitkisinde tuzluluğun n2 fiksasyonu ve besin elementi alımına etkisi/The effect of soil salinity on nitrogen fixation and nutrient uptake of soybean inoculated with different bacteria strains (Doctoral dissertation).
  • Gunes, A., Inal, A., Bagci, E. G., & Pilbeam, D. J. (2007). Silicon-mediated changes of some physiological and enzymatic parameters symptomatic for oxidative stress in spinach and tomato grown in sodic-B toxic soil. Plant and Soil, 290(1), 103-114.
  • Gunes, A., Inal, A., Bagci, E. G., Coban, S., & Sahin, O. (2007d). Silicon increases boron tolerance and reduces oxidative damage of wheat grown in soil with excess boron. Biologia Plantarum, 51(3), 571-574.
  • Gupta, U. C., Jame, Y. W., Campbell, C. A., Leyshon, A. J., & Nicholaichuk, W. (1985). Boron toxicity and deficiency: a review. Canadian Journal of Soil Science, 65(3), 381-409.
  • Herrera-Rodríguez, M. B., González-Fontes, A., Rexach, J., Camacho-Cristobal, J. J., Maldonado, J. M., & Navarro-Gochicoa, M. T. (2010).
  • Role of boron in vascular plants and response mechanisms to boron stresses. Plant Stress, 4(2), 115-122.
  • Hossain, M. F., Shenggang, P., Meiyang, D., Zhaowen, M., Karbo, M. B., Bano, A., & Xiangru, T. (2015). Photosynthesis and antioxidant response to winter rapeseed (Brassica napus L.) as affected by boron. Pak. J. Bot, 47(2), 675-684.
  • Huang, X., Xia, H., Shen, Y., Wang, Q., Xu, N., Lei, Z., & Liang, D. (2017, April). Effects of exogenous melatonin on antioxidant system in leaves of kiwifruit seedlings under cadmium stress. In 2017 6th International Conference on Energy, Environment and Sustainable Development (ICEESD 2017) (pp. 840-843). Atlantis Press.
  • Iriti, M., Rossoni, M., & Faoro, F. (2006). Melatonin content in grape: myth or panacea? Journal of the Science of Food and Agriculture, 86(10), 1432-1438.
  • Isermeyer, H. (1952). Eine einfache Methode zur Bestimmung der Bodenatmung und der Karbonate im Boden. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde, 56(1‐3), 26-38.
  • Kataria, S., Baghel, L., Jain, M., & Guruprasad, K. N. (2019). Magnetopriming regulates antioxidant defense system in soybean against salt stress. Biocatalysis and Agricultural Biotechnology, 18, 101090.
  • Kaya, C., Akram, N. A., & Ashraf, M. (2018). Kinetin and indole acetic acid promote antioxidant defense system and reduce oxidative stress in maize (Zea mays L.) plants grown at boron toxicity. Journal of Plant Growth Regulation, 37(4), 1258-1266.
  • Khan, A. S., Yu, S., & Liu, H. (2012). Deformation induced anisotropic responses of Ti–6Al–4V alloy Part II: A strain rate and temperature dependent anisotropic yield criterion. International Journal of Plasticity, 38, 14-26.
  • Kumari, S. R., Mridula, G., & Hema, K. (2013). Effect of growth regulators and weedicides as defoliants (harvest aids) on seed cotton yield of cotton. Journal of Cotton Research and Development, 27(1), 56-59.
  • Li, X. W., Liu, J. Y., Fang, J., Tao, L., Shen, R. F., Li, Y. L., ... & Yu, M. (2017). Boron supply enhances aluminum tolerance in root border cells of pea (Pisum sativum) by interacting with cell wall pectins. Frontiers in plant science, 8, 742.
  • Liang, B., Ma, C., Zhang, Z., Wei, Z., Gao, T., Zhao, Q., ... & Li, C. (2018). Long-term exogenous application of melatonin improves nutrient uptake fluxes in apple plants under moderate drought stress. Environmental and experimental botany, 155, 650-661.
  • Lindemann, W. C., & Glover, C. R. (2003). Nitrogen fixation by legumes. Liu, C., Lu, W., Ma, Q., & Ma, C. (2017). Effect of silicon on the alleviation of boron toxicity in wheat growth, boron accumulation, photosynthesis activities, and oxidative responses. Journal of Plant Nutrition, 40(17), 2458-2467.
  • Liu, J., Wang, W., Wang, L., & Sun, Y. (2015). Exogenous melatonin improves seedling health index and drought tolerance in tomato. Plant growth regulation, 77(3), 317-326.
  • Macho‐Rivero, M. Á., Camacho‐Cristóbal, J. J., Herrera‐Rodríguez, M. B., Müller, M., Munné‐Bosch, S., & González‐Fontes, A. (2017). Abscisic acid and transpiration rate are involved in the response to boron toxicity in Arabidopsis plants. Physiologia plantarum, 160(1), 21-32.
  • Martinez, V., Mestre, T. C., Rubio, F., Girones-Vilaplana, A., Moreno, D. A., Mittler, R., & Rivero, R. M. (2016). Accumulation of flavonols over hydroxycinnamic acids favors oxidative damage protection under abiotic stress. Frontiers in plant science, 7, 838.
  • McDonald, G. K., Eglinton, J. K., & Barr, A. R. (2010). Assessment of the agronomic value of QTL on chromosomes 2H and 4H linked to tolerance to boron toxicity in barley (Hordeum vulgare L.). Plant and Soil, 326(1), 275-290.
  • Mesquita, G. L., Zambrosi, F. C., Tanaka, F. A., Boaretto, R. M., Quaggio, J. A., Ribeiro, R. V., & Mattos Jr, D. (2016). Anatomical and physiological responses of citrus trees to varying boron availability are dependent on rootstock. Frontiers in Plant Science, 7, 224.
  • Molassiotis, A., Sotiropoulos, T., Tanou, G., Diamantidis, G., & Therios, I. (2006). Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM 9 (Malus domestica Borkh). Environmental and Experimental Botany, 56(1), 54-62.
  • Munns, R., & Termaat, A. (1986). Whole-plant responses salinity. Functional Plant Biology, 13(1), 143-160.
  • Nable, R. O., Bañuelos, G. S., & Paull, J. G. (1997). Boron toxicity. Plant and soil, 193(1), 181-198.
  • Öhlinger, R. (1993). Bestimmung des Biomasse-Kohlenstoffs mittels Fumigation-Exstraktion. Bodenbiologische Arbeitsmethoden, 2, 289-311.
  • Pandolfi, C., Mancuso, S., & Shabala, S. (2012). Physiology of acclimation to salinity stress in pea (Pisum sativum). Environmental and Experimental Botany, 84, 44-51.
  • Pardossi, A., Romani, M., Carmassi, G., Guidi, L., Landi, M., Incrocci, L., ... & Ziliani, M. (2015). Boron accumulation and tolerance in sweet basil (Ocimum basilicum L.) with green or purple leaves. Plant and soil, 395(1), 375-389.
  • Rebey, I. B., Bourgou, S., Rahali, F. Z., Msaada, K., Ksouri, R., & Marzouk, B. (2017). Relation between salt tolerance and biochemical changes in cumin (Cuminum cyminum L.) seeds. journal of food and drug analysis, 25(2), 391-402.
  • Reid, R. J., Hayes, J. E., Post, A., Stangoulis, J. C. R., & Graham, R. D. (2004). A critical analysis of the causes of boron toxicity in plants. Plant, Cell & Environment, 27(11), 1405-1414.
  • Roessner, U., Patterson, J. H., Forbes, M. G., Fincher, G. B., Langridge, P., & Bacic, A. (2006). An investigation of boron toxicity in barley using metabolomics. Plant physiology, 142(3), 1087-1101.
  • Ruiz-Lozano, J. M., Porcel, R., Azcón, C., & Aroca, R. (2012). Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. Journal of Experimental Botany, 63(11), 4033-4044.
  • Savić, J., Marjanović-Jeromela, A., Glamočlija, Đ., & Prodanović, S. (2013). Oilseed rape genotypes response to boron toxicity. Genetika, 45(2), 565-574.
  • Shah, A., Wu, X., Ullah, A., Fahad, S., Muhammad, R., Yan, L., & Jiang, C. (2017). Deficiency and toxicity of boron: alterations in growth, oxidative damage and uptake by citrange orange plants. Ecotoxicology and environmental safety, 145, 575-582.
  • Shi, Y., Ding, Y., & Yang, S. (2015). Cold signal transduction and its interplay with phytohormones during cold acclimation. Plant and Cell Physiology, 56(1), 7-15.
  • Shireen, F., Nawaz, M. A., Chen, C., Zhang, Q., Zheng, Z., Sohail, H., ... & Bie, Z. (2018). Boron: functions and approaches to enhance its availability in plants for sustainable agriculture. International Journal of Molecular Sciences, 19(7), 1856.
  • Singleton, P. W., & Bohlool, B. B. (1984). Effect of salinity on nodule formation by soybean. Plant Physiology, 74(1), 72-76.
  • Sprent, J. I. (1984). Effects of drought and salinity on heterotrophic nitrogen fixing bacteria and on infection of legumes by rhizobia. In Advances in nitrogen fixation research (pp. 295-302). Springer, Dordrecht.
  • Tas, I., Ozkay, F., Yeter, T., Gorgisen, C., & Cosge, B. (2016). Effects of high boron containing irrigation waters on plant characteristics of basil (Ocimum basilicum L.). Gaziosmanpașa Üniversitesi Ziraat Fakültesi Dergisi, 33(3), 46-54.
  • Thalmann. A. (1967). Über die mikrobielle Aktivitaet und ihre Beziehungen zur Fruchtbarkeit smerkmalen einiger Ackerböden unter besonderer Berücksichtigung der Dehydrogenase aktivitaet (TTC-Reduktion) Diss. Giessen (FRG).
  • Zahran, H. H. (1991). Conditions for successful Rhizobium-legume symbiosis in saline environments. Biology and Fertility of Soils, 12(1), 73-80.
  • Zuo, Z., Sun, L., Wang, T., Miao, P., Zhu, X., Liu, S., ... & Li, X. (2017). Melatonin improves the photosynthetic carbon assimilation and antioxidant capacity in wheat exposed to nano-ZnO stress. Molecules, 22(10), 1727.
There are 66 citations in total.

Details

Primary Language Turkish
Subjects Soil Sciences and Ecology
Journal Section Araştırma Makaleleri
Authors

Ali Sarıoğlu 0000-0001-6269-4990

Cengiz Kaya 0000-0001-8938-3463

Project Number 19096
Publication Date September 23, 2021
Submission Date April 28, 2021
Published in Issue Year 2021 Volume: 25 Issue: 3

Cite

APA Sarıoğlu, A., & Kaya, C. (2021). Tuz stresi ve bor toksisitesi koşulları altında yetişen soya bitkisine yapılan bakteri ve melatonin uygulamasının toprak mikrobiyal aktivitesine etkisi. Harran Tarım Ve Gıda Bilimleri Dergisi, 25(3), 336-348. https://doi.org/10.29050/harranziraat.929285

Indexing and Abstracting 

13435  19617 13436 13440 13441 13442 13443

13445 13447 13449 13464 13466


10749  Harran Journal of Agricultural and Food Science is licensed under Creative Commons 4.0 International License.